当前位置:文档之家› workbench 四面体网格膨胀

workbench 四面体网格膨胀

第五章

四面体网格膨胀

概述

Training Manual ?四面体网格划分算法

?Patch Conforming的膨胀选项

–算法

–前处理和后处理

–高级选项

–冲突避免

?Patch Independent 划分

P t h I d d t

–损伤外貌

y

–Proximity 细化

–Curvature 细化

?作业5.1 三通搅拌器的膨胀四面体网格

(Patch Conforming)

(P t h C f i)

?作业5.2 汽车多支管的流体和结构网格划分

(Patch Independent)

(Patch Independent)

四面体网格划分算法

Training Manual ?Patch Conforming

–默认时考虑所有的面和边(尽管在收缩控制和虚拟拓扑时会改变且默认损伤外貌基于最小尺寸限制)

–适度简化CAD (如. native CAD, Parasolid, ACIS, 等.)

在体部件中结使扫共体棱柱体格

–在多体部件中可能结合使用扫掠方法生成共形的混合四面体/棱柱和六面体网格

–有高级尺寸功能

–表面网格体网格

?Patch Independent

–对CAD 有长边的面, 许多面的修补, 短边等有用.

–内置defeaturing/simplification 基于网格技术

–基于ICEM CFD 四面体/棱柱Octree 方法

–体网格表面网格

Patch Conforming 四面体膨胀

Training Manual ?基本设置包括膨胀选项,前处理和后处理膨胀算法

膨胀选项–平滑过渡

Training Manual ?平滑过渡(默认)

–使用局部四面体单元尺寸计算每个局部的初始高度和总高度以达到平滑的体积变化比。每个膨胀的三角形都有一个关于面积计算的初始高度,在节点处平均。这意味着对一均匀网格,初始高度大致相同,而对变化网格初始高度也是不同的。

–过渡比

?膨胀层最后单元层和四面体区域第一单元层间的体尺寸改变

?当求解器设置为CFX时, 默认的Transition Ratio是0.77. 对其它物理选项, 包括Solver

Preference设置为Fluent的CFD, 默认值是0.272.

?因为Fluent求解器是单元为中心的,其网格单元等于求解器单元, 而CFX求解器是顶点

为中心的,求解器单元是双重节点网格构造的,因此会发生不同的处理

膨胀选项–厚度选项

Training Manual ?总厚度

–创建常膨胀层,用Number of Layers的值和Growth Rate控制以获得Maximum Thickness值控制的总厚度。不同于Smooth Transition选项的膨胀,Total

Thickness选项的膨胀其第一膨胀层和下列每一层的厚度是常量.

?第一层厚度

–创建常膨胀层,用First Layer Height, Maximum Layers, 和Growth Rate控制

Smooth Transition First Layer Thickness 生成膨胀网格。不同于Smooth Transition选项的膨胀,First Layer Thickness 选项的膨胀其第一膨胀层和下列每一层的厚度是常量。

膨胀算法

Training Manual ?前处理

–TGrid 算法

–所有物理类型的默认设置。首先表面网格膨胀, 然后生成体网格

–不支持邻近面设置不同的层数

–可应用于扫掠和2D 网格划分

2D

?后处理

–ICEM CFD 算法

–使用一种在四面体网格生成后作用的后处理技术

–只对patching conforming和patch independent 四面体网格有效.

高级膨胀选项

Training Manual ?Mesh 设置为Yes,在Global Inflation

Options下可看到Advanced Options

–冲突避免

?Layer Compression (对Fluent默认)

?Stair Stepping (对CFX默认))

–增长比类型

–最大角

–倒圆角比

–使用后处理平滑

–平滑迭代

冲突避免

Training Manual ?层压缩

–不同面的膨胀阵面扩展有可能冲突, 膨胀

层就要受压制,以给四面体层留足够的空

–如果层压缩不能解决冲突, 层就会由于以

下描述的stair stepping而去除. 产生一警

告信息并且FLUENT用户特别关心的网格

质量会受到影响

Stair Stepping

?Stair Stepping

–剥离膨胀层阻止阵面扩展冲突,以给四面

体层留足够的空间

膨胀: Compression 与. Stair-stepping

Training Manual Layer Compression: Stair-stepping:

Patch Independent 四面体

Training Manual ?类似于高级尺寸功能的Curvature 和

Proximity,Patch Independent 四

面体方法对损伤几何有一个显示容

差控制

?体网格首先生成,然后映射到顶点,

边, 和面来创建表面网格。可以强制

地通过创建命名选项或设置

Defeaturing Tolerance 为No来考虑

面, 边, 或点

Training Manual

损伤容差

?“过滤”边基于尺寸和角。如Define Defeaturing

Tolerance 设置为Yes, 则需要在Defeaturing Tolerance 项输入数值。包括以下几个基本情况:

–两个接近容差近似平行的空间边如图1所示(倒圆角或倒角)

?如果跨度间的面) 15则一边保留另一边去(倒圆角或倒角)大于度,则边保留另边去除。节点将沿一边排成一行。如果跨度间的面(倒圆角或倒角) 小于15度, 两个边都去除,patch independent 网格越过不捕捉这个特征

如容差小倒角或倒角寸并偏斜大边都保?如果容差小于倒圆角或倒角尺寸, 并且偏斜大于15度, 两边都保留.

–直径小于容差的小孔如图2所示.

Fig. 1

?没有边被去除. 这种情况需要手动.

Fig. 2

损伤例子

Training Manual 几何损伤损伤容差为1

Proximity 细化–狭缝中单元

Training Manual ?越过狭缝单元数

–(只在Curvature and Proximity Refinement 设置为Yes时显示)。这是狭缝中的单元数,设置proximity 细化的目标。网格将在紧密区域细分, 但细化受到

单元数设置细化的目标网格将在紧密区域细分

Min Size Limit的限制,不会越过这个限制。缺省值是1。

Curvature 细化–跨角

Training Manual ?跨角

Curvature and Proximity Refinement

–(只在Curvature and Proximity Refinement

设置为Yes时显示)。设置curvature细化的目

标。类似于Advanced Size Function的设置.

这个细化也受到Min Size Limit的限制.下列

Min Size Limit

几个选择可用:

?粗糙–91 度60 度

?中等–75度到24度

?细化–36 度到18 度

Patch Independent 四面体膨胀

Training Manual ?和Patch Conforming设置类似, 但只有后处理算法,因为在体网格生成之前不存在表面网格.

作业5.1

三通搅拌器的四面体网格膨胀

目标

Training Manual

这个作业示范patch conforming利用四面体网格划分器对三通搅拌器的流体部

分划分网格,壁边界层用膨胀层来考虑。这个网格将在之后的CFD 分析中使用,所以作业也示范如何为之后的分析输出网格数据.

输入几何

Training Manual

1.启动Workbench 并选择

菜单栏的Import 选项,

p

and change the filter to

Geometry File

2.从指南文件夹指定mixer-

tee.agdb文件,注意到

一带有绿色对号标记项

带有绿色对号标记项

出现在项目示图区

3.展开左边的Component

3Component

Systems ,将Mesh拖进

项目示图区中的DM 实

例。注意出现了联接

抑制实体部件并设置方法

Training Manual 4.在项目示图区的B体系中双击Mesh 项打开

ANSYS

ANSYS 网格划分

5.注意这里有5 部件和5个实体。4个Solid

项包含三通管的固体部分而命名为Fluid的

体是流体区域

6.因为首先关注的是流体区域, 右击并抑制

Outline中几何下的4个固体

7.右击Mesh 插入方法。选择流体体并将

Method 设置为Tetrahedrons,将Algorithm

设置为Patch Conforming

workbench中如何查看网格质量

在details of mesh下有一项mesh metric,默认的是none。点开后,就会看到里面有几个检查项目:Element Quality, Aspect Ratio, Jacobian Ratio, Warping Factor, Parallel Deviation, Maximum Corner Angle, 和Skewness。下面做一点简单的介绍,详细内容请参考HELP 1.png(18.49 KB, 下载次数: 15) 在Geometry下选择某个体,我们就可以只对这个体上的网格进行检查。 png(17.06 KB, 下载次数: 9) 第一项是element quality。这是基于一个给定单元的体积与边长间的比率。其值处于0和

1之间,0为最差,1为最好。 第二项为aspect ratio。对于三角形,连接一个顶点跟对边的中点成一条线,再连另两边的中点成一条线,最后以这两条线的交点为中点构建两个矩形。之后再由另外两个顶点构建四个矩形。这六个矩形中的最长边跟最短边的比率再除以sqrt(3)。最好的值为1。值越大单元越差。 对四边形而言,通过四个中点构建两个四边形,aspect ratio就是最长边跟最短边的比率。同样最好的值为1。值越大单元越差。 第三项,Jacobian Ratio。在单元的一些特定点上计算出雅可比矩阵行列式。其值就是最大值跟最小值的比率。1最好。值越大就说明单元越扭曲。如果最大值跟最小值正负号不同,直接赋值-100。 第四项,warping factor。主要用于检查四边形壳单元,以及实体单元的四边形面。其值基于单元跟其投影间的高差。0说明单元位于一个平面上,值越大说明单元翘曲越厉害。 第五项,parallel deviation。在一个四边形中,由两条对边的向量的点积,通过acos得到一个角度。取两个角度中的大值。0最好。 第六项,maximum corner angle。最大角度。对三角形而言,60度最好,为等边三角形。对四边形而言,90度最好,为矩形。 第七项,skewness。是最基本的网格质量检查项,有两种计算法,Equilateral-Volume-Based Skewness 和Normalized Equiangular Skewness。其值位于0跟1之间,0最好,1最差。 在选定检查项后,我们还可以查看这一项的最差单元。 3.png(18.22 KB, 下载次数: 8)

workbench网格划分的 很实用的讲解

如何在ANSYS WORKBENCH中划分网格?经常有朋友问到这个问题。我整理了一下,先给出第一个入门篇,说明最基本的划分思路。以后再对某些专题问题进行细致阐述。 ANSYS WORKBENCH中提供了对于网格划分的几种方法,为了便于说明问题,我们首先创建一个简单的模型,然后分别使用几种网格划分方法对之划分网格,从而考察各种划分方法的特点。 1. 创建一个网格划分系统。 2. 创建一个变截面轴。 先把一个直径为20mm的圆拉伸30mm成为一个圆柱体 再以上述圆柱体的右端面为基础,创建一个直径为26mm的圆,拉伸30mm得到第二个圆柱体。 对小圆柱的端面倒角2mm。 退出DM. 3.进入网格划分程序,并设定网格划分方法。 双击mesh进入到网格划分程序。 下面分别考察各种网格划分方法的特点。 (1)用扫掠网格划分。 对整个构件使用sweep方式划分网格。 结果失败。 该方法只能针对规则的形体(只有单一的源面和目标面)进行网格划分。(2)使用多域扫掠型网格划分。 结果如下

可见ANSYS把该构件自动分成了多个规则区域,而对每一个区域使用扫略网格划分,得到了很规则的六面体网格。这是最合适的网格划分方法。 (3)使用四面体网格划分方法。 使用四面体网格划分,且使用patch conforming算法。 可见,该方式得到的网格都是四面体网格。且在倒角处网格比较细密。 其内部单元如下图(这里剖开了一个截面) 使用四面体网格划分,但是使用patch independent算法。忽略细节。 、 网格划分结果如下图 此时得到的仍旧是四面体网格,但是倒角处并没有特别处理。 (4)使用自动网格划分方法。 得到的结果如下图 该方法实际上是在四面体网格和扫掠网格之间自动切换。当能够扫掠时,就用扫掠网格划分;当不能用扫掠网格划分时,就用四面体。这里不能用扫掠网格,所以使用了四面体网格。 (5)使用六面体主导的网格划分方法。 得到的结果如下

ANSYS 13.0 Workbench 网格划分及操作案例

第 3章 ANSYS 13.0 Workbench网格划分及操作案例 网格是计算机辅助工程(CAE)模拟过程中不可分割的一部分。网格直接影响到求解精 度、求解收敛性和求解速度。此外,建立网格模型所花费的时间往往是取得 CAE 解决方案所 耗费时间中的一个重要部分。因此,一个越好的自动化网格工具,越能得到好的解决方案。 3.1 ANSYS 13.0 Workbench 网格划分概述 ANSYS 13.0 提供了强大的自动化能力,通过实用智能的默认设置简化一个新几何体的网 格初始化,从而使得网格在第一次使用时就能生成。此外,变化参数可以得到即时更新的网 格。ANSYS 13.0 的网格技术提供了生成网格的灵活性,可以把正确的网格用于正确的地方, 并确保在物理模型上进行精确有效的数值模拟。 网格的节点和单元参与有限元求解,ANSYS 13.0在求解开始时会自动生成默认的网格。 可以通过预览网格,检查有限元模型是否满足要求,细化网格可以使结果更精确,但是会增 加 CPU 计算时间和需要更大的存储空间,因此需要权衡计算成本和细化网格之间的矛盾。在 理想情况下,我们所需要的网格密度是结果随着网格细化而收敛,但要注意:细化网格不能 弥补不准确的假设和错误的输入条件。 ANSYS 13.0 的网格技术通过 ANSYS Workbench的【Mesh】组件实现。作为下一代网格 划分平台, ANSYS 13.0 的网格技术集成 ANSYS 强大的前处理功能, 集成 ICEM CFD、 TGRID、 CFX-MESH、GAMBIT网格划分功能,并计划在 ANSYS 15.0 中完全整合。【Mesh】中可以根 据不同的物理场和求解器生成网格,物理场有流场、结构场和电磁场,流场求解可采用 【Fluent】、【CFX】、【POLYFLOW】,结构场求解可以采用显式动力算法和隐式算法。不同的 物理场对网格的要求不一样,通常流场的网格比结构场要细密得多,因此选择不同的物理场, 也会有不同的网格划分。【Mesh】组件在项目流程图中直接与其他 Workbench分析系统集成。 3.2 ANSYS 13.0 Workbench 网格划分 ANSYS 网格划分不能单独启动,只能在 Workbench 中调用分析系统或【Mesh】组件启 动,如图 3-1 所示。 图3-1 调入分析系统及网格划分组件

ansysworkbenchmeshing网格划分总结(1)

Base point and delta创建出的点重合时看不到 大部分可划分为四面体网格,但六面体网格仍是首选,四面体网格是最后的选择,使用复杂结构。 六面体(梯形)在中心质量差,四面体在边界层处质量差,边界层处用棱柱网格prism。 棱锥为四面体和六面体之间的过渡 棱柱由四面体网格被拉伸时生成 3D Sweep扫掠网格划:只有单一的源面和目标面,膨胀层可生成纯六面体或棱柱网格 Multizone多域扫掠网格:对象是多个简单的规则体组成时(六面体)——mapped mesh type映射网格类型:包括hexa、hexa/prism ——free mesh type自由网格类型:包括not allowed、tetra、hexa dominant、hexa core(六面体核心) ——src/trg selection源面/目标面选择,包括automatic、manual source手动源面选择 patch conforming:考虑一些小细节(四面体),包括CFD的膨胀层或边界层识别 patch independent:忽略一些小细节,如倒角,小孔等(四面体),包括CFD 的膨胀层或边界层识别 ——max element size 最大网格尺寸 ——approx number of elements大约网格数量 mesh based defeaturing 清除网格特征 ——defeaturing tolerance 设置某一数值时,程序会根据大小和角度过滤掉几何边 Use advanced size function 高级尺寸功能

——curvature['k??v?t??]曲率:有曲率变化的地方网格自动加密,如螺钉孔,作用于边和面。 ——proximity[pr?k's?m?t?]邻近:窄薄处、狭长的几何体处网格自动加密,如薄壁,但花费时间较多,网格数量增加较多,配合min size使用。控制面网格尺寸可起到相同细化效果。 hex dominant六面体主导:先生成四边形主导的网格,然后再得到六面体再按需要填充棱锥和四面体单元。 ——此方法对于不可扫掠的体,要得到六面体网格时推荐 ——对内部容积大的体有用 ——对体积和表面积比小的薄复杂体无用 ——对于CFD无边界层识别 ——主要对FEA分析有用 Automatic自动网格:在四面体网格(patch conforming考虑细节)和扫掠网格(sweep)之间自动切换。 2D Quadrilateral dominant [,kwɑdr?'l?t?r?l]四边形主导 triangles['tra???g(?)l]三角形 uniform quad/tri 均匀四边形或三角形 uniform quad 均匀四边形 膨胀 所有的方法可以应用到膨胀中除了六面体主导控制的薄壁结构的扫掠 可以扫掠(纯六面体或楔形) 网格质量mesh metrics:畸变度skewness,六面体节点数少于四面体的一半,边界层、高区率区域用六面体。 对任意几何,六面体网格划分需要多步,对简单几何,扫掠Sweep和Multizone 是一种简单方式。 几何体的不同部件可以使用不同的网格划分方法(能扫掠的部件扫掠,不能的部

icem-cfd 四面体网格模块tetra介绍

ICEM CFD四面体网格模块Tetra介绍

概述 T t z Tetra方法 z几何图形所要求的必备条件z Tetra处理综述 z示例实践 z ICEM CFD Prism介绍

Tetra方法,or... What the Heck is an Octree? ...at t e ec s a Oct ee? 网格尺寸信息已经在几何图形中规定了 z z潜在的网格填满限制框 z细分网格使其与几何图形一致 , ?divided in half in three dimensions , hence Octree z Cutter程序确定边界表面单元 z表面网格是体网格的结果 z光滑功能实现较好的单元质量

所有程序综述 z创建或读入几何图形 z将实体分配到几何图形数据库 z定义网格全局尺寸和在所选实体上的尺寸z产生网格 提高网格质量(光滑等) z提高网格质量(光滑,等) z输出到分析软件

Tetra的几何图形 z需要封闭的曲面模型 ?将曲面显示为实体 ?查找丢失的表面 ?查找洞或缺口 ?Tetra允许有较小的缺口(与当地单元尺寸比较)z关键特征处的点和曲线 z用材料点定义体 Missing inlet surface Missing inlet surface

点和曲线的使用 在尖角处包括点 z z包括曲线以限制节点能够放在关键特征处?在表面交叉处 ?at ‘kinks’ in surfaces z在曲面交接比较光滑处不要包括曲线 z NOTE: failing to include points and curves will result in mesh which is ‘chamfered’ at corners

Hypermesh四面体网格划分

Hypermesh四面体网格划分 Hypermesh四面体网格划分 1.长按ctrl键后,左键,旋转,,中间键,缩放,,右键,移动, 放大后的图像按F字母键可以恢复原来的大小。 2.Entity:实体 3.实体划分网格后删除网格 4.Volume tetra: Tetra mesh:四面体网格 Volume tetra:直接四面体网格划分 Use Curvature:运用曲率,在有曲率的地方细化网格 Use proximity:在尺寸小的地方细化网格

5.Tetra mesh:四面体网格 先生成表面的网格,再由表面的网格扩展成体网格查看生成的表面网格, 按“F5键”出现以下界面 Shift+左键,选中一部分,选中的部分变白 按“mask”键,出现下图,

按“unmask all”恢复。 6.shift+F5: 7.F10键,检查窗口 Warpage:翘曲 aspect:长宽比 skew:扭曲 tet collapse,塌陷 Vol skew:空间扭曲 Min angle:最小角 Max angle:最大角 8.塌陷部分重新划分,即有缺陷的网格部分,,

F10---save failed,然后切换到F5键---elems,单元,---retrieve ,调出保存的图形,---reverse,选中合格的单元,---mask,隐藏,只剩下有缺陷的单元 Tool---find,工具框,---find attached---选中一部分---find键 3D---tetra remesh---elems,displayed,---remesh 9.快速网格划分,需自己设置参数,,

workbench网格划分的很实用的讲解

如何在ANSYS WORKBENCH分网格?经常有朋友问到这个问题。我整理了一下,先给出第一个入门篇,说明最基本的划分思路。以后再对某些专题问题进行细致阐述。 ANSYS WORKBENC提供了对于网格划分的几种方法,为了便于说明问题,我们首先创建一个简单的模型,然后分别使用几种网格划分方法对之划分网格,从而考察各种划分方法的特点。 1.创建一个网格划分系统。 2.创建一个变截面轴。 先把一个直径为20mm勺圆拉伸30mn成为一个圆柱体 再以上述圆柱体的右端面为基础,创建一个直径为26mm勺圆,拉伸30mn得到第二个圆柱体。 对小圆柱的端面倒角2mm。 退出DM. 3.进入网格划分程序,并设定网格划分方法。 双击mesh进入到网格划分程序。 下面分别考察各种网格划分方法的特点。 (1)用扫掠网格划分。 对整个构件使用sweep方式划分网格 结果失败。 该方法只能针对规则的形体(只有单一的源面和目标面)进行网格划分

(2)使用多域扫掠型网格划分。 结果如下 可见ANSYS巴该构件自动分成了多个规则区域,而对每一个区域使用扫略网格划分,得到了很规则的六面体网格。这是最合适的网格划分方法。 (3)使用四面体网格划分方法。 使用四面体网格划分,且使用patch con formi ng算法。 可见,该方式得到的网格都是四面体网格。且在倒角处网格比较细密。 其内部单元如下图(这里剖开了一个截面) 使用四面体网格划分,但是使用patch in depe nde nt算法。忽略细节

网格划分结果如下图此时得到的仍旧是四面体网格,但是倒角处并没有特别处理。 (4)使用自动网格划分方法。 得到的结果如下图该方法实际上是在四面体网格和扫掠网格之间自动切换。当能够扫掠时,就用扫掠网格划 分;当不能用扫掠网格划分时,就用四面体。这里不能用扫掠网格,所以使用了四面体网 格。 (5)使用六面体主导的网格划分方法。 得到的结果如下该方法在表面用六面体单元,而在内部也尽量用六面体单元,当无法用六面体单元时,就 用四面体单元填充。由于四面体单元相对较差,所以它比较能够保证表面的单元质量。总体来说,对于空间物体而言,我们应当尽量使用六面体网格。 当对象是一个简单的规则体时,使用扫掠网格划分是合适的;当对象是对个简单的规则体组成时,使用多域扫掠网格划分是合适的;接着尽量使用六面体主导的方式,它会在外层形成六面体网格,而在心部填充四面体网格。四面体网格是最后的选择。其中如果要忽略一些小细节,如倒角,小孔等,则使用patch independent 算法; 如果要要考虑一些小细节,则使用patch conforming 算法

workbench网格划分的_很实用的讲解

ANSYS WORKBENCH中提供了对于网格划分的几种方法,为了便于说明问题,我们首先创建一个简单的模型,然后分别使用几种网格划分方法对之划分网格,从而考察各种划分方法的特点。 1. 创建一个网格划分系统。 2. 创建一个变截面轴。 先把一个直径为20mm的圆拉伸30mm成为一个圆柱体 再以上述圆柱体的右端面为基础,创建一个直径为26mm的圆,拉伸30mm得到第二个圆柱体。对小圆柱的端面倒角2mm。 退出DM. 3.进入网格划分程序,并设定网格划分方法。 双击mesh进入到网格划分程序。 下面分别考察各种网格划分方法的特点。 (1)用扫掠网格划分。 对整个构件使用sweep方式划分网格。 结果失败。 该方法只能针对规则的形体(只有单一的源面和目标面)进行网格划分。 (2)使用多域扫掠型网格划分。 结果如下 可见ANSYS把该构件自动分成了多个规则区域,而对每一个区域使用扫略网格划分,得到了很规则的六面体网格。这是最合适的网格划分方法。 (3)使用四面体网格划分方法。

使用四面体网格划分,且使用patch conforming算法。 可见,该方式得到的网格都是四面体网格。且在倒角处网格比较细密。 其内部单元如下图(这里剖开了一个截面) 使用四面体网格划分,但是使用patch independent算法。忽略细节。 、 网格划分结果如下图 此时得到的仍旧是四面体网格,但是倒角处并没有特别处理。 (4)使用自动网格划分方法。 得到的结果如下图 该方法实际上是在四面体网格和扫掠网格之间自动切换。当能够扫掠时,就用扫掠网格划分;当不能用扫掠网格划分时,就用四面体。这里不能用扫掠网格,所以使用了四面体网格。(5)使用六面体主导的网格划分方法。 得到的结果如下 该方法在表面用六面体单元,而在内部也尽量用六面体单元,当无法用六面体单元时,就用四面体单元填充。由于四面体单元相对较差,所以它比较能够保证表面的单元质量。 总体来说,对于空间物体而言,我们应当尽量使用六面体网格。 当对象是一个简单的规则体时,使用扫掠网格划分是合适的; 当对象是对个简单的规则体组成时,使用多域扫掠网格划分是合适的; 接着尽量使用六面体主导的方式,它会在外层形成六面体网格,而在心部填充四面体网格。四面体网格是最后的选择。其中 如果要忽略一些小细节,如倒角,小孔等,则使用patch independent算法; 如果要要考虑一些小细节,则使用patch conforming算法。

AnsysWorkbench划分网格

Ansys Workbench 划分网格 (张栋zd0561@https://www.doczj.com/doc/9a11828277.html,) 1、对于三维几何体(对于三维几何体(3D 3D 3D) )有几种不同的网格化分方法。如图1下部所示。 图1网格划分的种类 1.1、Automatic(自动划分法) 1.2、Tetrahedron(四面体划分法) 它包括两种划分方法:Patch Conforming(A W 自带功能),Patch Independent(依靠ICEM CFD Tetra Algorithm 软件包来实现)。

步骤:Mesh(右键)——Insert——Method (操作区上方)Meshcontrl——Method (左下角)Scope——Geometry Method——Tetrahedrons(四面体网格) Algorithm——Patch Conforming (补充:Patch Independent该算法是基于Icem CFD Tetra的,Tetra部分具有膨胀应用,其对CAD许多面的修补均有用,包括碎面、短边、较差的面参数等。在没有载荷或命名选项的情况下,面和边无需考虑。) 图2四面体网格分两类

图3四面体划分法的参数设置 1.3、Hex Dominant(六面体主导法) 1.4、Sweep(扫掠划分法) 1.5、MultiZone(多区划分法) 2、对于面体或者壳二维几何 对于面体或壳二维(2D),A W有一下: Quad Dominant(四边形单元主导) Triangles(三角形单元) Uniform Quad/Tri(均匀四面体/三角形单元) Uniform Quad(均匀四边形单元) 3、网格参数设置 下图为缺省设置(Defaults)下的物理环境(Physics Preferance)

workbench网格划分的很实用的讲解

w o r k b e n c h网格划分的 很实用的讲解 Newly compiled on November 23, 2020

如何在ANSYS WORKBENCH中划分网格经常有朋友问到这个问题。我整理了一下,先给出第一个入门篇,说明最基本的划分思路。以后再对某些专题问题进行细致阐述。ANSYS WORKBENCH中提供了对于网格划分的几种方法,为了便于说明问题,我们首先创建一个简单的模型,然后分别使用几种网格划分方法对之划分网格,从而考察各种划分方法的特点。 1. 创建一个网格划分系统。 2. 创建一个变截面轴。 先把一个直径为20mm的圆拉伸30mm成为一个圆柱体 再以上述圆柱体的右端面为基础,创建一个直径为26mm的圆,拉伸30mm得到第二个圆柱体。 对小圆柱的端面倒角2mm。 退出DM. 3.进入网格划分程序,并设定网格划分方法。 双击mesh进入到网格划分程序。 下面分别考察各种网格划分方法的特点。 (1)用扫掠网格划分。 对整个构件使用sweep方式划分网格。 结果失败。 该方法只能针对规则的形体(只有单一的源面和目标面)进行网格划分。 (2)使用多域扫掠型网格划分。 结果如下

可见ANSYS把该构件自动分成了多个规则区域,而对每一个区域使用扫略网格划分,得到了很规则的六面体网格。这是最合适的网格划分方法。 (3)使用四面体网格划分方法。 使用四面体网格划分,且使用patch conforming算法。 可见,该方式得到的网格都是四面体网格。且在倒角处网格比较细密。 其内部单元如下图(这里剖开了一个截面) 使用四面体网格划分,但是使用patch independent算法。忽略细节。 、 网格划分结果如下图 此时得到的仍旧是四面体网格,但是倒角处并没有特别处理。 (4)使用自动网格划分方法。 得到的结果如下图 该方法实际上是在四面体网格和扫掠网格之间自动切换。当能够扫掠时,就用扫掠网格划分;当不能用扫掠网格划分时,就用四面体。这里不能用扫掠网格,所以使用了四面体网格。 (5)使用六面体主导的网格划分方法。 得到的结果如下

workbench 四面体网格膨胀

第五章 四面体网格膨胀

概述 Training Manual ?四面体网格划分算法 ?Patch Conforming的膨胀选项 –算法 –前处理和后处理 –高级选项 –冲突避免 ?Patch Independent 划分 P t h I d d t –损伤外貌 y –Proximity 细化 –Curvature 细化 ?作业5.1 三通搅拌器的膨胀四面体网格 (Patch Conforming) (P t h C f i) ?作业5.2 汽车多支管的流体和结构网格划分 (Patch Independent) (Patch Independent)

四面体网格划分算法 Training Manual ?Patch Conforming –默认时考虑所有的面和边(尽管在收缩控制和虚拟拓扑时会改变且默认损伤外貌基于最小尺寸限制) –适度简化CAD (如. native CAD, Parasolid, ACIS, 等.) 在体部件中结使扫共体棱柱体格 –在多体部件中可能结合使用扫掠方法生成共形的混合四面体/棱柱和六面体网格 –有高级尺寸功能 –表面网格体网格 ?Patch Independent –对CAD 有长边的面, 许多面的修补, 短边等有用. –内置defeaturing/simplification 基于网格技术 –基于ICEM CFD 四面体/棱柱Octree 方法 –体网格表面网格

Patch Conforming 四面体膨胀 Training Manual ?基本设置包括膨胀选项,前处理和后处理膨胀算法

膨胀选项–平滑过渡 Training Manual ?平滑过渡(默认) –使用局部四面体单元尺寸计算每个局部的初始高度和总高度以达到平滑的体积变化比。每个膨胀的三角形都有一个关于面积计算的初始高度,在节点处平均。这意味着对一均匀网格,初始高度大致相同,而对变化网格初始高度也是不同的。 –过渡比 ?膨胀层最后单元层和四面体区域第一单元层间的体尺寸改变 ?当求解器设置为CFX时, 默认的Transition Ratio是0.77. 对其它物理选项, 包括Solver Preference设置为Fluent的CFD, 默认值是0.272. ?因为Fluent求解器是单元为中心的,其网格单元等于求解器单元, 而CFX求解器是顶点 为中心的,求解器单元是双重节点网格构造的,因此会发生不同的处理

四面体剖分的实现

四面体剖分的实现 1 研究现状 网格剖分算法经历了从平面到曲面,再到三维实体剖分的发展过程,国内外学者为推动网格剖分的发展做出了很多贡献。作为当前网格生成领域研究热点的四面体剖分,出现了很多方法,其中比较成熟和普遍使用的算法有:Delaunay 法和前沿推进法,以及映射法、栅格法、模板法和多区域法等。 Delaunay法在三维空间存在边界一致性和薄元处理等问题,由于这些问题的存在,使Delaunay法适用范围有限,稳定性不好。针对存在的这些问题,Y Bai 等改良了约束Delaunay网格生成算法;陈学工等提出可消除退化现象引起的潜在错误的方法。前沿推进法是节点和单元同步生成。前沿推进法是一种全自动网格剖分算法,三维的前沿推进法是从待剖分域的表面三角形集合(称作初始前沿队列)开始,循环往复,当前沿队列为空时结束的一种网格划分方法。前沿推进法缺乏一般性的理论支撑,要进行大量的算术判断,占用了大量时间,因此对数据结构的要求很髙,对于三维空间前沿推进法还存在收敛性等问题。基于此很多人都对前沿推进法做了改进工作,吴宝海等提出一种两侧推进的波前法,Li等人采用由内而外的波前推进的方式生成了全六面体网格。 除过以上介绍的算法,四面体网格划分有针对不同问题的算法。如陈一民等提出对多面体进行划分的算法; B Jonathan等提出一种多材质的四面体网格生成算法;J Wang等提出了一种能得到高质量四面体网格的自适应算法;S Tian 等提出了一种在模型轮廓的基础上生成网格的算法;R Montenegro等提出自动生成自适应四面体网格的算法。 如何自动划分网格逐渐成为有限元法发展的瓶颈,许多科学家和工程师在全自动有限元网格划分算法的研巧和实现上努力。网格生成是实际问题求解的前提,对于超薄、相邻或包含关系的复杂模型,生成符合实际要求的有限元网格是一个耗时很大的任务。此时,网格的自动生成算法节省时间的同时提供了髙精度,保证了问题分析的准确性。自动网格剖分算法发展至今,很多商业软件如Fluent、Ansys、Hyper mash等都提供了相应的网格剖分模块,对于规则的几何形状,生

ANSYS WORKBENCH中划分网格的几种方法

转自宋博士的博客 如何在ANSYS WORKBENCH中划分网格?经常有朋友问到这个问题。我整理了一下,先给出第一个入门篇,说明最基本的划分思路。以后再对某些专题问题进行细致阐述。 ANSYS WORKBENCH中提供了对于网格划分的几种方法,为了便于说明问题,我们首先创建一个简单的模型,然后分别使用几种网格划分方法对之划分网格,从而考察各种划分方法的特点。 1. 创建一个网格划分系统。 2. 创建一个变截面轴。 先把一个直径为20mm的圆拉伸30mm成为一个圆柱体 再以上述圆柱体的右端面为基础,创建一个直径为26mm的圆,拉伸30mm得到第二个圆柱体。

对小圆柱的端面倒角2mm。 退出DM. 3.进入网格划分程序,并设定网格划分方法。双击mesh进入到网格划分程序。

下面分别考察各种网格划分方法的特点。(1)用扫掠网格划分。 对整个构件使用sweep方式划分网格。 结果失败。

该方法只能针对规则的形体(只有单一的源面和目标面)进行网格划分。 (2)使用多域扫掠型网格划分。 结果如下 可见ANSYS把该构件自动分成了多个规则区域,而对每一个区域使用扫略网格划分,得到了很规则的六面体网格。这是最合适的网格划分方法。 (3)使用四面体网格划分方法。 使用四面体网格划分,且使用patch conforming算法。

可见,该方式得到的网格都是四面体网格。且在倒角处网格比较细密。 其内部单元如下图(这里剖开了一个截面) 使用四面体网格划分,但是使用patch independent算法。忽略细节。 、 网格划分结果如下图

此时得到的仍旧是四面体网格,但是倒角处并没有特别处理。 (4)使用自动网格划分方法。 得到的结果如下图 该方法实际上是在四面体网格和扫掠网格之间自动切换。当能够扫掠时,就用扫掠网格划分;当不能用扫掠网格划分时,就用四面体。这里不能用扫掠网格,所以使用了四面体网格。

门主ICEM非结构网格1四面体网格

四面体网格生成一般流程 1、建立body 2、Global Mesh Setup(全局网格设定) ●全局网格尺寸 ●体网格尺寸:设定体网格类型及生成方法 3、Mesh Size for Parts(Part网格尺寸设定) 4、Surface Mesh Setup(面网格尺寸设定) 5、Curve Mesh Parameters(曲线网格参数设定) 6、Create Mesh Density(设定网格加密区) 7、Compute Mesh(计算生成网格) 8、Smooth Mesh Globally(网格光顺) 9、检查网格质量

示例1、运动体倾斜入水 几何模型如下图所示 步骤1 建立body 选择介于运动体与大圆柱之间屏幕的任意两个位置,单击中键确定。 (说明:在想要生成非结构网格的计算域建立Body,ICEM会根据这个点搜索包围它的最小闭合区域作为一个计算域。) 步骤2 定义全局网格尺寸 本例中定义为32 (说明: 1、最大网格尺寸最好取值为2的指数幂(帮助文 档建议) 2、实际网格生成的最大尺寸等于Scale factor与 Max element的乘积)

步骤3 定义网格类型及生成方法 选择网格类型Tetra/Mixed,生成方法为 Robust(Octree)。 (说明: 1、Tetra/Mixed默认情况下生成四面体网格,通过 设定可以创建三棱柱边界层网格(Prism),也可 以生成以六面体为主的体网格(Hexcore) 2、Robust(Octree)方法使用八叉树方法生成四面 体网格,是一种自上而下的网格生成方法,即 先生成体网格,后生成面网格。一般保持默认。) 步骤4 定义Part网格尺寸 本例中将弹体表面分别定义为三个part,最大网格尺寸分别定义为2、2、1。 (说明;由于本例中Part所定义的内容即为面,所以省略下一步的“表面网格设定”) 步骤 ..5 .建立加密区 ..... 本例中运动体尾部和头部X方向坐标分别为160、200,半径为4,要对运动体周围进行加密。 1、创建点(140,0,0)、(220,0,0) 2、单击图示Create Mesh Density按钮,在size处输入4,width处输入4,ratio 处输入1.2,选择上一步创建好的两点,Apply生成加密区如右下图黄色线。

ANSYSWorkbenchMesh网格划分(自己总结)

Workbench Mesh网格划分分析步骤网格划分工具平台就是为ANSYS软件的不同物理场和求解器提供相应的网格文件,Workbench中集成了很多网格划分软件/应用程序,有ICEM CFD,TGrid,CFX,GAMBIT,ANSYS Prep/Post等。网格文件有两类: ①有限元分析(FEM)的结构网格: 结构动力学分析,电磁场仿真,显示动力学分析(AUTODYN,ANSYS LS DYNA); ②计算流体力学(CFD 分析)分析的网格:用于ANSYS CFX,ANSYS FLUENT,Polyflow; 这两类网格的具体要求如下: (1)结构网格: ①细化网格来捕捉关心部位的梯度,例如温度、应变能、应力能、位移等; ②大部分可划分为四面体网格,但六面体单元仍然是首选; ③有些显示有限元求解器需要六面体网格; ④结构网格的四面体单元通常是二阶的(单元边上包含中节点); (2)CFD网格: ①细化网格来捕捉关心的梯度,例如速度、压力、温度等; ②由于是流体分析,网格的质量和平滑度对结果的精确度至关重要,这导致较大的网格数量,经常数百万的单元; ③大部分可划分为四面体网格,但六面体单元仍然是首选,流体分析中,同样的求解精度,六面体节点数少于四面体网格的一半。 ④CFD网格的四面体单元通常是一阶的(单元边上不包含中节点) 一般而言,针对不同分析类型有不同的网格划分要求: ①结构分析:使用高阶单元划分较为粗糙的网格; ②CFD:好的,平滑过渡的网格,边界层转化(不同CFD 求解器也有不同的要求); ③显示动力学分析:需要均匀尺寸的网格;

注:上面的几项分别对应Advanced中的Element Midside Nodes,以及Sizeing中的 Relevance Center,Smoothing,Transition。 网格划分的目的是对CFD (流体) 和FEM (结构) 模型实现离散化,把求解域分解成可得到精确解的适当数量的单元。 用户需要权衡计算成本和网格划分份数之间的矛盾。细密的网格可以使结果更精确,但是会增加CPU计算时间和需要更大的存储空间,特别是有些不必要的细节会大大增加分析需求。而有些地方,如复杂应力梯度区域,这些区域需要高密度的网格,如下图所示。一般而言,我们需要特别留意几何体中物理量变化特别大的区域,这些地方的网格需要划分得细密一些!

计算流体力学ICEM CFD 网格生成基础教程0204192301

第一章介绍 ICEM CFD 工程 Tutorials目录中每个工程是一个次级子目录。每个工程的目录下有下列子目录:import, parts, domains, mesh, 和transfer。他们分别代表: ? import/: 要导入到ICEMCFD中的集合模型交换文件,比如igs,STL等; ? parts/: CAD模型 ? domains/: 非结构六面体网格文件(hex.unstruct), 结构六面体网格分区文件(domain.n), 非结构四面体网格文件(cut_domain.1) ? mesh/: 边界条件文件(family_boco, boco),结构网格的拓扑定义文件(family_topo, topo_mulcad_out), 和Tetin几何文件(tetin1). ? transfer/: 求解器输入文件(star.elem), 用于Mom3d.的分析数据 mesh目录中Tetin文件代表将要划分网格的几何体。包含B-spline曲面定义和曲线信息,以及分组定义 Replay 文件是六面体网格划分的分块的脚本 鼠标和键盘操作 鼠标或键盘操作功能 鼠标左键点击和拖动旋转模型 鼠标中键点击和拖动平移模型 鼠标右键点击和上下拖动缩放模型 鼠标右键点击和左右拖动绕屏幕Z轴旋转模型 F9 按住F9,然后点击任意鼠标键进行操作的时候进行模型运动 F10 按F10 紧急图象Reset

第二章ICEM CFD Mesh Editor界面 The Mesh Editor, 创建修改网格的集成环境,包含三个窗口 ? The ICEM CFD 主窗口 ? 显示窗口 ? The ICEM CFD 消息窗口 主窗口 主窗口中除了图形显示区域,外,还有6个radio按钮:File, Geometry, Meshing, Edit Mesh and Output. The File Menu The File menu 包含 ? Open, Save, Save as, Close, Quit, Project dir, Tetin file, Domain file, B.C file, Import geo, Export geo, Options, Utilities, Scripting, Annotations, Import mesh, DDN part.

Ansys15.0workbench网格划分教程(修订)

第3章Workbench网格划分 3.1 网格划分平台 ANSYS Workbench中提供ANSYS Meshing应用程序(网格划分平台)的目标是提供通用的网格划分格局。网格划分工具可以在任何分析类型中使用。 ●FEA仿真:包括结构动力学分析、显示动力学分析(AUTODYN、ANSYS LS/DYNA)、 电磁场分析等。 ●CFD分析:包括ANSYS CFX、ANSYS FLUENT等。 3.1.1 网格划分特点 在ANSYS Workbench中进行网格划分,具有以下特点: ●ANSYS网格划分的应用程序采用的是Divide & Conquer(分解克服)方法。 ●几何体的各部件可以使用不同的网格划分方法,亦即不同部件的体网格可以不匹配 或不一致。 ●所有网格数据需要写入共同的中心数据库。 ●3D和2D几何拥有各种不同的网格划分方法。

ANSYS Workbench 15.0从入门到精通 3.1.2 网格划分方法 ANSYS Workbench中提供的网格划分法可以在几何体的不同部位运用不同的方法。 1.对于三维几何体 对于三维几何体(3D)有如图3-1所示的几种不同的网格划分方法。 图3-1 3D几何体的网格划分法 (1)自动划分法(Automatic) 自动设置四面体或扫掠网格划分,如果体是可扫掠的,则体将被扫掠划分网格,否则将使用Tetrahedrons下的Patch Conforming网格划分器划分网格。同一部件的体具有一致的网格单元。 (2)四面体划分法(Tetrahedrons) 四面体划分法包括Patch Conforming划分法(Workbench自带功能)及Patch Independent划分法(依靠ICEM CFD Tetra Algorithm软件包实现)。四面体划分法的参数设置如图3-2所示。 图3-2 四面体划分法的参数设置 Patch Independent网格划分时可能会忽略面及其边界,若在面上施加了边界条件,便不能忽略。它有两种定义方法:Max Element Size用于控制初始单元划分的大小;Approx number of Elements用于控制模型中期望的单元数目(可以被其他网格划分控制覆盖)。 当Mesh Based Defeaturing设为ON时,在Defeaturing Tolerance选项中设置某一数值时,程序会根据大小和角度过滤掉几何边。 56

workbench网格划分的很实用的讲解

w o r k b e n c h网格划分的很实用的讲解 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

如何在ANSYS WORKBENCH中划分网格经常有朋友问到这个问题。我整理了一下,先给出第一个入门篇,说明最基本的划分思路。以后再对某些专题问题进行细致阐述。ANSYS WORKBENCH中提供了对于网格划分的几种方法,为了便于说明问题,我们首先创建一个简单的模型,然后分别使用几种网格划分方法对之划分网格,从而考察各种划分方法的特点。 1. 创建一个网格划分系统。 2. 创建一个变截面轴。 先把一个直径为20mm的圆拉伸30mm成为一个圆柱体 再以上述圆柱体的右端面为基础,创建一个直径为26mm的圆,拉伸30mm得到第二个圆柱体。 对小圆柱的端面倒角2mm。 退出DM. 3.进入网格划分程序,并设定网格划分方法。 双击mesh进入到网格划分程序。 下面分别考察各种网格划分方法的特点。 (1)用扫掠网格划分。 对整个构件使用sweep方式划分网格。 结果失败。 该方法只能针对规则的形体(只有单一的源面和目标面)进行网格划分。 (2)使用多域扫掠型网格划分。 结果如下

可见ANSYS把该构件自动分成了多个规则区域,而对每一个区域使用扫略网格划分,得到了很规则的六面体网格。这是最合适的网格划分方法。 (3)使用四面体网格划分方法。 使用四面体网格划分,且使用patch conforming算法。 可见,该方式得到的网格都是四面体网格。且在倒角处网格比较细密。 其内部单元如下图(这里剖开了一个截面) 使用四面体网格划分,但是使用patch independent算法。忽略细节。 、 网格划分结果如下图 此时得到的仍旧是四面体网格,但是倒角处并没有特别处理。 (4)使用自动网格划分方法。 得到的结果如下图 该方法实际上是在四面体网格和扫掠网格之间自动切换。当能够扫掠时,就用扫掠网格划分;当不能用扫掠网格划分时,就用四面体。这里不能用扫掠网格,所以使用了四面体网格。 (5)使用六面体主导的网格划分方法。 得到的结果如下

Ansys_workbench网格划分相关

Mesh 网格划分方法—四面体(Patch Conforming和Patch Independent)、扫掠、自动、多区、CFX划分 1.四面体网格优点—适用于任意体、快速自动生成、关键区域使用曲度和 近似尺寸功能细化网格、可使用边界层膨胀细化实体边界。缺点—在 近似网格密度下,单元和节点数高于六面体网格、不可能使网格在一 个方向排列、由于几何和单元性能的非均质性,不适用于薄实体或环 形体 常用参数—最小和最大尺寸、面和体的尺寸、Advanced尺寸功 能、增长比(Growth—对CFD逐渐变化,避免突变)、平滑 (smooth—有助于获得更加均匀尺寸的网格)、统计学 (Statistics)、Mesh Metrics Pathch Conforming—默认考虑几何面和体生成表面网格,会考 虑小的边和面,然后基于TGRID Tetra算法由表面网格生成体 网格。作用—多体部件可混合使用Patch Conforming四面体和扫 掠方法共同生成网格,可联合Pinch Control 功能有助于移除短 边,基于最小尺寸具有内在网格缺陷 Patch Independent—基于ICEM CFD Tetra算法,先生成体网格 并映射到表面产生表面网格。如果没有载荷或命名,就不考虑 面和边界(顶点和边),此法容许质量差的CAD几何。作用—可 修补碎面、短边、差的面差数,如果面上没有载荷或者命名, 就不考虑面和边了,直接将网格跟其它面作一体划。如果有命 名则要单独划分该区域网格 体膨胀—直接选择要膨胀的面,就可使面向内径向生成边界层 面膨胀—选择要膨胀的面,在选择面的边,就可以向面内膨胀 2.扫掠网格体须是可扫掠的、膨胀可产生纯六面体或棱柱网格,手动设 置源和目标面,通常一对一,薄壁模型(Src/Trg选择Manual Thin)可自 动划分多个面,在厚度方向上划分多个单元。 3.自动化分网格—应该划分成四面体,其与扫掠取决于体是否可扫掠, 同一部件的体有一致网格,可程序化控制膨胀 4.多区扫掠网格划分—基于ICEM CFD六面体模块,多区划分完后,可 给多区添加膨胀 5.CFX网格—使用四面体和棱柱网格对循环对称或旋转对称几何划分网 格,不考虑网格尺寸或没有网格应用尺寸可使用CFX网格 全局网格控制 1.Physics Preference 物理设置包括力学(Mechanical)、CFD、电磁 (Electromagnetic)、显示(Explicit)分析 2.结构分析—使用哪个高阶单元划分较为粗糙的网格。网格策略—用最小输入 的方法解决关键特征,定义或接受少数全局尺寸设置为默认,用Relevance和其Center进行全局网格调整,如需要可对边线面体影响球定义尺寸和施加更 多控制 3.CFD—需要好的、平滑过渡的网格,边界层需转化。在必要区域用Advanced Size—Curvature、Proximity细化网格。设置识别特征的最小尺寸,如果过细

相关主题
文本预览
相关文档 最新文档