当前位置:文档之家› 人教版数学高二选修4-1导学案三圆的切线的性质及判定定理

人教版数学高二选修4-1导学案三圆的切线的性质及判定定理

人教版数学高二选修4-1导学案三圆的切线的性质及判定定理
人教版数学高二选修4-1导学案三圆的切线的性质及判定定理

三圆的切线的性质及判定定理

1.理解切线的性质定理、判定定理及两个推论,能应用定理及推论解决相关的几何问题.

2.能归纳并正确表述由圆的切线性质定理和两个推论整合而成的定理.

1.根据直线与圆公共点的个数,说明它们有怎样的位置关系?

答案直线与圆有两个公共点时,直线与圆相交;直线与圆有一个公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离.

2.下列关于切线的说法中,正确的有哪些?

(1)与圆有公共点的直线是圆的切线;

(2)垂直于圆的半径的直线是圆的切线;

(3)与圆心的距离等于半径的直线是圆的切线;

(4)过直径的端点,垂直于此直径的直线是圆的切线.

答案(3)(4).

1.圆的切线的性质定理及推论

(1)定理:圆的切线垂直于经过切点的半径.

(2)推论1:经过圆心且垂直于切线的直线必经过切点.

(3)推论2:经过切点且垂直于切线的直线必经过圆心.

2.圆的切线的判定定理

(1)判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.

(2)圆的切线的判断方法

判断方法语言描述

①定义法和圆有且只有一个公共点的直线是圆的切线

②数量关系法圆心到直线的距离等于半径的直线是圆的切线

③切线的判定定理过半径的外端且与这条半径垂直的直线是圆的切线

要点一圆的切线的判断

例1 如图,已知△ABC 中,AD ⊥BC 于D ,AD =12

BC ,E 、F 分别是AB ,AC 的中点,以EF 为直径作半圆O .

求证:BC 是半圆O 的切线.

证明 连接EF ,设EF 与AD 交于点G ,过圆心O 作OM ⊥BC ,垂足

为M .

∵EF ∥BC 且EF =12

BC , AD =12BC ,∴EF =AD ,∴GD =AG =12AD =12

EF , 又由已知可得四边形OGDM 为矩形,

∴OM =GD =12

EF ,∴OM 为半圆O 的半径,且OM ⊥BC ,∴BC 是半圆O 的切线. 规律方法 判断一条直线是圆的切线时,常用辅助线的作法

(1)如果已知这条直线与圆有公共点,则连接圆心与这个公共点,设法证明连接所得到的半径与这条直线垂直,简记为“连半径,证垂直”;

(2)若题目未说明这条直线与圆有公共点,则过圆心作这条直线的垂线,得垂线段,再证明这条垂线段的长等于半径,简记“作垂直,证半径”.

跟踪演练1 如图所示,在梯形ABCD 中,AD ∥BC ,∠C =90°,且AD +

BC =AB ,AB 为⊙O 的直径.求证:⊙O 与CD 相切.

证明 过O 作OE ⊥CD ,垂足为E .

因为AD ∥BC ,∠C =90°,

所以AD ∥OE ∥BC .

因为O 为AB 的中点,

所以E 为CD 的中点.

所以OE =12

(AD +BC ). 又因为AD +BC =AB ,

所以OE =12

AB ,且等于⊙O 的半径. 所以⊙O 与CD 相切.

要点二 圆的切线的性质定理的应用

例2 如图,已知等边△ABC ,以边BC 为直径的半圆与边AB 、AC 分

别交于点D 、点E .过点D 作DF ⊥AC ,垂足为点F .

(1)判断DF 与⊙O 的位置关系,并证明你的结论;

(2)过点F 作FH ⊥BC ,垂足为点H ,若等边△ABC 的边长为4,求FH

的长(结果保留根号).

解 (1)DF 与⊙O 相切.

证明:连接OD ,

∵OB =OD ,∠ABC =60°.

∴△BOD 是等边三角形,

∴∠DOB =60°.

∵△ABC 是等边三角形,

∴∠ACB =60°.

∴∠ACB =∠DOB ,∴OD ∥AC .

∴∠ODF =∠AFD =90°,

∴DF 是⊙O 的切线.

(2)∵OD ∥AC 且O 为BC 的中点,

∴AD =BD =2,又∠ADF =30°,

∴AF =1,∴FC =AC -AF =3.

∵FH ⊥BC ,∴∠FHC =90°.

在Rt △FHC 中,sin ∠FCH =

FH FC , ∴FH =FC ·sin60°=

332

. 即FH 的长为332

. 规律方法 (1)若题目的条件中有圆的切线,可考虑连接圆心和切点,则得垂直关系.

(2)圆的切线的性质定理及其两个推论,概括起来就是三点:它们是:①垂直于切线;②过切点;③过圆心.用其中的某两点作条件,便能推出第三点.

跟踪演练2 如图所示,在⊙O 中,AB 是⊙O 的直径,AD 是⊙O 的弦,

过点B 的切线与AD 的延长线交于点C ,且AD =DC ,求∠ABD 的度数.

解 ∵BC 是⊙O 的切线,

∴AB ⊥BC .∴△ABC 是直角三角形.

∵CD =AD ,∴BD =AD .

∵AB 是⊙O 的直径,∴AD ⊥BD .

∴△ABD 是等腰直角三角形.

∴∠ABD =45°.

要点三 有关线段的求解问题

例3 如图所示,在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,

且a 、b 是关于x 的一元二次方程x 2+4(c +2)=(c +4)x 的两个根,点D 在

AB 上,以BD 为直径的⊙O 切AC 于点E .

(1)求证:△ABC 是直角三角形;

(2)若tan A =34

,求AE 的长度. (1)证明 依据题意,得a +b =c +4,ab =4(c +2),

则a 2+b 2=(a +b )2-2ab =(c +4)2-2×4(c +2)=c 2,

∴△ABC 是直角三角形.

(2)解 ∵∠C =90°,

tan A =a b =34

, ∴不妨设a =3k ,b =4k ,

则c =5k (k >0),

代入a +b =c +4,得k =2.∴a =6,b =8,c =10.

连接OE ,得BC ∥OE .

∴OE BC =AO AB ,即OE 6=10-OE 10.解得OE =154.在Rt △AOE 中,tan A =OE AE =34

,∴AE =5. 规律方法 用切线的性质定理求解线段的长度时,应注意的问题

(1)观察图形,作辅助线;

(2)利用相关知识,如圆周角定理、圆的切线性质定理、判定定理等.

跟踪演练3 如图所示,PB 与⊙O 相切于点B ,PO 交⊙O 于点A ,BC ⊥OP

于C ,若已知OA =3cm ,OP =4cm ,则AC =____cm.

答案 34

解析 如图所示,连接OB .

∵PB 是切线,∴OB ⊥PB .

∵BC ⊥OP ,∴OB 2=OC ·OP ,

∴OC =OB 2OP =94

. ∴AC =OA -OC =3-94=34

(cm). 要点四 圆内接四边形与圆的切线综合的求解策略

例4 如图所示,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,

与⊙O 交于B 、C 两点,圆心O 在∠P AC 的内部,点M 是BC 的中点.

(1)证明:A 、P 、O 、M 四点共圆;

(2)求∠OAM +∠APM 的大小.

(1)证明 连接OP ,OM ,

因为AP 与⊙O 相切于点P ,

所以OP ⊥AP .

因为M 是⊙O 的弦BC 的中点,所以OM ⊥BC .

于是∠OP A +∠OMA =180°,

由圆心O 在∠P AC 的内部,

可知四边形APOM 的对角互补,

所以A ,P ,O ,M 四点共圆.

(2)解 由(1)得,A ,P ,O ,M 四点共圆,

所以∠OAM =∠OPM .

由(1)得OP ⊥AP .

由圆心O 在∠P AC 的内部,

可知∠OPM +∠APM =90°,

所以∠OAM +∠APM =90°.

规律方法 在圆中通过连接圆上的两点、作圆的切线等可以创造使用圆周角定理、圆心角定理、弦切角定理的条件,这是在圆的问题上解决角之间关系的重要技巧.

跟踪演练4 如图,⊙O 是△ABC 的外接圆,AB =AC =13,BC =24,P A 是

⊙O 的切线,A 为切点,割线PBD 过圆心交⊙O 于另一点D ,连接CD .

(1)求证:P A ∥BC ;

(2)求⊙O 半径及DC 的长度.

(1)证明 如图,连接OA 交BC 于G 点,∵AB =AC ,∴AB =AC ,

∴OA ⊥BC .

又∵P A 为⊙O 的切线,

∴OA ⊥P A ,∴P A ∥BC .

(2)解 ∵AB =AC ,OA ⊥BC ,

∴BG =CG =12

CB . ∵AB =13,∴AG =132-122=5,

在Rt △OBG 中,OB 2=OG 2+BG 2,设OB =R ,

∴R 2=(R -5)2+122,解得R =16.9.

∵BG =CG ,OD =OB ,

∴CD =2OG =2×(16.9-5)=23.8.

故⊙O 的半径为16.9,DC =23.8.

1.已知圆的半径为6.5cm ,圆心到直线l 的距离为4.5cm ,那么这条直线和这个圆的公共点的个数是( )

A .0

B .1

C .2

D .不能确定

答案 C

解析 圆心到l 的距离是4.5cm 小于圆的半径6.5cm ,故圆与l 相交.

2.如图,AB是圆O的直径,点D在AB的延长线上,且DC切圆O 于点C,若∠A=30°,OA=2,则OD等于()

A.2B.2.1C.3D.4

答案 D

解析连接OC,由于DC是圆O的切线,则在Rt△DCO中,

∠DOC=2∠A=60°,OC=OA=2,则OD=

OC

cos∠DOC

=4.故选D.

3.若直线l与半径为r的⊙O相交,且圆心O到直线l的距离为5,则r的取值范围是__________.

答案(5,+∞)

解析由直线与圆相交的等价条件易得.

4.如图所示,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线

互相垂直,垂足为D.求证:AC平分∠DAB.

证明如图所示,连接OC.

∵CD是⊙O的切线,

∴OC⊥CD.

又∵AD⊥CD,∴OC∥AD.

由此得∠ACO=∠CAD.

∵OC=OA,∴∠CAO=∠ACO,

∴∠CAD=∠CAO.

故AC平分∠DAB.

1.圆的切线的判定方法有

(1)定义法:和圆只有一个公共点的直线是圆的切线;

(2)几何法:和圆心距离等于半径的直线是圆的切线;

(3)判定定理:过半径外端点且与这条半径垂直的直线是圆的切线.

2.圆的切线的性质与判定的综合运用

在解决有关圆的切线问题,添加辅助线有以下规律:

(1)已知一条直线是圆的切线时,通常连接圆心和切点,这条半径垂直于切线.

(2)要证明某条直线是圆的切线时,若已知直线经过圆上的某一点,则需作出经过这一点的半径,证明直线垂直于这条半径,简记为“连半径,证垂直”;若直线与圆的公共点没有确定,则应过圆心作直线的垂线,得到垂线段,再证明这条垂线段的长等于半径,简记为“作垂直,证半径”.

《切线长定理及三角形的内切圆》导学案

https://www.doczj.com/doc/9a11719457.html, 《切线长定理及三角形的内切圆》导学案 广元市虎跳中学数学组 学习目标 1、了解切线长的概念.了解三角形的内切圆、三角形的内心等概念。 2、理解切线长定理,并能熟练运用切线长定理进行解题和证明(重点) 3、会作已知三角形的内切圆(重点) 教学流程 一、 知识准备: 1、 只限于演的有几种位置关系?分贝是那几种? 2、 判断直线与圆相切有几种方法?如何判断直线与圆相切? 3、 角平分线的判定和性质是什么? 二、 引入课题 过圆上一点可以作圆的一条切线,那么过圆外一点可以作圆的几条切线呢?从而引入课题。 三、 自学新知: 1自学教材自学教材P 96---P 98,思考下列问题 (1)通过自学教材P98页的探究你知道什么是切线长吗?切线长和切线有区别吗?区别在哪里? (2)通过自学教材P98页的探究可得切线长定理:从圆外一点可以引圆的两条切线,它们的_________相等,这一点和圆心的连线平分__________________. (3))通过自学教材P98页的探究你知道如何证明切线长定理吗? 如图,已知PA 、PB 是⊙O 的两条切线. 求证:PA=PB ,∠OPA=∠OPB . 证明:__________________ ____________________________________ ____________________________________ ____________________________________ ____________________________________ ____________________________________ (4)若PO 与圆相分别交于C 、D,连接AB 于PO 交于点E,图中有哪些相等的线段?有哪些相等的角,有哪些相等的弧?有哪些互相垂直的线段?有哪些全等的三角形。 (5)__________________叫做三角形的内切圆,三角形叫做圆的__________三角形,内切圆的圆心是__________的交点,内切圆的圆心叫做三角形的__________。 四.当堂检测 1、过圆外一点作圆的切线,这点和 ,叫做这点到圆的切线长。 2、从圆外一点可以引圆的两条切线,它们的_________相等,这一点和圆心的连线平分__________________. 3、与三角形各边都 ____________ 的圆叫三角形的内切圆;

《切线长定理》教案新部编本

精品教学教案设计| Excellent teaching plan 教师学科教案 [20 -20学年度第—学期] 任教学科:_________________ 任教年级:_________________ 任教老师:_________________ xx市实验学校 r \?

《切线长定理》教案 教学目标 知识与技能 掌握切线长定理及其运用 过程与方法 通过对圆的切线长及切线长定理的学习,培养学生分析,归纳及解决问题的能力 情感态度 通过学生自己的实践发现定理,培养学生学习的积极性和主动性 教学重点 切线长定理及运用 教学难点 切线长定理的推导 教学过程 一、情境导入,初步认识 活动1:如图,过O O外一点P作O O的切线,回答问题: (1) 可作几条切线? (2) 作切线的依据是什么?学生回答,教师归纳展示作法: (1)①连0P. ②以0P为直径作圆,交O 0于点A、B.③作直线PA, PB.即直线PA、 PB为所求作的圆的两条直线 (2)由0P为直径,可得0A丄PA, 0B丄PB,由切线判定定理知:PA、PB为O 0的两条切 【教学说明】该活动中作圆的切线实际上是个难点,教师展示后应放手让学生自己再动手作一次,让学生体会运用知识的成功感 二、思考探究,获取新知 1. 切线长定理 (1)切线长定义:从圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线 (2)如图,PA、PB分别与O 0相切于点A、B.求证:FA=PB,/ AP0 =/ BP0.

学生完成:由此得出切线的定理? 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平 分两条切线的夹角? 2. 切线长定理的运用 例1如图,AD 是O 0的直径,点C 为O O 外一点,CA 和CB 是O 0的切 线, A 和 B 是切点,连接BD. 求证:CO // BD. 【分析】连接AB ,因为AD 为直径,那么/ ABD=90°,即卩BD 丄AB.因此要证CO / BD. 只要证CO 丄AB 即可. 证明:连接AB. ?/ CA , CB 是O O 的切线,点A , B 为切点, ??? CA=CB ,Z ACO = Z BCO , ???CO 丄AB. v AD 是O O 的直径, ???/ ABD=90°,即卩 BD 丄 AB ,「. CO / BD. 例2如图,FA 、PB 、CD 分别切O O 于点A 、B 、E ,已知FA=6,求 △ PCD 的周长. 【教学说明】图中有三个分别从点 P 、C 、D 出发的切线基本图形, 因此可以用切线长定理实现线段的等量转化 . 解:v CA 、CE 与O O 分别相切于点A 、E , ??? CA=CE. v DE 、DB 与O O 分另肪目切于点 E 、B ,「. DE=DB. v PA 、PB 与O O 分别相切于点A 、B , ??? PA=PB. ? △ PCD 的周长 C A PCD =PC+CD+PD=PC+CE+DE + PD=PC+CA+DB+PD=PA+PB =2PA=12. 四、运用新知,深化理解 1. ________________________________________________________________________ 如图,PA PB 是O O 的切线,AC 是O O 的直径,/ P=40°,则/ BAC 的度数是 _________________ 2. 如图,从O O 外一点P 引O O 的两条切线FA 、PB ,切点分别为A 、B ,如果/ APB=60°, 第1题 图 第2题图

圆的切线性质定理

圆的切线的判定与性质 【知识点精析】 1. 直线与圆有三种位置关系,其中直线与圆只有唯一的公共点,叫直线与圆相切,这个公共点叫切点。这条直线叫圆的切线。 2. 圆的切线的判定与性质: (1)判定:经过半径外端并且垂直于这条半径的直线是圆的切线。 判定一条直线是圆的切线需要满足以下两个条件:①经过半径外端②垂直于半径 (2)圆的切线的性质:圆的切线垂直于过切点的半径。 注意:应用圆的切线性质时,需指出切线和切点,才可推出垂直的结论。 例如:已知如图,PO是∠APB的平分线,以O为圆心的圆与PA相切于点C。 3. 切线长定理: (1)切线长定义:从圆外一点向圆作切线,这点与切点的线段长叫切线长。 圆外一点向圆只能做两条切线,因此有两条切线长。 (2)切线长性质 从圆外一点向圆所引的两条切线长相等,并且这点与圆心的连线平分两条切线所夹的角。 例如:从圆外一点引圆的两条切线,若两切线的夹角为60°,两切点的距离为12求圆半径 (3)三角形的内切圆:对比三角形的外接圆来学习三角形的内切圆 三角形的外接圆:经过三角形三个顶点的圆叫三角形的外接圆 三角形外接圆的圆心叫三角形的外心 三角形的外心到三角形三个顶点的距离相等 三角形的外心是三角形三边中垂线的交点 三角形的内切圆:与三角形三边都相切的圆叫三角形的内切圆 三角形内切圆的圆心叫三角形的内心 三角形的内心到三角形三边的距离相等 三角形的内心是三角形三角平分线的交点 【解题方法指导】 一切线长定理的计算 例1. 已知如图:在Rt△ABC中,∠C=90°,点C在AC上,CD为⊙O直径,⊙O切AB于E,若BC=5,AC=12,求⊙O的半径 B C 2 在△ABC中,若∠C=90°,∠A=30°,AC=3,则内切圆半径为____________。 二等腰三角形在证明切线中的巧用 例3、如图7-53,AB为⊙O的直径,C为⊙O上一点,AD和过C点切线互相垂直,垂足为D.

四川省成都市青白江区九年级数学下册 3.7 切线长定理 圆幂定理(二)导学案(新版)北师大版

圆幂定理 圆幂定理(二) 第1课时导学提纲 班级:___________ 姓名:______________ 小组:_______________ 学习目标: 1. 理解切割线定理、割线定理的定义; 2. 掌握切割线定理、割线定理,并能灵活运用切割线定理、割线定理解题. 学习重点:切割线定理、割线定理的理解 学习难点:切割线定理、割线定理的应用 【导学流程】 一、 基础感知 (1)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =? (2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。 即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ?=? C O A P B D C O P B E

二、探究未知 请写出你在第一部分“基础感知”中没弄明白的地方: 3.如图,BC 为⊙O 的直径,且BC=6,延长CB 与⊙O 在点D 处的切线交于点A ,若AD=4,求AB . 检测: 1.如图,△ABC 的外接圆为⊙O ,延长CB 至Q ,再延长QA 至P ,且QA 为⊙O 的切线 (1)求证:QC 2-QA 2=BC?QC (2)若AC 恰好为∠BAP 的平分线,A B=10,AC=15,求 QA QC 的值.

2.如图,圆O的直径AB的延长线与弦CD的延长线交于点P,E是圆O上的一点,弧AE与弧AC相等,ED与AB交于点F,AF>BF. (Ⅰ)若AB=11,EF=6,FD=4,求BF; (Ⅱ)证明:PF?PO=PA?PB. 感谢您的支持,我们会努力把内容做得更好!

《24.2.2 第3课时 切线长定理》教案、导学案、同步练习

《第3课时 切线长定理》教案 【教学目标】 1.掌握切线长定理,初步学会运用切线长定理进行计算与证明. 2.了解有关三角形的内切圆和三角形的内心的概念. 3.学会利用方程思想解决几何问题,体验数形结合思想. 【教学过程】 一、情境导入 新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案. 二、合作探究 探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长 如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在AB ︵ 上.若PA 长为2,则△PEF 的周长是________. 解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC )+(CF +PF )=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小 如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.

解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB =360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证 △POA≌△POB,∴∠OPA=1 2 ∠APB=20°.故答案为20. 方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB. 【类型三】切线长定理的实际应用 为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的. 解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O 的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO +∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm. 探究点二:三角形的内切圆 【类型一】求三角形的内切圆的半径 如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.

三垂线定理及其逆定理例题

三垂线定理及其逆定理例题 知识点: 1.三垂线定理;; 2.三垂线定理的逆定理; 3.综合应用; 教学过程: 1.三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,那么这条直线就和这条斜线垂直; 已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,,a α?a AO ⊥。 求证:a PO ⊥; 证明: 说明: (1)线射垂直(平面问题)?线斜垂直(空间问题); (2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂线定理; (3)三垂线定理描述的是PO(斜线)、AO(射影)、a(直线)之间的垂直关系。 (4)直线a 与PO 可以相交,也可以异面。 (5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。 例1.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。 求证:PC BC ⊥。 例2.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。 求证:,PO BD PC BD ⊥⊥。 P B B

例4.在正方体1AC 中,求证:1111 1,AC B D AC BC ⊥⊥; 2.写出三垂线定理的逆命题,并证明它的正确性; 命题: 已知: 求证: 证明: 说明: 例2.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。 求证:(1)AD BC ⊥; (2)点A 在底面BCD 上的射影是BCD ?的垂心; P D A B C 1 A C

例 3.求证:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上 已知: 求证: 说明:可以作为定理来用。 例5.已知:Rt ABC ?中,,3,42A AB AC π∠===,PA 是面ABC 的斜线,3 PAB PAc π ∠=∠=。 (1)求PA 与面ABC 所成的角的大小; (2)当PA 的长度等于多少的时候,点P 在平面ABC 内的射影恰好落在边BC 上; B

(完整版)高中数学学考公式大全

高中数学学考常用公式及结论 必修1: 一、集合 1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法 2、集合间的关系: 子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。记作A B ? 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A ≠ ?B 集合相等:若:,A B B A ??,则A B = 3. 元素与集合的关系:属于∈ 不属于:? 空集:φ 4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B U 交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B I 补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 6.常用数集:自然数集:N 正整数集:* N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性 1、定义: 奇函数 <=> f (– x ) = – f ( x ) , 偶函数 <=> f (–x ) = f ( x )(注意定义域) 2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形; (3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性 1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2 ① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减 三、二次函数y = ax 2 +bx + c (0a ≠)的性质 1、顶点坐标公式:??? ? ??--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442- 2.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠.

(完整版)切线的判定与性质、切线长定理练习题

切线的判定与性质、切线长定理 1.如图,AB为⊙O的直径,CE切⊙O于点C,CD⊥AB,D为垂足,AB=12㎝,∠B =300,则∠ECB=,CD=。 2.如图,CA为⊙O的切线,切点为A。点B在⊙O上,如果∠CAB=550,那么∠AOB 等于。 3.如图,P是⊙O外一点,PA、PB分别和⊙O相切于点A、B,C是⌒ AB上任意一点,过C作⊙O的切线分别交PA、PB于点D、E,(1)若PA=12,则△PDE的周长为____; (2)若△PDE的周长为12,则PA长为;(3)若∠P=40°,则∠DOE=____度。 (1题图) (2题图) (3题图) 4.下列说法:①与圆有公共点的直线是圆的切线;②垂直与圆的半径的直线是切线;③与 圆心的距离等于半径的直线是切线;④过圆直径的端点,垂直于该直径的直线的是切线。 其中正确命题有() A.①②B.②③C.③④D.①④ 5.如图,AB、AC与⊙O相切与B、C,∠A=500,点P是圆上异于B、C的一动点,则 ∠BPC的度数是。 6.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的 ( ) A.三条中线的交点B.三条高的交点 C.三条角平分线的交点D.三条边的垂直平分线的交点 7.如图,⊙O分别与△ABC的边BC、CA、AB相切于D、E、F,∠A=800,则∠EDF =。 (5题图)(6题图)(7题图) 8.点O是△ABC的内心,∠BAO=200,∠AOC=1300,则∠ACB=。 9.已知:Rt△ABC中,∠C=900,AC=4,BC=3,则△ABC内切圆的半径 为。

10.若直角三角形斜边长为10㎝,其内切圆半径为2㎝,则它的周长为。 11.如图,BA与⊙O相切于B,OA与⊙O 相交于E,若AB=5,EA=1,则⊙O的半 径为。 12.如图,在△ABC中,I是内心,∠BIC=1300,则∠A的度数是。 13.如图,△ABC的内切圆⊙O与各边相切于点D、E、F,若∠FOD=∠EOD=1350,则 △ABC是() A.等腰三角形; B.等边三角形; C.直角三角形; D. 等腰直角三角形; E F D O C A B (11题图)(12题图)(13题图) 14.如果两圆的半径分别为6cm和4cm,圆心距为8cm,那么这两个圆的位置关系是() A. 外离 B. 外切 C. 相交 D. 内切 15.若已知Rt△ABC中,斜边为26cm,内切圆的半径为4cm,那么它的两条直角边的长分 别为()cm A、7、27 B、8、26 C、16、18 D、24、104 16.已知两圆的半径分别是方程0 2 3 2= + -x x的两根,圆心距为3,则两圆的位置关系是__________. 17.两圆半径分别为5cm和4cm,公共弦长为6cm,则两圆的圆心距等于()cm。 A. 7 4+ B. 7 4- C. 7 4+或7 4- D. 41 18.从圆外一点向半径为9的圆作切线,已知切线长为18,?从这点到圆的最短距离为 (). A.3 9B.()1 3 9-C.()1 5 9-D.9 19.如图,AB为⊙O的直径,BC是圆的切线,切点为B,OC平行于弦AD,求证:DC 是⊙O的切线。

圆的切线性质和判定教学设计

切线的判定和性质教学设计 【教学目标】 一、知识与技能:1.理解切线的判定定理和性质定理,并能灵活运用。 2.会过圆上一点画圆的切线. 二、过程与方法:以圆心到直线的距离和圆的半径之间的数量关系为依据,探究切线的判定 定理和性质定理,领会知识的延续性,层次性。 三、情感态度与价值观:让学生感受到实际生活中存在的相切关系,有利于学生把实际的问 题抽象成数学模型。 【教学重点】探索切线的判定定理和性质定理,并运用. 【教学难点】探索切线的判定方法。 【教学方法】自主探索,合作交流 【教学准备】尺规 【教学过程】 一、导语:通过上节课的学习,我们知道,直线和圆的位置关系有三种:相离、相切、相交. 而相切最特殊,这节课我们专门来研究切线。 师生行为:教师联系近期所学知识,提出问题,引起学生思考,为探究本节课定理作铺垫。 二、探究新知 (一)切线的判定定理 1.推导定理:根据“直线l和⊙O相切d=r”,如图所示,因为d=r直线l和⊙O相切,这 里的d是圆心O到直线l的距离,即垂直,并由d=r就可得到l经过半径r的外端,即半径OA的端点A,可得切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 分析: 1、垂直于一条半径的直线有几条? 2、经过半径的外端可以做出半径的几条垂线? 3、去掉定理中的“经过半径的外端"会怎样?去掉“垂直于半径”呢? 师生行为:学生画一个圆,半径OA,过半径外端点A的切线l,然后将“d=r直线l和⊙O 相切”尝试改写为: 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 设计意图:过学生亲自动手画图,进行探究,得出结论。 思考1:根据上面的判定定理,要证明一条直线是⊙O的切线,需要满足什么条件? 总结:①这条直线与⊙O有公共点;②过这点的半径垂直于这条直线. 思考2:现在可以用几种方法证明一条直线是圆的切线? ①圆只有一个公共点的直线是圆的切线 ②到圆心的距离等于半径的直线是圆的切线 ③切线的判定定理. 师生行为:教师引导学生汇总切线的几种判定方法 思考3:已知一个圆和圆上的一点,如何过这个点画出圆的切线? 2. 定理应用

2019初三数学切线长定理导学案语文

初三数学切线长定理导学案 【】初三数学切线长定理导学案通过学习对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想. 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来. 2、教法建议 本节内容需要一个课时. (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结; (2)在教学中,以观察猜想证明剖析应用归纳为主线,开展在

教师组织下,以学生为主体,活动式教学. 教学目标 页 1 第 1.理解切线长的概念,掌握切线长定理; 2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想. 3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度. 教学重点: 切线长定理是教学重点 教学难点: 切线长定理的灵活运用是教学难点 教学过程设计: (一)观察、猜想、证明,形成定理 1、切线长的概念. P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长. 引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. 2、观察 利用电脑变动点P 的位置,观察图形的特征和各量之间的关

三垂线定理

三垂线定理 教学目标: 1.掌握三垂线定理及其逆定理的证明 2.正确地运用三垂线定理或逆定理证明两直线垂直 3.通过三垂线定理及三垂线逆定理的学习,渗透相对论观点 教学重点:三垂线定理及其逆定理的证明 教学难点:用三垂线定理及其逆定理证明两条异面直线的垂直 教学方法:启发式教学法 教 具:模具 教学过程 一、复习引入: 1.直线与平面垂直的定义: 2.直线与平面垂直的判定定理: 3.平面的斜线,斜线在平面内的射影: 4.引入:若平面内一条直线与斜线的射影垂直,那么它和斜线垂直吗? 二、新授: 1.三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 已知:,PO PA 分别是平面α的垂线和斜线,OA 是PA 在平面α内的射影,a α?,且a OA ⊥ 求证:a PA ⊥; 证明:∵PO α⊥ ∴PO a ⊥,又∵,a OA PO OA O ⊥= ∴a ⊥平面POA , ∴a PA ⊥. 说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系; (2)符号表达:,,PO O PA A a PA a a OA αααα⊥∈??=?⊥???⊥? . (3)这两条直线可以是相交直线,也可以是异面直线. 2.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 说明:符号表达: ,,PO O PA A a AO a a AP αααα⊥∈??=?⊥???⊥? . 注意:(1)三垂线指涉及的四线中三个垂直关系PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 (2)要考虑a 的位置,并注意两定理交替使用 (3)注意三垂线定理及其逆定理中的“平面内”三个字的重要性.

切线的判定与性质定理的教案

课题:圆的切线的判定与性质 主稿:饶爱红审核:备课组上课日期:______周课时数:_____ 总课时数:_____ 知识与技能:1、理解圆的切线的判定与性质, 2、会利用圆的切线的判定与性质解题, 3、了解用反证法证明切线的性质定理的过程。 过程与方法:学生预习、小组讨论、合作探究、共同讲解、综合应用 情感态度与价值观:培养学生的自主学习的能力和团结协作的精神。 教学重点:利用圆的切线的判定与性质解题 教学过程备注本期导学 1、切线的判定定理是什么? 2、切线的性质定理是什么? 3、如何应用它们解题? 知识回顾 1.直线和圆有哪些位置关系? 。。。。相切、相离、相交 2.什么叫相切? 。。。。直线与圆只有一个交点 3.我们学习过哪些切线的判断方法? 。。。。1、与圆只有一个交点,2、d=r 新知探究 1、设问 切线的判定还有什么方法吗? 切线还有什么性质吗? 2、引入思考 提问:如图,直线L经过点A,并且垂直半径OA,,问L与圆O是什么关系? OA既是半径,又是点O到直线L的距离,所以d=r ,由前面所学的可知,直线L与圆是相切 的关系。 给出切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 几何符号表达: ∵OA是半径,OA⊥l于A ∴l是⊙O的切线。 3、例题讲解 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。

求证:直线AB是⊙O的切线。 证明:连结OC(如图)。 ∵OA=OB,CA=CB, ∴OC是等腰三角形OAB底边AB上的中线。 ∴AB⊥OC。 ∵OC是⊙O的半径 ∴AB是⊙O的切线。 已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为 半径作⊙O。 求证:⊙O与AC相切。 证明:过O作OE⊥AC于E。 ∵AO平分∠BAC,OD⊥AB ∴OE=OD ∵OD是⊙O的半径 ∴AC是⊙O的切线 4、归纳总结 (1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直。简 记为:连半径,证垂直。 (2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段为辅助线,再证垂 线段长等于半径长。简记为:作垂直,证半径 5、练习 如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P, PE⊥AC于E。 求证:PE是⊙O的切线 6、用反证法推出切线的性质定理,并利用它练习课后习题。 课堂小结 学生小结,说出本节课的知识点和重点。 练习与作业: 练习册和课后习题 教学反思:

数学学案:切线长定理和内切圆

切线长定理和内切圆 学习目标 1、了解切线长的概念.了解三角形的内切圆、三角形的内心等概念。 2、理解切线长定理,并能熟练运用切线长定理进行解题和证明(重点) 3、会作已知三角形的内切圆(重点) 学习的重、难点: 重点:切线长定理及其运用.难点:切线长定理的导出及其证明和运用切线长定理解决问题。 一、复习巩固 1、 直线和圆有几种位置关系?分别是那几种?_______________________________________ 2、 如何判断直线与圆相切?_______________________________________________________ 3、 角平分线的判定和性质是什么?_________________________________________________ 二、问题探索 问题1:如图,纸上有一⊙O ,PA 为⊙O 的一条切线,沿着直线PO 将纸对折,设圆上与点A 重合的点为B ,这时,OB 是⊙O 的一条半径吗?PB 是⊙O 的切线吗?利用图形的轴对称性,说明图中的PA 与PB ,∠APO 与∠BPO 有说明关系? 得出结论:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的 证明:∵PA 、PB 是⊙O 的两条切线, ∴OA ⊥AP, OB ⊥BP. 在Rt △AOP 和Rt △BOP 中 ∴Rt △AOP ≌Rt △BOP ( ) ∴PA=PB, ∠OPA=∠OPB.( ) P A O P A O B B A

B C E D O O B C A O B C A P O B A P B O A 切线长定理:从圆外一点可以引圆的两条 ,它们的切线 , 这一点和圆心的连线 两条切线的 . 思考2:如图,是一张三角形的铁皮,如何在它上面截下 一块圆形的用料,并且使圆的面积尽可能大呢? (提示:假设符合条件的圆已经做出,那么它应当与三角形的三条边都相切,这个圆的圆心到三角形的三条边的距离都等于半径。如何找到这个圆心呢?). 并得出结论:与三角形各边都 的圆叫做三角形的内切圆, 内切圆的圆心是三角形三条 的交点,叫做三角形的内心。 三、例题评讲 例1 PA ,PB 是⊙O 的切线,A ,B 为切点,∠OAB=30°. (1)求∠APB 的度数; (2)当OA=3时,求AP 的长. 例2 如图,已知⊙O 是△ABC 的内切圆,切点为D 、E 、F ,如果AE=2, CF=1,BF=3.求△ABC 的面积和内切圆的半径r . 解: 四、当堂练习: 1如图1,从圆外一点P 引⊙O 的两条切线PA ,PB ,切点分别为A ,B ,如果∠APB=60°,PA=10,则弦AB 的长( )A .5 B. 35 C.10 D. 310 2. 如图2,点O 是△ABC 的内切圆的圆心,若∠BAC=80°, 则∠BOC 等于( ) A. 130° B. 100° C 50° D 65° 3. 如图3, ⊙O 与∠ACB 两边都相切,切点分别为A,B,且∠ACB=90°, 那么四边形ABCD 是 4..如图4,PA ,PB 是⊙O 的切线,A ,B 为切点,∠OAB=30°,则∠APB =________。 图1 图2 图3 图4 作业:

第24章圆导学案[人教版初三九年级] 24.2.1切线长定理

马家砭中学导学稿 学法指导自主、合作、探究 三角形的外心: 角平分线的性质定理: 角平分线的判定定理: 切线的性质定理: 切线的判定定理: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的 ∴Rt△AOP≌Rt△BOP() OPB.() 从圆外一点可以引圆的两条,它们的切线长,这一点和圆心的连线两条切线的 .

B A C E D O F (提示:假设符合条件的圆已经做出,那么它应当与三角形的三条边都相切,这个圆的圆心到三角形的三条边的距离都等于半径。如何找到这个圆心呢?). 并得出结论: 与三角形各边都 的圆叫做三角形的内切圆,内切圆的圆心是三角形三条 的交点,叫做三角形的内心。 三、课堂练习: 例1:如图△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D,E,F,且AB=9cm ,BC=14cm ,CA=13cm, 求AF,BD,CE 的长. 例2.如图,已知⊙O 是△ABC 的内切圆,切点为D 、E 、F ,如果AE=1,CD=2,BF=3,且△ABC 的面积为6.求内切圆的半径r . 四、小结 1、你还需要老师为你解决那些问题? ________________________________________________________ 2、你对同学还有那些温馨的提示? _________________________________________________ 五、课后巩固 1、如图,△ABC 中,∠ABC=50°,∠ACB=75°,点O 是内心,求∠AOC 的度数。 2、△ABC 的内切圆半径为r ,△ABC 的周长为l ,求△ABC 的面积。(提示:设内心为O ,连接OA,OB,OC ) 主备教师:韩伟 备课组长签字:________ 教研组长签字:_________ E D F O A C B O B C A

切线长定理导学案

切线长定理 赵晓娟 学生姓名组别评价等级 【学习目标】 1.理解切线长的概念,掌握切线长定理。 2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想。 3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度。 【学习重难点】 重点:切线长定理及应用是教学重点。 难点:切线长定理的灵活运用是教学难点。 【使用说明及学法指导】 (1)组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;(2)以“观察——猜想——证明——剖析——应用 ——归纳”为主线,开展在教师组织下,以学生为主体,活动 式教学。 【课前预习案】 【温故知新】 1、已知△ABC,作△ABC的内心,说出它的性质 2、切线的定义是________________ ___________________。 3、切线的性质是 ____________ ___________________。 4、切线的判定是______________________________________________________。【提出疑惑】 【课内探究案】 环节一、观察、猜想、证明,形成定理 1、切线长的概念. 如图,P是⊙O外一点,PA,PB是⊙O的两条切线,切点为A、 B,我们把线段PA,PB的长叫做点P到⊙O的切线长. 引导学生理解:切线和切线长是两个不同的概念,切线是直线,不 能度量; 切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。C B

2、观察 观察图形的特征和各量之间的关系. 3、猜想 猜想图中PA是否等于PB. 4、动手操作,验证猜想。 利用圆的对称性进行折叠,看PA、PB能否重合。 5、证明猜想,形成定理. 6、归纳:切线长定理: 7、切线长定理的基本图形研究(小组合作交流) 如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP 交⊙O于点D,E,交AB于C. 图中相等的线段有 相等的角有 相等的弧有: 全等的三角形有 相似三角形有 适时训练 1、如图1,PA、PB是⊙O的两条切线、A、B为切点。PO交⊙O于E点 (1)若PB=12,PO=13,则AO=____ (2)若PO=10,AO=6,则PB=____ (3)若PA=4,AO=3,PO=____PE=_____. (4)若PA=4,PE=2,则AO=____. 环节二、切线长定理的应用 例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线, A和B是切点,PA=10,∠P=500,F是优弧AB上一点。 求:(1)∠AFB的度数; (2)如图,若CD是⊙O的切线,切于点E,求⊿PCD的周

切线的性质和判断定理

1 圆的切线判定和性质(复习教案) 华容东山中学 刘公文 学习目标: 1、掌握圆的切线判定和性质,并能熟练运用切线的判定与性质进行证明和计算。 2、掌握圆的切线常用添加辅助线的方法 复习指导 1、通过作图1,你能发现直线与圆有几种位置关系吗? 2、你能用数量关系来确定直线与圆的位置关系吗? 3、通过作图2,你是怎样得出圆的切线判定和性质的? (二)过程与方法: 1、运用圆的切线的性质与判定解决数学问题的过程中,进一步培养学生运用已有知识综合解决问题的能力; 2、进一步感悟数形结合、转化和分类的思想的重要性,培养观察、分析、归纳、总结的能力。 (三)情感态度与价值观: 形成知识体系,教育学生用动态的眼光、运动的观点看待数学问题。 教学重点:对切线的判定方法及其性质的准确、熟炼、灵活地运用. 教学难点:综合型例题分析和论证的思维过程. 教学方法:先学后教,当堂训练 教学过程: 一、切线的判定及性质: 1、作图1:过⊙O 外一点P 作直线, (设计意图:通过简单作图和复习指导,①回顾直线与圆的三种位置关系:相交、相切、相离,并能从公共点个数判断,得出切线概念;②从数的角度即数量关系上体会圆的切线判别方法:当圆心到直线的距离等于半径时,直线与圆相切,体会数形结合思想) 作图2:若点A 为⊙O 上的一点,如何过点A 作⊙O 的切线呢? (请学生上黑板按要求作图) (设计意图:利用作图,体会切线的判定定理内容有两个要点:①经过半径的外端②垂直于半径,并且从命题的题设与结论出发加深对判定的理解,自然过渡到圆的切线性质) 归纳小结:判断直线与圆相切的方法有哪些?圆的切线的性质是什么? (设计意图:概括归纳切线的判定和性质,形成切线的判定与性质知 识体系) 2、课堂检测: (1)已知⊙O 直径为8cm ,直线L 到圆心O 的距离为4 cm ,则直线L 与⊙O 的位置关系为 。 (2)PA 切⊙O 于点A,PA=4,OP=5,则⊙O 的半径是____ (设计意图:应用圆的切线判别方法及性质解决简单数学问题,同时 在性质应用时体现辅助线做法指导:见切线,连半径,得垂直,同时体会转化的数学思想) (3)已知:直线AB 经过⊙O 上的点C ,并且OA=OB ,CA =CB . ①求证:直线AB 是⊙O 的切线. ②若⊙O 的直径为8cm ,AB=10cm ,求OA 的长。 (设计意图:本题是对圆的判定及性质的综合应用。从判别方法说, 可以从数量关系证明,也

最新人教版初中九年级数学上册《切线长定理》导学案

24.2.2直线和圆的位置关系 第3课时切线长定理 一、新课导入 1.导入课题: 情景:如图,纸上有一个⊙O, PA为⊙O的一条切线,沿着直线PO将纸对折,设与点A重合的点为B. 问题1:OB是⊙O的半径吗?PB是⊙O的切线吗? 问题2:猜一猜图中的PA与PB有什么关系?∠APO与∠BPO有什么关系? 这节课我们继续探讨圆的切线的性质——切线长定理(板书课题). 2.学习目标: (1)知道什么是圆的切线长,能叙述并证明切线长定理. (2)会作三角形的内切圆,知道三角形内心的含义和性质. (3)能用切线长定理和三角形内心的性质来解决简单的问题. 3.学习重、难点: 重点:切线长定理及其运用. 难点:切线长定理的应用及如何作三角形的内切圆. 二、分层学习 1.自学指导: (1)自学内容:教材第99页“思考”之前的内容. (2)自学时间:8分钟. (3)自学方法:完成探究提纲. (4)探究提纲: ①过⊙O外一点P画⊙O的切线.动手画图,看看这样的切线能作几条?能作两条. ②在经过圆外一点的圆的切线上,这点和切点之间线段的长叫做这点到圆的切线长, 如图的线段PA与线段PB的长就是点P到⊙O的切线长. ③PA与PB,∠APO与∠BPO有什么关系?你能证明它们成立吗? PA=PB,∠APO=∠BPO.可利用HL证明Rt△AOP≌Rt△BOP,进而得出结论.

④分别用文字语言和几何语言写出切线长定理. 文字语言:从圆外一点引圆的两条切线,它们的切线长相等, 这一点和圆心的连线平分两条切线的夹角. 几何语言:∵PA切⊙O于点A,PB切⊙O于点B. ∴PA = PB,OP平分∠APB . 2.自学:学生结合自学指导进行自学. 3.助学: (1)师助生: ①明了学情:看学生能否顺利完成定理的证明. ②差异指导:根据学情确定指导方案. (2)生助生:小组内相互交流、研讨. 4.强化: (1)切线长定理及它的证明. (2)交流:在提纲④的几何图形中,若连接AB交OP于点C,则图中有哪些垂直关系?哪些全等三角形?若设线段OP与⊙O的交点为D,且PA=4,PD=2,你能求出⊙O的半径长吗? 解:AB⊥OP,OA⊥AP,OB⊥BP;△OAC≌△OBC,△OAP≌△OBP,△ACP≌△BCP.设⊙O的半径为r,则OP=OD+PD=r+2,在Rt△OAP中,OA2+AP2=OP2,即r2+42=(r+2)2. 解得r=3. 即⊙O的半径长为3. 1.自学指导: (1)自学内容:教材第99页“思考”到第100页的内容. (2)自学时间:8分钟. (3)自学方法:阅读,画图,推理,猜想. (4)自学参考提纲: ①如图,作与△ABC的三边都相切的⊙I. 因为⊙I与BA,BC都相切,所以点I在∠ABC的平分线上; 因为⊙I与CA,CB都相切,所以点I在∠ACB的平分线上; 所以点I是∠ABC与∠ACB平分线的交点. a.作∠ABC的平分线,∠ACB的平分线,交于点I; b.过I作ID⊥BC于D,以I 为圆心,ID为半径画圆,则⊙I即为所求.

三垂线定理及其逆定理测试题(含答案)

三垂线定理及其逆定理 一、单选题(共8道,每道12分) 1.如图,BC是的斜边,过点A作△ABC所在平面α的垂线AP,连接PB,PC,过点A作AD⊥BC于点D,连接PD,那么图中的直角三角形共有( ) A.4个 B.6个 C.7个 D.8个 答案:D 解题思路: 试题难度:三颗星知识点:三垂线定理 2.如图,在正方体中,E为的中点,则下列与直线CE垂直的是( )

A.直线AC B.直线 C.直线 D.直线 答案:B 解题思路: 试题难度:三颗星知识点:三垂线定理

3.如图,在△ABC中,∠ACB=90°,直线l过点A且垂直于平面ABC,动点,当点P逐渐远离点A时,∠PCB的度数( ) A.逐渐变大 B.逐渐变小 C.不变 D.先变大再变小 答案:C 解题思路: 试题难度:三颗星知识点:三垂线定理 4.已知三棱锥P-ABC的高为PH,若P到△ABC的三边的距离相等,且点H在△ABC内,则点H为△ABC的( ) A.垂心 B.重心 C.外心 D.内心 答案:D 解题思路:

试题难度:三颗星知识点:三垂线定理 5.四面体ABCD中,棱AB,AC,AD两两垂直,则顶点A在底面BCD上的正投影H为△BCD 的( ) A.重心 B.垂心 C.外心 D.内心 答案:B 解题思路:

试题难度:三颗星知识点:三垂线定理 6.已知二面角α-AB-β的平面角是锐角,C是平面α内一点(点C不在棱AB上),D是点C 在平面β上的射影,E是棱AB上满足∠CEB为锐角的任一点,那么( ) A.∠CEB>∠DEB B.∠CEB=∠DEB C.∠CEB<∠DEB D.∠CEB和∠DEB的大小关系不能确定 答案:A 解题思路:

相关主题
文本预览
相关文档 最新文档