当前位置:文档之家› (完整word版)高分子化学名词解释

(完整word版)高分子化学名词解释

(完整word版)高分子化学名词解释
(完整word版)高分子化学名词解释

第一章绪论(Introduction)

高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

合成高分子:一般是由许多结构相同的、简单的化学结构,通过共价键重复连接而成的相对分子质量很大的化合物。

生物高分子:一般倾向于是对化学结构组成多样、排列顺序严格的、相对分子质量很高的具有生物活性的高分子化合物。

单体(monomer):能够形成聚合物中结构单元的小分子化合物称为单体。

聚合物(high polymer or polymer):由相同的化学结构多次重复通过共价键或配位键连接而成的高分子化合物,称聚合物。

单体单元(monomer unit):由苯乙烯单体反应得到的聚苯乙稀,其结构单元的原子种类、个数都与单体相同,仅电子结构发生变化,故这类聚合物的结构单元又称为单体单元。

结构单元(structure unit):聚氯乙稀这样的聚合物,括号内的化学结构称为结构单元。即组成高分子的、重复连接的、来源于单体的化学结构单元称“结构单元”。

重复单元(repeating unit):聚氯乙稀分子链可以看作结构单元多次重复构成,因此括号内的化学结构也可称为重复单元或链节(chain element)。

聚合度(degree of polymerigation):重复单元的数目n,表征聚合物分子量大小的一个物理参数。

数均分子量:各种不同分子的分子量的总合除以分子数总合得到的平均值。

其中:分子量为Mi 的大分子,相应的分子分数为Ni 。

重均分子量:不同分子分子量与分子重量乘积的总和除以整个分子重量得到的平均值。

其中:分子量为Mi 的大分子重量为Wi =NiMi

粘均分子量:用聚合物稀溶液的特性粘度测定的分子量。

一般情况下,0.5<α<0.9若 α=1 则 Mη = Mw (均一聚合物,α=1 )

Z 均分子量:用超速离心法测定的分子量。

Zi = WiMi

分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般 有分布指数和分子量分布曲线两种表示方法。

∑∑∞=∞==11i i

i i i n N

M N M ∑∑∑∑∞=∞=∞=∞===11211i i

i i i i i i i i i w M N M N W

M W M ααααη/1111/111)()(∑∑∑∑∞=∞=+∞=∞===i i i i i i i i i i i M

N M N W

M W M ∑∑∑∑∞

=∞=∞=∞===12

1311

i i i i i i i i i i

i z M N M N Z

M Z M

分子量分布指数(多分散系数):

D=1 均一分子量

D>1 分子量多分散性

多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。

聚合物的序列结构:指聚合物大分子结构单元的连接方式。

支化高分子(接枝高聚物):在一定条件下结构单元除正常连接外,还会连接成支链型结构,形成支链型大分子。

交联结构:高分子链之间通过支链连接成一个三维网状体型分子称为交联结构。

高分子一次结构:高分子的化学结构。

高分子二次结构:单个分子链的构象结构称为二次结构。

高分子三次结构:高分子的聚集态结构。

加聚反应(addition polymerigation):通过打开环或双键、三键互相联结起来而形成聚合物的反应。聚合过程中无小分子副产物生成。

缩聚反应(polycondensation):缩聚反应通常是经由单体分子的官能团间的反应,在形成缩聚物的同时,伴有小分子副产物的生成。

链(增长)式聚合(链式聚合,chain (growth)polymerigation):烯类单体的加聚反应,绝大多数属于链增长聚合反应。反应过程中,反应体系始终由单体、

高相对分子质量聚合物和微量引发剂组成,没有中间产物,单体转化率与反应时间无关。

逐步(增长)聚合(step growth polymerigation):逐步聚合没有活性中心,它是通过一系列单体上所带的能相互反应的官能团间的反应逐步实现的。绝大多数缩聚反应以及合成聚氨酯的聚加成反应等等都是逐步增长聚合反应。

第二章自由基聚合(Free-Radical Polymerization)

自由基聚合:由自由基引发的聚合反应为自由基聚合。

活性种(Reactive Species):打开单体的π键,使链引发和增长的物质,活性种可以是自由基,也可以是阳离子和阴离子。

均裂(Homolysis):化合物共价键的断裂形式,均裂的结果,共价键上一对电子分属两个基团,使每个基团带有一个独电子,这个带独电子的基团呈中性,称为自由基。

异裂(Heterolysis):化合物共价键的断裂形式,异裂的结果,共价键上一对电子全部归属于其中一个基团,这个基团形成阴离子,而另一缺电子的基团,称为阳离子。

离子聚合(Ionic Polymerization):活性中心为阴、阳离子的连锁聚合。

阳离子聚合(Cationic Polymerization):以阳离子作为活性中心的连锁聚合。

阴离子聚合(Anionic Polymerization):以阳离子作为活性中心的连锁聚合。

共轭效应(Resonance Effect):共扼效应存在于共轭体系中,它是由于轨道相互交

盖而引起共轭体系中各键上的电子云密度发生平均化的一种电子效应。共轭效应使体系的键长趋于平均化,体系能量降低,分子趋于稳定。可分为σ-π共轭、p-π共轭、π-π共轭、σ-p共轭。

空间位阻效应(Steric Effect):由取代基的体积、数量、位置所引起的效应,它对单体聚合能力有显著的影响,但它不涉及对活性种的选择。

链引发(Chain Initiation):形成单体自由基活性种的反应。链引发包括两步:初级自由基的形成(即引发剂的分解),单体自由基的形成。

链增长(Chain Propagation):单体自由基形成后,它仍具有活性,能打开第二个烯类分子的π双键,形成新的自由基,新自由基的活性并不随着链段的增加而衰减,与其它单体分子结合成单元更多的链自由基,即链增长。

链终止(Chain Termination):自由基活性高,有相互作用终止而失去活性的倾向。链自由基失去活性形成稳定聚合物的反应称为链终止反应。

偶合终止(Coupling Termination):两链自由基的独电子相互结合成共价键的终止反应,偶合终止的结果是大分子的聚合度为链自由基重复单元数的两倍。

歧化终止(Disproportionation Termination):某链自由基夺取另一自由基的氢原子或其他原子终止反应。歧化终止的结果是聚合度与链自由基的单元数相同。

单基终止(Mono-radical Termination):链自由基从单体、溶剂、引发剂等低分子或大分子上夺取一个原子而终止,这些失去原子的分子可能形成新的自由基继续反应,也可能形成稳定的自由基而停止聚合。

双基终止(Bi-radical Termination):链自由基的独电子与其它链自由基中的独电子或原子作用形成共价键的终止反应。

链转移(Chain Transfer):在自由基聚合过程中,链自由基可能从单体(M)、溶剂(S)、引发剂(I)等低分子或大分子上夺取原子而终止,使失去原子的分子成为自由基,继续新链的增长,这一反应叫链转移反应。

引发剂(Initiator):在聚合体系中能够形成活性中心的物质,使单体在其上连接分为自由基引发剂,离子引发剂。

半衰期(Half Life):物质分解至起始浓度(计时起点浓度)一半时所需的时间。

诱导期:聚合初期初级自由基为阻聚杂质所终止,无聚合物形成,聚合速率为零的时期。

诱导分解(Induced Decomposition):诱导分解实际上是自由基向引发剂的转移反应,其结果使引发剂效率降低。

笼蔽效应(Cage Effect):在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单本分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。

引发剂效率(Initiator Efficiency):引发聚合部分引发剂占引发剂分解消耗总量的分率称为引发剂效率。

转化率(Conversion):单体转化为聚合物的分率,等于转化为聚合物的单体量比去用去单体总量。

等活性理论(Equal activity theory):在自由基聚合中,链自由基的反应活性基本与链长无关。

稳态假设( Steady state assumption):自由基聚合反应开始很短一段时间后,单位时间内通过双基终止反应所消耗的自由基数与链引发反应引发剂分解所生成的自由基数相等,即连引发速率等于链终止速率,构成体系中的自由基浓度不随时间增长而变化。一般只在低转化率(10%以内)的反应中存在。

热引发聚合(Thermal-Initiation Polymerization):聚合单体中不加入引发剂,单体只在热的作用下,进行的聚合称为热引发聚合。

光引发聚合(Photo-Initiation Polymerization):单体在光的激发下(不加入引发剂),发生的聚合称为光引发聚合。可分为直接光引发聚合和光敏聚合两种。

光引发效率(Photo-Initiation Efficiency):又称为自由基的量子产率,表示每吸收一个光量子产生的自由基对数。

自动加速现象(Auto-accelerative Phenomena):聚合中期随着聚合的进行,聚合速率逐渐增加,出现自动加速现象,自动加速现象主要是体系粘度增加所引起的。

凝胶效应(Gel effect): 因体系粘度增加而引起聚合速率自动加速的现象。粘度增加使kp 增大,使kt减小。

沉淀效应(precipitation effect):在聚合中,若聚合物不溶于各自的单体,聚合一开始就会出现沉淀,整个聚合体系在异相体系中进行,在聚合一开始就出现聚合速率自动加速现象。

聚合动力学(Kinetics of Polymerization):指聚合速率、分子量与引发剂浓度、单体浓度、聚合温度等因素间的定量关系。

动力学链长(Kinetics Chain Length):每个活性种从引发阶段到终止阶段所消耗的单体分子数定义为动力学链长,动力学链在链转移反应中不终止。

链转移常数(Chain Transfer Constant):是链转移速率常数和增长速率常数之比,代表链转移反应与链增长反应的竞争能力。

链转移剂(Chain Transfer Agent):聚合物生产过程中人为地加入的一种自由基能够向其转移的试剂,用于调节聚合物分子量。常用的链转移剂有脂肪族硫醇等。

自由基寿命(Radical Lifetime):指自由基从产生到终止所经历的时间,可由稳态时的自由基浓度与自由基消失速率相除求得。

聚合上限温度(Ceiling Temperature of Polymerization):ΔG=0,聚合和解聚处于平衡状态时的温度即为聚合上限温度,在此温度以下进行的聚合反应无热力学障碍;超过聚合上限温度聚合就无法进行。

本体聚合(Bulk Polymerization):本体聚合是单体本身、加入少量引发剂(或不加)的聚合。

悬浮聚合(Suspension Polymerization):悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。

溶液聚合(Solution Polymerization):是指单体和引发剂溶于适当溶剂的聚合。

乳液聚合(Emulsion Polymerization):是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。

分散剂(Dispersant):分散剂大致可分为两类,(1)水溶性有机高分子物,作用机理主要是吸咐在液滴表面,形成一层保护膜,起着保护人用,同时还使表面(或界面)张力降低,有利于液滴分散。(2)不溶于水的无机粉末,作用机理是细粉吸咐在液滴表面,起着机械隔离的作用。

乳化剂(Emulsifier):常用的乳化剂是水溶性阴离子表面活性剂,其作用有:(1)降低表面张力,使单体乳化成微小液滴,(2)在液滴表面形成保护层,防止凝聚,使乳液稳定,(3)更为重要的作用是超过某一临界浓度之后,乳化剂分子聚集成胶束,成为引发聚合的场所。

胶束(Micelle):当乳化剂浓度超过临界浓度(CMC)以后,一部分乳化剂分子聚集在一起,乳化剂的疏水基团伸身胶束回部,亲水基伸向水层的一种状态。

亲水亲油平衡值(HLB)( Value of Hydrophile Lipophile Balance):该值用来衡量表面活性剂中亲水部分和亲油部分对水溶性的贡献,该值的大小表表亲水性的大小。

胶束成核(Micellar Nucleation):在经典的乳液聚合体系中,由于胶束的表面积大,更有利捕捉水相中的初级自由基和短链自由基,自由基进入胶束,引发其中单体聚合,形成活性种,这就是所谓的胶束成核。

均相成核(Homogeneous Necleation):又称水相成核,当选用水溶性较大的单体,溶于水的单体被引发聚合成的短链自由基将含有较多的单体单元,并有相当的亲水性,水相中多条这样较长的短链自由基相互聚集在一起,絮凝成核,以此为核心,单体不断扩散入内,聚合成乳胶粒,这个过程即为均相成核。

第三章离子聚合(Ionic Polymerization)

活性聚合(Living Polymerization):当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。

化学计量聚合(Stoichiometric calculation Polymerization):阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。

准活性聚合(Quasi-living polymerization):在阴离子聚合反应中,如果Rt≠0 ,Rtr≠0,但两者均很小,称为准活性聚合,该过程活性链有充足的生长时间,终止后得到的稳定大分子称长寿命链。

阴离子聚合引发过程(Initiation of Anionic polymerization):形成单碳负离子活性中心的过程。

阴离子聚合链增长过程(Chain Propagation of Anionic polymerization):引发过程产生的碳阴离子与反离子结合共同构成链增长活性中心,单体不断与碳阴离子连接,成为新的碳阴离子,使阴离子活性链不断增长。

阴离子聚合的变换反应(Shift reaction of Anionic polymerization):阴离子活性聚合获得的活性碳负离子经某种反应后链端的碳负离子活性中心变成另一种活性中心。

遥爪聚合物(Telechelic polymer):按化学计量比投料的活性阴离子聚合体系,单体转化率达100%后,加入某种实际反应,该试剂在对大分子封端的同时,使大分子的一端或两端接上具有反应性的官能团,每个大分子相当于一个长长的臂,臂端存在可抓住其它反应物的爪子,因此通常称它们为遥爪聚合物。

大分子单体(Macromonomer):阴离子活性高分子与某些含有双键的化合物反应,可以形成端基带有可进行链式聚合反应的双键官能团,这种端基上含有可进行聚合反应的基团的齐聚物或高分子成为大分子单体。

动力学链不终止(not termination of Kinetic chain):无论何种终止方式,凡是在链终止形成稳定大分子的同时有新的活性中心产生,且该活性中心可以引发单体聚合的链终止过程称为动力学连不终止。

动力学链终止(termination of Kinetic chain):无论何种终止方式,凡是在链终止

形成稳定大分子的同时无新的活性中心产生的链终止过程称为动力学连不终止。

配位聚合(Coordination Polymerization):单体与引发剂经过配位方式进行的聚合反应。具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。配位聚合又有络合引发聚合或插入聚合之称。

定向聚合(Stereo-regular Polymerization):任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。定向聚合等同于立构规整聚合(Stereo-specific Polymerization)。

Ziegler-Natta聚合(Ziegler –Natta Polymerization):采用Zigler-Natta引发剂的任何单体的聚合或共聚合。

立体异构(Stereo-isomerism):分子中的原子的不同空间排布而产生不同的构型。可分为光学异构体和几何异构体。

构型(Configuration):是由原子(或取代基)在手性中心或双键上的空间排布顺序不同而产物的立体异构。

构象(Conformation):构象则是对C-C单键内旋转异构体的一种描述,有伸展型、无规线团、螺旋型和折叠链等几种构象。

光学异构体(Optical Isomer,又称对映体异构):由手性中心产生的异构体,分R (右)型和S(左)型。

几何异构体(Geometrical Isomer):由双键而产生的异构体,即Z(顺)式和E(反)式。

手性中心(Chiral Center):非对称取代的烯类单体或α—烯烃聚合物分子链中的不对称的碳原子。

全同立构聚合物(Isotactic Polymer)(等规立构聚合物):各手性碳原子构型相同,称全同立构聚合物。以聚α-烯烃为例,聚α-烯烃中含有多个手性中心C原子,若各个手性中心C原子的构型相同,如~RRRR~ 或~SSSS~ ,就成为全同立构(等规)聚合物。

间同立构聚合物(Syndiotactic Polymer)(间规立构聚合物):若相邻手性碳原子构型相反,且交替排列,则为间同立构聚合物。以聚α-烯烃为例,若聚α-烯烃中相邻的手性中心C原子的构型相反并且交替排列,如~RSRSRS~,则成为间同立构聚合物。

无规立构聚合物(Atactic Polymer):手性C构型呈无规排列的聚合物。以聚α-烯烃为例,若聚α-烯烃中的手性中心C原子的构型呈无规则排列,如~RRSRSSSRSSR~,则为无规聚合物。

顺式(Z)构型(Cis-configuration)、反式(E)构型(Anti-configuration):当双键的两个碳原子各连接两个不同基团时,由于双键不能自由旋转,就有可能生成两种不同的由空间排列所产生的异构体。两个相同基团处于双键同侧的叫做顺式,反之叫做反式。

立构规整度(Stereo-regularity):立构规整聚合物的质量占总聚合物质量的分率。

全同指数(Isotactic Index)(聚丙烯的等规度):表征聚合物的立构规整程度的指数,即有规立体聚合物占总聚合物量的分率,以IIP表示。常用沸腾正庚烷的萃取剩余物所占分数来表示。

配位聚合引发体系(Initiator of Coordination Polymerization):用于配位聚合的引

发剂,这类引发剂在聚合过程中的作用不仅为聚合提供活性种,而且它可使增长插入的单体配位,达到立构规化的目的。配位聚合引发体系大致有四类:一是Ziegler-Natta型;二是π烯丙基过渡金属型;三是烷基锂引发剂;四是最近发展起来的茂金属引发剂。配位引发剂的作用有二:一是提供引发聚合的活性种,二是引发剂的剩余部分(经常是过渡金属的反离子)紧邻引发中心提供独特的配位能力,这种反离子同单体和增长链的配位促使单体分子按一定的构型进入增长链,起着连续定向模板的作用。

Ziegler-Natta引发剂(Initiator of Ziegler-Natta):Zigler-Natta引发剂是一大类引发体系的统称,通常有两个组份构成:主引发剂是Ⅳ~Ⅷ族过渡金属化合物。共引发剂是Ⅰ~Ⅲ族的金属有机化合物。

基团转移聚合(group transfer polymerization GTP):带有特定取代基(酯、氰、酮和酰胺等)的极性的烯类单体,以带有硅、锗、锡烷基基团的化合物为引发剂,用负离子或路易斯酸(Lewis)等化合物为催化剂,在每次增长过程中,发生链末端结构单元上的基团转移给增长单体或者增长单体的基团转移给链末端结构单元的集团转移过程,末段活性种总是活化的官能团。

开环聚合(Ring-Opening Polymerization):环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。

第四章共聚合反应(Co-polymerization)

均聚合(Homo-polymerization):由一种单体进行的聚合反应。

共聚合(Co-polymerization):由两种或两种以上单体共同参加的连锁聚合反应。形成的聚合物中含有两种或多种单体单元。

均聚物(Homo-polymer):由均聚合所形成的聚合物。

共聚物(Copolymer):由共聚合形成的聚合物。

无规共聚物(Random Copolymer):聚合物中组成聚合物的结构单元呈无规排列。交替共聚物(Alternating Copolymer):聚合物中两种或多种结构单元严格相间。

嵌段共聚物(Block Copolymer):聚合物由较长的一种结构单元链段和其它结构单元链段构成,每链段由几百到几千个结构单元组成。

接枝共聚物(Graft Copolymer):聚合物主链只由某一种结构单元组成,而支链则由其它单元组成。

等活性理论(Equal activity theory):在自由基共聚合中,链自由基的反应活性基本与链长无关。

稳态理论( Steady state theory):自由基共聚合聚合反应中,链自由基的总浓度及两种链自由基的浓度均不随反应时间变化。

共聚物组成方程(Equation of Copolymer Composition):表示共聚物组成与单体混合物(原料)组成间的定量关系。

理想共聚(Ideal Co-polymerization):该聚合竞聚率r1*r2=1,共聚物某瞬间加上的单体中1组分所占分率F1=r1f1/(r1f1+f2),并且其组成曲线关于另一对角线成对称(非恒比对角线)。

理想恒比共聚( Ideal Azeotropic Co-polymerization):该聚合的竞聚率

r1=r2=1,这种聚合不论配比和转化率如何,共聚物组成和单体组成完全相同,F1=f1,并且随着聚合的进行,F1、f1,的值保持恒定不变。

交替共聚(Alternating Co-polymerization):该聚合竞聚率r1=r2=0或者r1→0,r2→0,这种聚合两种自由基都不能与同种单体加成,只能与异种单体共聚,因此不论单体组成如何,结果都是F1=0.5,形成交替共聚物。

非理想共聚(Non-ideal Co-polymerization):竞聚率r1*r2≠1的聚合都是非理想聚合,非理想聚还可再往下细分。

有恒比点非理想共聚(Non-ideal Azeotropic Co-polymerization):竞聚率r1<1 且r2<1的非理想聚合,该共聚物组成曲线与恒比对角线有一交点,在这一点上共聚物的组成与单体组成相同,且随着聚合的进行二者的单体和聚合物的组成都都保持恒定不变。

嵌段共聚(Block Co-polymerization):该聚合竞聚率r1>1且r2>1,两种自由基都有利于加上同种单体,形成“嵌段共聚物”,但两种单体的链段都不长,很难用这种方法制得商品上的真正嵌段共聚物。

竞聚率(Reactivity Ratio):是均聚和共聚链增长速率常数之比,r1=k11/k12,r2=k22/k21,竞聚率用来直观地表征两种单体的共聚倾向。

第五章逐步聚合(Stepwise Polymerization)

均缩聚(condensation reaction):均缩聚反应指的是只有一种单体参与的缩聚反应。其重复结构单元只含一种单体单元。

混缩聚(Blending condensation reaction):一种或几种含有二个以上官能团的单体化合成为聚合物同时析出低分子副产物(如水、氯化氢等)的过程。

线形缩聚(Linear Poly-codensation):在聚合反应过程中,如用2-2或2官能度体系的单体作原料,随着聚合度逐步增加,最后形成高分子的聚合反应。线型缩聚

形成的聚合物为线形缩聚物,如涤纶、尼龙等。

体形缩聚(Tri-dimensional Poly-condensation):参加反应的单体,至少有一种单体含有两个以上的官能团,反应中形成的大分子向三个方向增长,得到体型结构的聚合物的这类反应。

官能团等活性理论(Equal activity theory of Functional Group):无论官能团是被单

体还是被聚合体携带,也不论聚合体的聚合度是多大,该官能团反应活性是相同的。

官能度(Functionality):一分子聚合反应原料中能参与反应的官能团数称为官能度。

平均官能度(Aver-Functionality) :单体混合物中每一个分子平均带有的官能团数。即单体所带有的全部官能团数除以单体总数。

当量系数(Ratio of Group Number):线形缩聚中两种单体的基团数比。常用r表示,一般定义r为基团数少的单体的基团数除以基团数多的单体的基团数。r=Na/Nb ≤1,Na 为单体a的起始基团数,Nb为单体b的起始基团数。

反应程度(Extent of Reaction):参加反应的官能团数占起始官能团数的分率。

转化率(Conversion):参加反应的反应物(单体)与起始反应物(单体)的物质的量的比值即为转化率。

凝胶化现象(Gelation Phenomena) 凝胶点(Gel Point):体型缩聚反应进行到一定程度时,体系粘度将急剧增大,迅速转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象。此时的反应程度叫凝胶点。

扩链反应(chain extending reaction):通过聚合物端基活性基团的反应而形成线型分子链的反应。

预聚物(Pre-polymer):体形缩聚过程一般分为两个阶段,第一阶段原料单体先部分缩聚成低分子量线形或支链形预聚物,预聚物中含有尚可反应的基团,可溶可熔可塑化。该过程中形成的低分子量的聚合物即是预聚物。

无规预聚物(Random Pre-polymer):预聚物中未反应的官能团呈无规排列,经加热可进一步交联反应。这类预聚物称做无规预聚物。

结构预聚物(Structural Pre-polymer):具有特定的活性端基或侧基的预聚物称为结构预聚物。结构预聚物往往是线形低聚物,它本身不能进一步聚合或交联。

热塑性塑料(Thermoplastics Plastics):是线型可支链型聚合物,受热即软化或熔融,冷却即固化定型,这一过程可反复进行。聚苯乙烯(PS)、聚氯乙烯(PVC)、聚乙烯(PE)等均属于此类。

热固性塑料(Thermosetting Plastics):在加工过程中形成交联结构,再加热也不软化和熔融。酚醛树脂、环氧树脂、脲醛树脂等均属于此类。

融熔缩聚(Melt Poly-condensation):熔融缩聚是指反应温度高于单体和缩聚物的熔点,反应体系处于熔融状态下进行的反应。熔融缩聚的关键是小分子的排除及分子量的提高。

溶液缩聚(Solution Poly-condensation):单体加适当催化剂在溶剂(包括水)中呈溶液状态下进行的缩聚叫溶液缩聚。

界面缩聚(Interfacial Poly-condensation):两单体分别溶解于两不互溶的溶剂中,反应在两相界面上进行的缩聚称之为界面缩聚,具有明显的表面反应的特性。

第六章天然高分子(natural polymers)

单糖(Monosaccharide):最简单的碳水化合物,如葡萄糖、果糖、木糖等。

低聚糖(Oligosaccharide):由二个至十个单糖分子经由糖苷键连接而成的化合物。如蔗糖和棉子糖。

多糖(Polysaccharose):由10个以上的单糖分子经由糖苷键连接而成的碳水化合物。如纤维素和多糖。

橡胶(Rubber):是高弹性的高分子材料,由于橡胶具有其他材料所没有的高弹性,因而也称作弹性体。

硫化(Vulcanizing):将橡胶与硫化剂(通常是硫磺)和其他有关的配合剂一起加热反应,将生胶线型分子链交联形成三维的网状结构,得到硫化胶。

肽键(Peptide Bond):蛋白质是由天然产生的若干种类L-ɑ-氨基酸以共价键结合的共聚物,历史上称这些酰胺键(-CO-NH-)为肽键。

蛋白质(Protein):是由许多氨基酸之间进行缩合反应后所形成的分子量大于10000的聚合物,是提供胺基酸的最主要来源,亦是提供身体生长最主要的成分。

多肽(Polypeptide):多个不同氨基酸由多个肽键结合成为大分子链,分子量少于10000的成为多肽。

蛋白质的一级结构(primary structure of Protein):蛋白质多肽链中氨基酸种类的组成及其连接顺序。

蛋白质的二级结构(secondary structure of Protein):蛋白质多肽链的二级结构

描述其构象或形状,主要形式有两种:ɑ-螺旋形和β-片层形,这是由主链中氢键的相互作用而形成的。

蛋白质的三级结构(tertiary structure of Protein):蛋白质多肽链上所有原子之间的相互作用使多肽链进一步折叠、盘曲成为内有袋行空穴的空间排列。

蛋白质的四级结构(quaternary structure of Protein):由两个或两个以上具有特定一、二、三级结构的多肽链,通过次级键以一定关系聚集所形成的空间排布,成为四级结构。

第七章聚合物的化学反应(Chemical Reaction of Polymer)

聚合物化学反应(Chemical Reaction of Polymer):研究聚合物分子链上或分子链间官能团相互转化的化学反应过程。聚合物的化学反应根据聚合物的聚合度和基团的变化(侧基和端基)可分为相似转变、聚合物变大的反应及聚合物变小的反应。

离子基团的屏蔽效应(Ion groups shielding effect):在许多反应中,大分子中的一种官能团转化为离子后,如果它带的电荷与进攻试剂相同,由于静电相斥效应,会显著地阻碍临近基团受试剂的进攻。

官能团的隔离效应(functional groups isolation effect):当一个试剂分子必须和大分子链上相邻的两个基团都反应时,反应不能进行到底。因为随即反应的结果,大分子上的基团总有一些被单个孤立起来,从而不能再实现相邻两个基团都与同一试剂反应。

高聚物的取代反应(substitution reaction of Polymer):当化学试剂与高分子链发生反应时,原来大分子中的一些基团被其他基团所取代,出现了新的官能团。

高聚物的加成反应(addition reaction of Polymer):天然橡胶的氯化和氢氯化是加成反应。

高聚物的消除反应(elimination reaction of Polymer):聚氯乙稀、聚偏氯乙烯等受热会脱除氯化氢这种脱除是自由基链式反应,由于反复进行链转移和消除的反应,发生“拉链式”的脱氯化氢反应。

降解(Degradation):降解是聚合度分子量变小的化学反应的总称。它是高分子链在机械力、热、超声波、光、氧、水、化学药品、微生物等作用下,发生解聚、无规断链及低分子物脱除等反应。

解聚(depolymerization):在热作用下,大分子末端断裂,生成自由基,然后按链式机理迅速逐一脱除单体而降解,脱除少量单体后,短期内残留物的分子量变化不大。这类反应称为解聚。

无归断链(random degradation):聚合物受热时主链发生随机断裂,分子量迅速下降,但单体收率很低,这类热解反应即为无归断链。

扩链(Chain-enlarging):分子量不高的聚合物,通过适当的方法,使多个大分子连接在一起,分子量因而增大的过程称为扩链。

交联(Cross-linking):聚合物在光、热、辐射、或交联剂作用下,分子链间形成共价键,产生凝胶或不溶物,这一过程称为交联。交联有化学交联和物理交联。交联的最终目的是提高聚合物的性能。如橡胶的硫化等。

交联剂(Cross-linking Agent):使聚合物交联的试剂。

老化(Aging):聚合物及其制品在加工、贮存及使用过程中,由于受各种因素(热、氧、光、水、化学介质及微生物等)的综合作用,聚合物的化学组成和结构会发生一系列的变化以至最后丧失使用价值,这些现象和变化统称为老化。

高化名词解释全面版

高分子:高分子化合物,是指分子量很高并由多个重复单元以共价键连接的一类化合物。 单体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子。 结构单元:聚合物分子结构中出现的以单体结构为基础的原子组合,是由一种单体分子通 过聚合反应进入聚合物重复单元的那一部分。 单体单元:聚合物分子结构中由单个单体分子生成的最大的结构单元,与单体的化学组成 相同,只是电子结构不同的结构单元。 重复单元:是大分子链上化学组成和结构均可重复的最小单位,在高分子物理中也称为链 节。重复单元≥结构单元。 均聚物:即使用一种单体聚合所得的高分子,其结构单元与重复单元是相同的。 共聚物:即使用两种或者两者以上的单体共同聚合所得的高分子,其结构单元与重复单元 聚合度 以大分子链中的结构单元数目表示,记作 以大分子链中的重复单元数目表示,记作 末端基团(端基):高分子链的末端基团。 遥爪高分子:含有反应性末端基团、能进一步聚合的高分子。 分子量的多分散性:聚合物是由一系列分子量(或聚合度)不等的同系物高分子组成, 这些同系物高分子之间的分子量差为重复结构单元分子量的倍数。 导致聚合物分子长短不一的特征。 数均分子量:按聚合物中含有的分子数目统计平均的分子量,高分子样品中所有分子的总 重量除以其分子(摩尔)总数。 n x DP

重均分子量:是按照聚合物的重量进行统计平均的分子量。 分子量分布指数:即重均分子量/数均分子量的比值,可用来表征分布宽度。 官能度:是指一个单体分子中能够参加反应的官能团的数目。 官能团等活性:不同链长的端基官能团,具有相同的反应能力和参加反应的机会,即官能团的活性与分子的大小无关。 反应程度:是参加反应的官能团数占起始官能团数的分数,用P表示。 转化率:参加反应的单体量占起始单体量的分数。 且所有支化点间的链段长 体形缩聚:是指某一2官能度单体与另一官能度大于2的单体先进行支化而后形成交联结构的缩聚过程。 凝胶化:体系粘度突然急剧增加,难以流动,体系转变为具有弹性的凝胶状物质。 凝胶点:开始出现凝胶化时的反应程度(临界反应程度)称为凝胶点,用Pc表示。 熔融缩聚:是单体和聚合产物均处于熔融状态下的聚合反应。 界面缩聚:将两种单体溶于两种互不相溶的溶剂中,混合后在两相界面处进行的缩聚反应。预聚体:未固化的聚合物。 固化:当聚合反应达到凝胶点后,便失去流动性,聚合物不溶不熔。

病生名词解释和简答题目

第一部分习题 第一章绪论 一、名词解释 1.Pathophysiology(病理生理学) 是研究疾病发生、发展过程中功能和代谢改变的规律极其机制的学科,其主要任务是揭示疾病的本质,为建立有效的疾病诊疗和预防策略提供理论和实践依据。 2.Basal pathogenesis(基本病理过程) 主要讨论多种疾病共同的、成套的功能和代谢变化。(如水、电解质、酸碱平衡紊乱,缺氧,发热,应激,缺血-再灌注损伤,休克,弥散性血管内凝血,全身炎症反应综合征,细胞增值和凋亡障碍等) 3.Animal model of human disease(人类疾病动物模型) 二、简答题 1.病理生理学的研究任务是什么? 2.病理生理学主要包括哪些内容? 3.病理生理学的主要研究方法有哪些? 第二章疾病概论 一、名词解释 1.脑死亡(brain death) 脑死亡是指全脑功能(包括大脑、间脑和脑干)不可逆的永久性丧失以及机体作为一个整体体功能的永久性停止。 2.健康(health) 健康不仅是没有疾病或衰弱现象,而是躯体上、精神上和社会适应上的一种完好状态。 3.疾病(disease) 疾病是在一定病因作用下,机体内稳态调节紊乱而导致的异常生命活动过程。 4.病因 疾病发生的原因是指引起疾病必不可少的、赋予疾病特征或决定疾病特异性的因素。 5.诱因

诱因是能加强病因的作用而促进疾病发生发展的因素。 6.分子病 分子病是由遗传物质或基因(包括DNA和RNA)的变异引起的一类以蛋白质异常为特征的疾病。 7.基因病 基因病是由基因本身突变、缺失或其表达调控障碍引起的疾病。 8.条件 条件是指能促进或减缓疾病发生的某种机体状态或自然环境。条件本身不引起疾病,但可影响病因对机体的作用。 9.因果交替规律 因果交替指疾病发生发展过程中,有原始病因作用于机体所产生的结果又可作为病因,引起新的后果。这种因果的相互转化常常促进疾病的恶化,导致恶性循环。 二、简答题 1.用脑死亡概念的意义是什么? ①可协助医务人员判断患者的死亡时间、适时停止复苏抢救。 ②有利于器官移植。 2.脑死亡的判断标准是什么? ①自主呼吸停止。 ②不可逆性深度昏迷。 ③脑电波消失。 ④脑血液循环完全停止。 3.疾病与病理过程的区别是什么? 4.遗传性因素与先天性因素有何区别? 遗传因素指染色体或基因等遗传物质畸变或变异引起的疾病。先天性因素指那些损害胎儿发育的因素。 5.疾病发生的原因有哪些? ①生物因素 ②理化因素 ③营养因素 ④遗传因素

材料力学名词解释(1)

名词解释 第一章: 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 13.弹性极限:式样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 14.静力韧度:金属材料在静拉伸时单位体积材料断裂前所吸收的功。 15.正断型断裂:断裂面取向垂直于最大正应力的断裂。 16.切断型断裂:断裂面取向与最大切应力方向一致而与最大正应力方向约成45度的断裂 17.解理断裂:沿解理面断裂的断裂方式。 第二章: 1.应力状态软性系数:材料或工件所承受的最大切应力τmax和最大正应力σmax比值 2.缺口效应:由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。(1:应力集中2.使塑性材料强度增高塑性降低) 3.缺口敏感度:缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb的比值,称为缺口敏感度 4.缺口强化现象:在存在缺口的条件下出现了三向应力状态,并产生应力集中,试样的屈服应力比单向拉伸时高 5.布氏硬度:用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度 6.洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度

免疫学名词解释整理

免疫(immunity):是指机体识别“自我”与“非我”抗原,对自身抗原形成天然免疫耐受同时排除非己抗原的,维持机体内环境生理平衡的功能。正常情况下,对机体有利;免疫功能失调时,会产生对机体有害的反应。 固有免疫应答(innate immune response):也称非特异性或获得性免疫应答,是生物体在长期种系发育和进化过程中逐渐形成的一系列防御机制。此免疫在个体出生时就具备,可对外来病原体迅速应答,产生非特异性抗感染免疫作用,同时在特异性免疫应答过程中也起作用。 适应性免疫应答(adaptive immune response):也称特异性免疫应答,是在非特异性免疫基础上建立的,该种免疫是个体在生命过程中接受抗原性异物刺激后,主动产生或接受免疫球蛋白分子后被动获得的。 免疫防御(immunologic defence):是机体排斥外来抗原性异物的一种免疫保护功能。该功能正常时,机体可抵御病原微生物及其毒性产物的感染和损害,即抗感染免疫;异常情况下,反应过高会引起超敏反应,反应过低或缺失可发生免疫缺陷。 免疫自稳(immunologic homeostasis):是机体免疫系统维持内环境稳定的一种生理功能。该功能正常时,机体可及时清除体内损伤、衰老、变性的细胞和免疫复合物等异物,而对自身成分保持免疫耐受;该功能失调时,可发生生理功能紊乱或自身免疫性疾病。 免疫监视(immunologic surveillance):是机体免疫系统及时识别、清除体内突变、畸变细胞和病毒感染细胞的一种生理功能。该功能失调时,有可能导致肿瘤发生,或因病毒不能清除而出现持续感染。 MALT(mucosal-associated lymphoid tissue):即黏膜伴随的淋巴组织。是指分布在呼吸道、肠道及泌尿生殖道的粘膜上皮细胞下的无包膜的淋巴组织。除执行固有免疫外,还可执行局部特异性免疫。 抗原(antigen,缩写Ag,不是银!):能诱导(活化/抑制)免疫系统产生免疫应答,并与相应的反应产物(抗原/致敏淋巴细胞)进行特异性结合(体内/体外)的物质。 半抗原(hapten):又称不完全抗原,是指仅具有与抗体结合的能力(抗原性),而单独不能诱导抗体产生(无免疫原性)的物质。当半抗原与蛋白质载体结合后即可成为完全抗原。 抗原决定簇(antigen determinant,AD):指抗原分子中决定抗原特异性的特殊化学基团。抗原表位(epitope):是与TCR、BCR或抗体特异性结合的基本单位,也称抗原决定基。又称抗原决定簇。 胸腺依赖性抗原(thymus dependent antigen,TD-Ag):是一类必须依赖Th细胞辅助才能诱导机体产生抗体的抗原。该抗原由T表位和B表位组成,绝大多数蛋白质类抗原为TD-Ag,可刺激机体产生体液免疫应答和细胞免疫应答。

高分子化学名词解释

高分子化学(潘祖仁主编)名词解释 第一章绪论 逐步聚合,是指聚合过程中低分子转变成高分子是缓慢逐步进行的,每步的反应速率和活化能大致相同。聚合早期,单体很快聚合成低分子量的齐聚物,短期内单体转化率很高,反应程度却很低。 连锁聚合,是指从自由基、阴阳离子等活性种开始,经历链引发、链增长、链终止等基元反应的,各基元反应的速率和活化能差别很大的一类聚合反应。数均分子量,是指按聚合物中含有的分子数目统计平均的分子量,等于高分子样品中所以分子的总质量除以总的摩尔分数; 质均分子量,是指按聚合物中含有的分子质量统计平均的分子量; 黏均分子量,是指用粘度法测得的高分子的平均分子量。 热塑性弹性体:通常的弹性体如橡胶是通过化学反应使聚合物分子链发生交联才具有弹性,而热塑弹性体的弹性来自于聚合物分子链间的物理交联,如氢键等分子间相互作用。普通橡胶不能二次加工,而热塑弹性既具有橡胶的弹性,又具有塑料的可塑性,可以多次进行成型加工。 热塑性聚合物:线形或支链形大分子以物理力聚集成聚合物,可溶于适当溶剂中,加热时可熔融塑化,冷却时固化成型,此类聚合物称作热塑性聚合物。热固性聚合物:酚醛树脂,醇酸树脂等在树脂合成阶段,需控制原料配比和反应条件,使其停留在线形或少量支链的低分子预聚物阶段。成型时,经加热,再使其中潜在的官能团继续反应成交联结构而固化。此类聚合物称作热固性聚合物。第二章缩聚和逐步聚合 均聚是指系统中只由一种单体构成的聚合反应,如氯乙烯的缩聚; 共聚是指聚合物是由两种或多种单体共同聚合而 成的聚合反应,如尼龙-66的聚合; 混缩聚是指类如aAb的单体进行的聚合反应。 反应程度的定义为参与反应的基团数占起始基团 数的分数,将大分子的结构单元数(不是重复单元数)定义为聚合度。 官能团等活性理论提出,不同的链长的端基官能团,具有相同的反应能力和参加反应的机会,即官能团的活性与分子的大小无关。此理论适用于一般的聚合度不太高的、体系粘度不太大的缩聚体系;不适用于聚合反应后期,因为聚合反应后期,聚合度较大、粘度大,链段活动受到阻碍,端基活性降低。 数均聚合度,是指按聚合物中含有的分子数目统计平均的聚合度,也即平均每个大分子链中的结构单元的数目; 质均聚合度,是指按聚合物中含有的分子质量统计平均的聚合度。 凝胶点:多官能团单体聚合到某一程度,开始交联,粘度突增,气泡也难上升,出现了凝胶化现象,这时的反应程度称作凝胶点。凝胶点的定义为开始出现凝胶瞬间的临界反应程度。 平均官能度:单体混合物的平均官能度定义为每一个分子平均带有的基团数。 熔融聚合是指在单体和聚合物熔点以上进行的聚合; 溶液聚合是指单体加催化剂在适当的溶剂(包括水)中进行的聚合;

病生名词解释

病生名词解释 跨细胞液(transcellular fluid) 跨细胞液是组织间液中的极少部分分布于一些密闭腔隙(关节囊、颅腔、胸腔、腹腔等)中,是由上皮细胞分泌产生的,为一特殊部分,也称第三间隙液。 水通道蛋白aquaporins (AQP) 是一组广泛存在于生物界的构成水通道与水通透有关的细胞膜转运蛋白。 低容量性低钠血症hypovolemic hyponatremia 又称为低渗性脱水,其特点是失Na+多于失水,血清Na+浓度〈130mmol/L,血浆渗透压〈280mmol/L,伴有细胞外液量的减少。 高容量性低钠血症hypervolemic hyponatremia 又称为水中毒,其特点血清Na+浓度〈130mmol/L,血浆渗透压〈280mmol/L,是由于过多的水分在体内潴留造成细胞内、外液量都增多,并引起重要器官功能障碍。 低容量性高钠血症hypovolemic hypernatremia 又称为高渗性性脱水,其特点是失水多于失Na+,血清Na+浓度〉150mmol/L,血浆渗透压〉310mmol/L,细胞外液量和细胞内液量均减少。 凹陷性水肿 (pitting edema) 组织间隙中积聚的液体超过胶体网状物的吸附能力时,形成游离的液体,后者在组织间隙中具有高度的移动性,当液体积聚到一定量后,用手指按压该部位皮肤,游离液体便从按压点向周围散开,形成凹陷,称为凹陷性水肿,又称为显性水肿。 异位钙化 在高钙或高磷血症时,体内多处可形成钙化,如血管壁、关节周围、软骨、肾、鼓膜钙化等,这些钙化灶引起相应器官的功能损害。 阴离子间隙 (anion gap,AG) AG指血浆中未测定的阴离子与未测定的阳离子的差值。 反常性酸性尿 碱中毒时尿液一般呈碱性,但在缺钾等引起的代谢性碱中毒时,在远曲小管因Na+-H+交换加强,导致肾泌H+增多,故尿呈酸性,称之为反常性酸性尿。 分子病(molecular disease) 是指由于DNA遗传性变异引起的一类蛋白质异常为特征的疾病。

(完整版)金属材料学(第二版)课后答案主编戴启勋

第一章钢的合金化原理 1.名词解释 1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。(常用M 来表示) 2)微合金元素: 有些合金元素如V,Nb,Ti, Zr 和B 等,当其含量只在0.1%左右(如B 0.001%,V 0.2 % )时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。3)奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如Mn, Ni, Co, C, N, Cu ; 4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。如:V,Nb, Ti 等。5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr 钢中的Cr:ε-FexC→ Fe3C→ ( Fe, Cr)3C→ ( Cr, Fe)7C3→ (Cr, Fe)23C6 6)离位析出: 在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC 和强度提高(二次硬化效应)。如V,Nb, Ti 等都属于此类型。 2.合金元素 V、Cr 、W、Mo 、Mn 、 Co、Ni 、Cu 、 Ti 、Al 中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在 a-Fe 中形成无限固溶体?哪些能在 g-Fe 中形成无限固溶体?答:铁素体形成元素:V、Cr、W、Mo、Ti、Al ; 奥氏体形成元素:Mn、Co、Ni 、Cu 能在a-Fe 中形成无限固溶体:V、Cr;能在g-Fe 中形成无限固溶体:Mn 、Co、Ni 3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义? 答:(1)扩大γ相区:使A3 降低,A4 升高一般为奥氏体形成元素分为两类:a.开启 γ相区:Mn, Ni, Co 与γ-Fe 无限互溶. b.扩大γ相区:有C,N,Cu 等。如Fe-C 相图,形成的扩大的γ相区,构成了钢的热处理的基础。 (2)缩小γ相区:使A3 升高,A4 降低。一般为铁素体形成元素 分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α 相区连成一片。如V, Cr, Si, A1, Ti, Mo, W, P, Sn, As, Sb 。 b.缩小γ相区:Zr, Nb, Ta, B, S, Ce 等 (3)生产中的意义:可以利用M 扩大和缩小γ相区作用,获得单相组织,具有特殊性能,在耐蚀钢和耐热钢中应用广泛。 4.简述合金元素对铁碳相图(如共析碳量、相变温度等)的影响。 答:答:1)改变了奥氏体区的位置 2)改变了共晶温度:(l)扩大γ相区的元素使A1,A3 下降; (2)缩小γ相区的元素使A1,A3 升高。当Mo>8.2%, W>12%,Ti>1.0%,V>4.5%,Si>8.5% ,γ 相区消失。

免疫学名词解释完整版

免疫学名词解释完整版 免疫学名词解释 第一章:免疫学概论 1.免疫防御:防止外界病原体的入侵及清除已入侵病原体及其他有害物质。 2.免疫监视:是机体免疫系统及时识别并清除体内出现的非己成分的一种生理功能。该功能失调会导致肿瘤发生或持续性病毒感染。 3.免疫自身稳定:通过自身免疫耐受或免疫调节两种主要机制来达到免疫系统内环境的稳定。 4.适应性免疫应答的特点:特异性、耐受性、记忆性第二章:免疫器官和组织 1.免疫系统:是机体执行免疫功能的物质基础,由免疫器官和组织、免疫细胞及免疫分子组成。 2.淋巴细胞归巢:血液中的淋巴细胞选择性趋向迁移并定居于外周免疫器官的特定区域或特定组织的过程。包括淋巴细胞再循环和淋巴细胞向炎症部位迁移。 3.淋巴细胞再循环:是指定居在外周免疫器官的淋巴细胞,由输出淋巴管经淋巴干、胸导管或右淋巴导管进入血液循环;经血液循环到达外周免疫器官后,穿越HEV 重新分布于全身淋巴器官和组织的反复循环过程。 第三章:抗原 1.抗原(Ag):是指能与T细胞、B淋巴细胞的TCR或BCR识别并结合,激活T、B 细胞,促使其增殖、分化,产生抗体或致敏淋巴细胞,并与免疫应答效应产物特异性结合,进而发挥适应性免疫效应应答的物质。 2.半抗原:又称不完全抗原,是指仅具有免疫反应性而无免疫原性的小分子物质,当半抗原与应答效应产物结合后即可成为完全抗原,刺激机体产生针对半抗原的特异性抗体。 3.抗原表位:存在于抗原分子中决定抗原特异性的特殊化学基团,又称抗原决 定簇,是与TCR BCF或抗体特异性结合的最小结构和功能单位。 4.异嗜性抗原:一类与种属无关,存在于人、动物及微生物之间的共同抗原。 6.独特型抗原:TCR CER或Ig的V区所具有的独特的氨基酸顺序和空间构型,可诱导自体产生相应的特异性抗体。

病生名词解释

病生名词解释 1、疾病:指一定病因的损害作用下,因机体自我调节紊乱而发生的异常生命活动过程 2、水肿:是指过多液体在组织间隙或体腔中积聚的一种常见的病理过程。 3、低渗性脱水:因失钠大于失水,血清钠浓度<130mmol/L,血浆渗透压<280mOsm/L,以 细胞外液减少为主的病理变化过程 4、血液性缺氧:由于血红蛋白数量减少或性质改变,以致血氧含量降低或血红蛋白结合的 氧不易释放出来所引起的组织缺氧。动脉血氧含量大多降低而氧分压正常,故又称等张性低氧血症 5、循环性缺氧:由于组织血流量减少使组织供氧量减少所引起的缺氧,又称低动力性缺氧 6、发热:是一种全身炎症反应或伴有全身炎症反应,是指在内外致炎因素(发热激活物) 作用下,体温调节中枢调定点上移而引起的调节性体温升高超过正常值0.5摄氏度的病理过程 7、过热:是由于体温调节机构功能受损或调节障碍,致使机体不能将体温控制在与正常调 定点相适应的水平而引起的非调节性体温升高 8、心力衰竭:是指由于心脏舒缩或泵功能障碍,以致心输出量绝对或相对的减少,不能满 足全身组织代谢需要一种病理过程 9、心脏前负荷:又称容量负荷,是指心脏收缩前所承受的负荷,相当于心腔舒张末期容量 10、氨中毒:此学说认为肝性脑病的发生是由于肝功能严重受损,尿素合成发生障碍而 导致血氨水平升高,增高的血氨通过血脑屏障进入脑组织,引起脑功能障碍 11、假性神经递质:指肝性脑病患者脑内产生的生物胺,例如苯乙醇胺和羟苯乙醇胺, 它们的化学结构与正常的神经递质去甲肾上腺素和多巴胺相似,但生理效应远较正常递质为弱,故称为假性神经递质 12、低钾血症:血清钾离子浓度<3.5mmol/L的状态 13、高钾血症:指血清钾浓度>5.5mmol/L的状态 14、呼吸性碱中毒:因肺通气过度引起的以血浆H2CO3原发性降低为特征的酸碱平衡 紊乱类型称为呼吸性碱中毒 15、代谢性酸中毒:是由于细胞外液氢离子增加或碳酸氢根离子丢失而引起的血浆碳酸 氢根离子浓度原发性降低的酸碱平衡紊乱 16、休克肺:休克时,肺血液灌流降低而且持续,引起肺淤血、水肿、出血、局限性 肺不张、微血栓栓塞和肺泡内透明膜形成的病理改变,称为肺休克。

金属学金相学名词解释

金属:具有正的电阻温度特性的物质。 晶体:物质的质点(原子、分子或离子)在三维空间作有规则的周期性重复排列的物质叫晶体。原子排列规律不同,性能也不同。 点阵或晶格:从理想晶体的原子堆垛模型可看出,是有规律的,为清楚空间排列规律性,人们将实际质点(原子、分子或离子)忽略,抽象成纯粹几何点,称为阵点或节点。为便于观察,用许多平行线将阵点连接起来,构成三维空间格架。这种用以描述晶体中原子(分子或离子)排列规律的空间格架称为空间点阵,简称点阵或晶格。 晶胞:由于排列的周期性,简便起见,可从晶格中取出一个能够完全反映晶格特征的最小几何单元来分析原子排列的规律性。这个用以完全反映晶格特征最小的几何单元称为晶胞。 多晶型转变或同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。 空位:某一温度下某一瞬间,总有一些原子具有足够能量克服周围原子约束,脱离原平能位置迁移到别处,在原位置上出现空节点,形成空位。到晶体表面,称为肖脱基空位;到点阵间隙中,称弗兰克尔空位; 位错:它是晶体中某处有一列或若干列原子发生了有规律的错排现象,使长达几百至几万个原子间距、宽约几个原子间距范围内原子离开平衡位置,发生有规律的错动,所以叫做位错。基本类型有两种:即刃型位错和螺型位错。 晶界:晶体结构相同但位相不同的晶粒之间的界面称为晶粒间界,简称晶界。小角度晶界位相差小于10°,基本上由位错组成。大角度晶界相邻晶粒位相差大于10°,晶界很薄。 亚晶界和亚结构:分别泛指尺寸比晶粒更小的所有细微组织及分界面。 柯氏气团:刃型位错的应力场会与间隙及置换原子发生弹性交互作用,吸引这些原子向位错区偏聚。小的间隙原子如C、N 等,往往钻入位错管道;而大置换原子,原来处的应力场是受压的,正位错下部受拉,由相互吸引作用,富集在受拉区域;小的置换原子原来受拉,易于聚集在受压区域,即位错的上部。使畸变能降低,同时使位错难以运动,造成金属的强化。这就是利用溶质原子与位错交互作用的柯垂尔气团--柯氏气团。用以解释钢的脆化、强度提高等宏观现象。 元:组成合金的最基本的独立的物质,简称元 相:合金中结构相同、成分和性能均一并以界面互相分开的组成部分,称之为相。 组织:由于形成条件不同,形成具有不同形状、大小数量及分布的相相互结合而成的综合体。 固溶体:组元以不同比例混合后形成的固相晶体结构与组成合金的某一组元相同,这种相称固溶体 化合物:是构成的组元相互作用,生成不同与任何组元晶体结构的新物质 相图:是表示合金系中合金的状态与温度、压力与成分之间关系的一种图解。又称状态图或平衡图。

免疫学名词解释、问答题

第一章抗原 一名词解释 抗原:能够刺激机体产生免疫应答,并且能与免疫应答产物(抗体或免疫效应细胞)特异性结合的物质抗原决定簇(表位):存在于抗原性物质表面的能够决定抗原特异性的特殊化学基团 (免疫应答的特异性基础) 半抗原:本身只有反应原性而无免疫原性的简单小分子抗原物质,当予蛋白载体结合形成半抗原—载体复合物时,获得免疫原性 胸腺依赖性抗原(TD-Ag):指需要在T细胞辅助及巨噬细胞参与下才能激活B细胞产生抗体的抗原性物质。可引起体液、细胞免疫应答,产生免疫记忆 胸腺非依赖性抗原(TI-Ag):指无需T细胞辅助,就能直接刺激B细胞增生、分化产生抗体的抗原性物质。只引起体液免疫应答,无免疫记忆 类毒素:外毒素经0.3%-0.4%甲醛溶液处理后,丧失毒性作用而保留原有抗原性质 嗜异性抗原:指某些不同种属(动物、植物或微生物)之间存在的共同抗原 自身抗原:机体对正常的自身组织和体液成分处于免疫耐受状态,当自身耐受被打破,即可引起自身免疫应答。包括改变的自身抗原和隐蔽的自身抗原 功能性决定簇:存在于抗原分子表面,能被淋巴细胞识别,启动免疫应答,同时能与抗体和/或致敏淋巴细胞特异性结合而发生免疫反应的抗原决定簇 隐蔽的决定簇:存在于抗原内部,不能被淋巴细胞识别,无法触发免疫应答的抗原决定簇 共同抗原:存在于两种不同抗原分子之间的相同或相似的抗原决定簇 隐蔽的自身抗原:正常情况下与血流和免疫系统相对隔绝的自身物质 肿瘤特异性抗原:只存在于某种肿瘤细胞表面而不存在于相应正常细胞或其他肿瘤细胞表面的抗原肿瘤相关抗原(TAA):不为肿瘤细胞所特有的,在正常细胞上也可微量表达的抗原 超抗原:是一类有细菌外毒素和逆转录病毒蛋白构成的不同于促有丝分裂原的抗原性物质 交叉反应:抗原或抗体除与相应抗体或抗原发生特异性反应外,还能与含某种(些)相同抗体的它种抗血清或含某种(些)相同抗原决定簇的它种抗原结合的反应 白细胞分化抗原(CD):白细胞、血小板和血管内皮细胞等在分化成熟为不同谱系和分化不同阶段以及活化过程中出现或消失的细胞表面的抗原性标志 甲胎蛋白(AFP):是一种糖蛋白,在胚胎期由卵黄囊和肝细胞合成,是胎儿血清中的正常成分。当发生原发性肝癌是,血清中AFP含量显著增高 免疫佐剂:与抗原一起活先于抗原注入机体后可增强机体对该抗原的免疫应答能力或改变免疫应答类型的物质 弗氏佐剂:弗氏不完全佐剂是有液体石蜡或植物油和乳化剂羊毛脂或吐温80混合而成,使用时与水溶性抗原充分混合,使抗原分散在佐剂中形成油包水乳剂。在不完全佐剂中加入死的分枝杆菌(结核杆菌或卡介苗)就成为弗氏佐剂 二问答 1.简述TD-Ag和TI-Ag的概念,两者引起免疫应答有何区别 胸腺依赖性抗原(TD-Ag):指需要在T细胞辅助及巨噬细胞参与下才能激活B细胞产生抗体的抗原性物质。1.引起体液、细胞免疫应答2.产生抗体以IgG为主 3.产生免疫记忆 胸腺非依赖性抗原(TI-Ag):指无需T细胞辅助,就能直接刺激B细胞增生、分化产生抗体的抗原性物质。1.只引起体液免疫应答2.只刺激B细胞产生IgM 3.无免疫记忆 2.何谓嗜异性抗原?举例说明其意义 嗜异性抗原:指某些不同种属(动物、植物或微生物)之间存在的共同抗原 大肠杆菌O86含人血型B物质,肺炎球菌14型含人血型A物质 3.何谓隐蔽的自身抗原?举例说明隐蔽的自身抗原释放后,可引起哪些相应的临床疾病 自身抗原:机体对正常的自身组织和体液成分处于免疫耐受状态,当自身耐受被打破,即可引起自

高化复习题答案

三、填空题 (1)按阴离子聚合反应活性从大到小排列下述单体为(ACDB ); A a—氰基丙烯酸乙酯;B乙烯;C甲基丙烯酸甲酯;D苯乙烯 (2)从化学交联角度,PE、乙丙二元胶、聚硅氧烷等不含双键的聚合物可用(过氧化物)进行交联;不饱和聚酯树脂宜用(在引发剂存在下加入苯乙烯、丙烯腈、甲基丙烯酸甲酯等烯类单体)交联;天然橡胶等一般用(硫或含硫有机化合物)交联; (3)在自由基聚合反应中,阻聚剂(苯醌、硝基化合物、氧、硫等)是按照加成型阻聚机理影响聚合反应的; (4)缩聚反应初期用惰性气体加压,是为了(防止产物高温氧化变质和避免单体挥发造成原料配比变化);反应进行到一定程度后减压,是为了(使小分子排出); (5)典型的乳液聚合的主要组分有(单体、水、水溶性引发剂和乳化剂);聚合场所在(胶束和乳胶粒内)。 (6)配位聚合双金属机理的要点为(在钛上引发,在铝上增长;每一个过程插入一个单体); (7)按聚合物热稳定性从大到小排列下列聚合物为(ABDC ); A聚四氟乙烯;B聚苯乙烯;C聚甲基丙烯酸甲酯;D聚a—甲基苯乙烯; (8)引发剂LiR、RMgX、ROLi、NR3引发甲基丙烯酸甲酯聚合反应的引发活性,按从小到大排列为(NR3,ROLi ,RMgX,LiR); (9)聚酰胺-610的英文符号为(PA-610),商品名(尼龙-610或锦纶-610),按照聚酰胺-610 中的数字表示的顺序其单体分别为(己二胺和癸二醇); 10)按照对甲基丙烯腈阴离子聚合反应的活性顺序由小到大排列下述引发剂为( DABC); A RMgX ; B ROK ; C 吡啶; D NaR (11)在推导自由基聚合反应动力学方程式时作了三个假定,分别是(增长链不管长短均等活性)(相对分子质量足够大,引发反应消耗的单体可以忽略,聚合速率由链增长速率表示)(稳态假定,引发速度等于终止速度); (12)虽然1,2- 二甲氧基乙烷的介电常数比四氢呋喃小,但反应速率常数却大得多,这是由于前者的(电子给予指数或溶剂化能力)高于后者的缘故; (13)阳离子聚合机理的特点是(快引发、快增长、易转移、难终止); (14)r1=r 2=0,说明两种单体只能共聚而不能自聚,共聚物中两单体单元(严格交替而连,形成交替共聚物); (15)等摩尔的乙二醇和对苯二甲酸进行缩聚反应,反应程度P=0.95 时的数均聚合度为(20)。 (16 )Flory 统计凝胶点总是比实验值(偏小),原因是由于(存在分子内环化付反应)及(官 能团不等活性)的因素; (17)按对a氰基丙烯酸乙酯阴离子聚合引发活性从大到小排列下述引发剂为 (A>D>C>B ); A 钠+萘; B H2O; C CH3OK ; D BuMgBr

病生名词解释汇总

名词解释 1.健康健康是一种躯体、精神和社会适应上的完好状态,而不仅仅是没有疾病或衰弱现 象。 2.疾病疾病是在一定病因作用下,机体稳态发生紊乱而导致的异常生命活动过程。 3.脱水体液容量的明显减少在临床上称为脱水。 4.低渗性脱水是指体液容量减少,以失钠多于失水,血清钠浓度<130mmol/L,血浆渗透 压<280mmol/L为主要特征的病理变化过程。 5.高渗性脱水是指体液容量减少,以失水多于失钠,血清钠浓度>150mmol/L,和血浆渗 透压>310mOsm/L为主要特征的病理变化过程。 6.水肿过多的液体在组织间隙或体腔中积聚的病理过程称为水肿。 7.低钾血症血清钾浓度低于3.5mmol/L称为低钾血症。 高钾血症血清钾浓度高于5.5mmol/L称为高钾血症。 8.代谢性酸中毒是指血浆中HCO3-原发性减少,而导致pH降低的酸碱平衡紊乱。 呼吸性酸中毒是指血浆中PaCO2原发性增高,而导致pH降低的酸碱平衡紊乱。 代谢性碱中毒是指血浆中HCO3-原发性增高,而导致pH升高的酸碱平衡紊乱。 呼吸性碱中毒是指血浆中PaCO2原发性减少,而导致pH升高的酸碱平衡紊乱。 9.乏氧性缺氧是由于动脉血分压降低,血氧含量减少,导致组织供氧不足的缺氧。 血液型缺氧是由于血红蛋白含量减少或性质改变导致的缺氧。 循环型缺氧是指因组织血液灌流量减少而引起的缺氧。 组织性缺氧是指因组织、细胞利用氧的能力减弱而引起的缺氧。 10.发热发热是指在发热激活物作用下,体温调节中枢调定点上移而引起的调节性体温升 高,当体温升高超过正常值的0.5·C时,称为发热。 11.过热是由于体温调节机构功能失调或调节障碍,使得机体不能将体温控制在与调定点 相适应的水平而引起的非调节性的体温升高。 12.内生致热源在发热激活物的作用下,体内某些细胞产生和释放的能引起体温升高的物 质,称为内生致热源。 13.热限发热时,体温升高很少超过41。C,通常达不到42。C,这种发热时体温上升的高 度被限制在一定范围内的现象称为热限。 14.APP 感染、烧伤、创伤、大手术等应急原诱发的血浆中浓度迅速升高的蛋白质称为急性 期蛋白(APP)。 15.HSP 在热应激时新合成或合成增多的一组蛋白质称为热休克蛋白。 16.应激性溃疡是指在大面积烧伤、严重创伤、休克、败血症、脑血管意外等应激状态下 所出现的胃、十二指肠粘膜的急性损伤。 17.心身疾病以心理社会因素为主要病因或诱因的一类躯体疾病称为心身疾病。 18.细胞信号转导是指细胞外因子通过与受体(膜受体或核受体)结合,引发细胞内的一系列 生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程。 19.缺血-再灌注损伤缺血组织、器官在恢复血流灌注后反而加重组织器官的功能障碍和结 构损伤的现象称为缺血-再灌注损伤。 20.自由基指外层轨道上含有单个不配对电子的各种原子、原子团或分子。 21.钙超载各种原因引起的细胞内钙含量异常增多并导致细胞结构损伤和功能代谢障碍的 现象称为钙超载。 22.细胞凋亡细胞凋亡是指在体内外因素诱导下,由基因严格调控而发生的自主性细胞有 序死亡。

金属材料学名词解释总

二.名词解释 1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。(常用M来表示) 2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。3)奥氏体形成元素: 在γ-Fe中有较大的溶解度,且能稳定γ相;如Mn, Ni, Co, C, N, Cu;4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。如:V,Nb, Ti 等。 5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr: ε-FexC→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C6 6)离位析出: 在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC和强度提高(二次硬化效应)。如V,Nb, Ti等都属于此类型。 7)液析碳化物:由于碳和合金元素偏析,在局部微小区域内从液态结晶时析出的碳化物。8)网状碳化物:过共析钢在热轧(锻)加工后缓慢冷却过程中由二次碳化物以网状析出于奥氏体晶界所造成的。 9)合金渗碳体:渗碳体内经常固溶有其他元素,在碳钢中,一部分铁为锰所置换;在合金钢中为铬、钨、钼等元素所置换,形成合金渗碳体。 10)二次硬化:淬火钢在较高温度下回火,硬度不降低反而升高的现象称为二次硬化 11)变质处理:就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒。 12)回火稳定性:淬火钢对回火过程中发生的各种软化倾向(如马氏体的分解,碳化物的析出与铁素体的再结晶)的抵抗能力。 13)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。 14)红硬性:指材料在一定温度下保持一定时间后所能保持其硬度的能力。 15)微合金钢:指化学成分规范上明确列入需加入一种或几种碳氮化物形成元素。 16)蠕变极限:在某温度下,在规定时间达到规定变形时所能承受的最大应力。 17)固溶强化:通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。 18)细晶强化:通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化 19)晶间腐蚀:晶界上析出连续网状富铬的Cr23C6引起晶界周围基体产生贫铬区,贫铬区成为微阳极而发生的腐蚀。

(完整版)免疫学名词解释完整版

免疫学名词解释 第一章:免疫学概论 1.免疫防御:防止外界病原体的入侵及清除已入侵病原体及其他有害物质。 2.免疫监视:是机体免疫系统及时识别并清除体内出现的非己成分的一种生理功能。该功能失调会导致肿瘤发生或持续性病毒感染。 3.免疫自身稳定:通过自身免疫耐受或免疫调节两种主要机制来达到免疫系统内环境的稳定。 4.适应性免疫应答的特点:特异性、耐受性、记忆性 第二章:免疫器官和组织 1.免疫系统:是机体执行免疫功能的物质基础,由免疫器官和组织、免疫细胞及免疫分子组成。 2.淋巴细胞归巢:血液中的淋巴细胞选择性趋向迁移并定居于外周免疫器官的特定区域或特定组织的过程。包括淋巴细胞再循环和淋巴细胞向炎症部位迁移。 3.淋巴细胞再循环:是指定居在外周免疫器官的淋巴细胞,由输出淋巴管经淋巴干、胸导管或右淋巴导管进入血液循环;经血液循环到达外周免疫器官后,穿越HEV,重新分布于全身淋巴器官和组织的反复循环过程。 第三章:抗原 1.抗原(Ag):是指能与T细胞、B淋巴细胞的TCR或BCR识别并结合,激活T、B细胞,促使其增殖、分化,产生抗体或致敏淋巴细胞,并与免疫应答效应产物特异性结合,进而发挥适应性免疫效应应答的物质。 2.半抗原:又称不完全抗原,是指仅具有免疫反应性而无免疫原性的小分子物质,当半抗原与应答效应产物结合后即可成为完全抗原,刺激机体产生针对半抗原的特异性抗体。 3.抗原表位:存在于抗原分子中决定抗原特异性的特殊化学基团,又称抗原决定簇,是与TCR、BCR或抗体特异性结合的最小结构和功能单位。 4.异嗜性抗原:一类与种属无关,存在于人、动物及微生物之间的共同抗原。6.独特型抗原:TCR、CER或Ig的V区所具有的独特的氨基酸顺序和空间构型,可诱导自体产生相应的特异性抗体。 7.超抗原:指在极低浓度下即可非特异性激活大量T细胞克隆,产生极强的免疫应答,且不受MHC限制,故称超抗原。 8.佐剂:预先或与抗原同时注入体内,可增强机体对该抗原的免疫应答或改变免疫类型的非特异性免疫增强性物质,称佐剂。 10.完全抗原:同时具有免疫原性和免疫反应性的物质称为完全抗原 11.胸腺依赖性抗原:指刺激B细胞产生抗体需要Th细胞辅助的抗原,简称TD 抗原。 12.胸腺非依赖性抗原:刺激B细胞产生抗体无需Th细胞辅助的抗原,简称TI 抗原。 第四章:免疫球蛋白 1.抗体(Ab):是介导体液免疫的重要效应分子,是B细胞或记忆B细胞接受抗原刺激后增殖分化为浆细胞所产生分泌的一类能与相应抗原特异性结合的、具有免疫功能的球蛋白。 6.单克隆抗体:是由单一杂交瘤细胞所产生的、只作用于单一抗原表位的高度均一的特异性抗体。 7.抗体依赖的细胞介导的细胞毒作用(ADCC):抗体的Fab段结合靶细胞表面的

名词解释 1高化浙大

第五章离子聚合(Ionic Polymerization) 活性聚合(Living Polymerization):当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。化学计量聚合(Stoichiometric calculation Polymerization):阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。 开环聚合(Ring-Opening Polymerization):环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。 第六章配位聚合(Coordination Polymerization) 配位聚合(Coordination Polymerization):单体与引发剂经过配位方式进行的聚合反应。具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。配位聚合又有络合引发聚合或插入聚合之称。 定向聚合(Stereo-regular Polymerization):任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。定向聚合等同于立构规整聚合(Stereo-specific Polymerization)。Ziegler-Natta聚合(Ziegler –Natta Polymerization):采用 Zigler-Natta引发剂的任何单体的聚合或共聚合。 立体异构(Stereo-isomerism):分子中的原子的不同空间排布而产生不

病生名词解释

病生---名词解释 1.健康:健康是一种躯体上、精神上和社会适应上的完好状态。 2.亚健康:亚健康是指非健康、非患病的中间状态。 3.疾病:疾病是在一定病因作用下,机体稳态调节紊乱而导致的异常生命活动过程。 4.脑死亡:脑死亡是指全脑功能(包括大脑、间脑和脑干)不可逆的永久丧失以及机体作 为一个整体功能的永久性停止。 5.脱水(各型):体液容量的明显减少。 低渗性脱水:低血钠性体液容量减少,失钠多于失水,血清钠浓度<130mmol/L,血浆渗透压<280mOsm/L。 高渗性脱水:高血钠性体液容量减少,失水多于失钠,血清钠浓度>150 mmol/L,血浆渗透压>310mOsm/L。 等渗性脱水:水、钠按正常血浆浓度比例丢失引起的血钠性体液容量减少,血钠维持在130-150mmol/L,渗透压浓度280-310mOsm/L。 6.脱水体征:由于细胞外液明显减少时,皮肤弹性丧失、眼窝或婴儿囟门凹陷的脱水外貌 7.脱水热:在高渗性脱水时因汗腺细胞脱水,汗液分泌减少,从皮肤蒸发水分减少,以致 散热功能降低,同时因体温调节中枢神经性细胞脱水,功能减退,导致体温升高。 8.水肿(包括显隐性):过多的液体在组织间隙或体腔中积聚的病理过程。显性水肿:皮 下组织有过多的液体积聚时,皮肤肿胀,弹性差,皱纹变浅,用手指按压时,留有凹陷。 隐形水肿:全身性水肿时,皮下组织液增多,当水肿液不超过原体重的10%时,手指按压不会出现凹陷征。 9.水中毒:是一种因为人体摄取了过量水分而产生脱水低钠症的中毒征状 10.低钾血症:血清钾浓度低于3.5mmol/L,常同时有机体总钾含量缺乏。 高钾血症:血清钾浓度高于5.5mmol/L。 11.代酸:是指原发性HCO3-减少而导致的pH下降,是常见的酸碱平衡紊乱之一。 代碱:是指原发性HCO3-增多而导致的pH升高。 呼酸:是指因原发性PaCO2升高而导致的血液中pH下降。 呼碱:是指因通气过度,使PaCO2原发性升高而导致的血液中pH升高。 12.AG:阴离子间隙,实质血浆中未测定的阴离子与未测定阳离子的差值. 13.氧中毒:机体吸入高压氧,超过一定的压力和时程,引起一系列生理功能的紊乱或导致 的病理现象。 14.反常型酸性尿:低钾血症碱中毒时,由于肾小管上皮细胞内钾离子浓度降低,使排钾减 少而排氢离子增多,尿液呈酸性,故称反常性酸性尿。 15.缺氧(包括四型):乏氧性缺氧(低张性):主要表现为动脉血氧分压降低,外界环境 氧气不足,呼吸功能障碍引起血氧含量减少,组织供氧不足。 血液性缺氧(等张性低氧血症):由于血红蛋白含量减少或性质改变,血氧含量降低,或与血红蛋白结合的氧不易释放而导致的组织缺氧。 循环性缺氧:是指因组织血流量减少使组织供氧量减少所引起的缺氧。 组织性缺氧:是指因组织细胞利用氧的能力减弱而引起的缺氧。 16.发绀:是指血液中脱氧血红蛋白增多使皮肤和粘膜呈青紫色改变的一种表现, 17.肠源性发绀:食用大量含硝酸盐的腌菜偶,硝酸盐经肠道细菌作用还原为亚硝酸盐,大 量吸收入血后,导致高铁血红蛋白症。当血液中HbFe3+OH达到1.5g/dL时,皮肤粘膜可呈咖啡色,称为肠源性发绀。 18.发热:在激活物的作用下,体温调节中枢调定点上移而引起的调节性体温升高,体温超

相关主题
文本预览
相关文档 最新文档