当前位置:文档之家› 建立常规预测模型的一些方法和技巧

建立常规预测模型的一些方法和技巧

建立常规预测模型的一些方法和技巧
建立常规预测模型的一些方法和技巧

DCF、NAV、PE三种估值方法介绍

DCF、NA V、PE三种估值方法介绍 一、DCF(折现现金流模型) 1.DCF分析法的基本原理 DCF分析法认为,产生现金流的资产,包括固定收益产品(债券)、投资项目,及整个公司的价值等于其在未来一定期限内所产生的现金流,按照适合的折现率折现后计算出的现值(pv)。公式如下: pv = cf1/(1+k) + cf2/(1+k)2 + …[tcf /(k - g)]/ (1+k)n-1 其中:pv:现值cfi:现金流k:贴现率 tcf:现金流终值 g:永续增长率预测值 n:折现年限 在对股票估值时,分析师们通常使用自由现金流作为估值模型中的现金流。自由现金流一般是用经营性现金流减去资本支出后得到的。得出现值后再除以总股本既得出每股价值。有时,分析师们还会用调整过的自由现金流先计算出公司所有利益相关人(包括债权人和股权人)拥有的资产现值,然后再减去债权人拥有的资产现值,就得到股票资产的现值,既股价的合理价值。 2.自由现金流 定义:自由现金流是一种财务方法,用来衡量企业实际持有的能够回报股东的现金。指在不危及公司生存与发展的前提下可供分配给股东(和债权人)的最大现金额。 计算:自由现金流量=经营活动产生的现金流量净额–资本性支出=经营活动产生的现金流量净额–(购建固定、无形和其他长期资产所支付的现金–处置固定、无形和其他长期资产而收回的现金净额) 资本性支出:用于购买固定资产(土地、厂房、设备)的投资、无形资产的投资和长期股权投资等产能扩张、制程改善等具长期效益的现金支出。

自由现金流的的经济意义:企业全部运营活动的现金“净产出”就形成“自由现金流”,“自由现金流”的多寡一定程度上决定一家企业的生死存亡。一家企业长期不能产出“自由现金流”,它最终将耗尽出资人提供的所有原始资本,并将走向破产。 ①“自由现金流”充裕时,企业可以用“自由现金流”偿付利息还本、分配股利或回购股票等等。 ②“自由现金流”为负时,企业连利息费用都赚不回来,而只能动用尚未投入经营(含投资)活动的、剩余的出资人(股东、债权人)提供的原始资本(假定也没有以前年度“自由现金流”剩余)来偿付利息、还本、分配股利或进行股票回购等等。 ③当剩余的出资提供的原始资本不足以偿付利息、还本、分配股利时,企业就只能靠“拆东墙补西墙”(借新债还旧债,或进行权益性再融资)来维持企业运转。当无“东墙”可拆时,企业资金链断裂,其最终结果只能寻求被购并重组或申请破产。 3.DCF适用范围 DCF 是一套很严谨的估值方法,是一种绝对定价方法,想得出准确的DCF 值,需要对公司未来发展情况有清晰的了解。得出DCF 值的过程就是判断公司未来发展的过程。所以DCF 估值的过程也很重要。就准确判断企业的未来发展来说,判断成熟稳定的公司相对容易一些,处于扩张期的企业未来发展的不确定性较大,准确判断较为困难。再加上DCF 值本身对参数的变动很敏感,使DCF 值的可变性很大。但在得出DCF 值的过程中,会反映研究员对企业未来发展的判断,并在此基础上假设。有了DCF 的估值过程和结果,以后如果假设有变动,即可通过修改参数得到新的估值。 4.DCF模型的优缺点 优点:比其他常用的建议评价模型涵盖更完整的评价模型,框架最严谨但相对较复杂的评价模型。需要的信息量更多,角度更全面,考虑公司发展的长期性。较为详细,预测时间较长,而且考虑较多的变数,如获利成长、资金成本等,能够提供适当思考的模型。

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

数学建模知识及常用方法

数学建模知识——之新手上路 一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。二、建立数学模型的方法和步骤 1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。例题:一个笼子里装有鸡和兔若干只,已知它们共有 8 个头和 22 只脚,问该笼子中有多少只鸡和多少只兔?解:设笼中有鸡 x 只,有兔 y 只,由已知条件有 x+y=8 2x+4y=22 求解如上二元方程后,得解 x=5,y=3,即该笼子中有鸡 5 只,有兔 3 只。将此结果代入原题进行验证可知所求结果正确。根据例题可以得出如下的数学建模步骤: 1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外) 2)用字母表示要求的未知量 3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有 2 只脚,兔有 4 只脚) 4)求出数学式子的解答 5)验证所得结果的正确性这就是数学建模的一般步骤三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分: 1. 实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个

三维预测模型的建立

三维预测模型的建立 三维预测相对于传统的矿产预测最大的进步是二维平面预测扩展到了三维空间,使研究区形态更生动形象。在创建三维预测模型之前,必须先建立三维矿床模型( 即数字矿床) ,再根据成矿有利信息分析将有利预测变量提取出来,最终形成三维预测模型。 2. 1 数字矿床的建立 数字矿床为矿床的信息模型,即一个以地理坐标为依据的、数字化的、三维显示的虚拟矿床,其核心思想是用数字化的手段整体地解决矿床及其与空间位置相关的信息的表达与知识管理。数字矿床的建立是三维定位和定量研究的重要基础。本次研究应用目前主流地质三维建模分析软件micromine,对个旧松树脚研究区地层、岩体、已知矿体、化探异常等进行三维实体建模,从而实现数字矿床的建立。数字矿床有地质体模型和工程模型。地质体模型包括地表、岩体、地层、构造、已知矿体实体模型。将收集到的等高线文件插值加密并导入micromine软件中,生成研究区地表模型,并与范围实体模型相叠加生成地表实体模型; 将收集到的岩体等深线图以同样方法生成岩体实体模型。地层实体模型与构造实体模型都是通过对勘探线剖面图进行处理,即以中段平面图为基准面,将剖面线以实际坐标投到中段平面上,再根据相应地层界线或断裂界线进行线框连接成体,得到地层实体模型及构造实体模型。同样,矿体模型是根据各剖面图上矿体面进行线框连接,本次研究区内都为层间氧化矿,因此采用平推渐灭方法生成矿体实体模型。工程模型包括钻孔模型与巷道模型。钻孔数据是钻探工程所取得的地下地质体样品的数据,是进行勘探线剖面解译各种地质现象推理和资源储量估算的重要依据。本次研究将收集到的钻孔资料按照孔口坐标表、测斜数据表、岩性分析表、样品分析表的格式进行整理后,导入micromine软件中形成钻孔数据库。通过Surpac 中数据库功能将钻孔显示出来,形成钻孔模型。

模型制作方法

动画精度模型制作与探究 Animation precision model manufacture and inquisition 前言 写作目的:三维动画的制作,首要是制作模型,模型的制作会直接影响到整个动画的最终效果。可以看出精度模型与动画的现状是随着电脑技术的不断发展而不断提高。动画模型走精度化只是时间问题,故精度模型需要研究和探索。 现实意义:动画需要精度模型,它会让动画画面更唯美和华丽。游戏需要精度模型,它会让角色更富个性和激情。广告需要精度模型,它会让物体更真实和吸引。场景需要精度模型,它会让空间更加开阔和雄伟。 研究问题的认识:做好精度模型并不是草草的用基础的初等模型进行加工和细化,对肌肉骨骼,纹理肌理,头发毛发,道具机械等的制作更是需要研究。在制作中对于层、蒙版和空间等概念的理解和深化,及模型拓扑知识与解剖学的链接。模型做的精,做的细,做的和理,还要做的艺术化。所以精度模型的制作与研究是很必要的。 论文的中心论点:对三维动画中精度模型的制作流程,操作方法,实践技巧,概念认知等方向进行论述。 本论 序言:本设计主要应用软件为Zbrsuh4.0。其中人物设计和故事背景都是以全面的讲述日本卡通人设的矩阵组合概念。从模型的基础模型包括整体无分隔方体建模法,Z球浮球及传统Z球建模法(对称模型制作。非对称模型制作),分肢体组合建模法(奇美拉,合成兽),shadow box 建模和机械建模探索。道具模型制作,纹理贴图制作,多次用到ZBURSH的插件,层概念,及笔刷运用技巧。目录: 1 角色构想与场景创作 一初步设计:角色特色,形态,衣装,个性矩阵取样及构想角色的背景 二角色愿望与欲望。材料采集。部件及相关资料收集 三整体构图和各种种类基本创作 2 基本模型拓扑探究和大体模型建制 3 精度模型大致建模方法 一整体无分隔方体建模法 二Z球浮球及传统Z球建模法(对称模型制作。非对称模型制作) 三分肢体组合建模法(奇美拉,合成兽) 四shadow box 建模探索和机械建模 4 制作过程体会与经验:精度细节表现和笔刷研究 5 解剖学,雕塑在数码建模的应用和体现(质量感。重量感。风感。飘逸感)

数学建模分数预测论文完整版

高考录取分数预测模型 姓名: 班级: 姓名: 班级: 姓名: 班级:

关于高考录取分数预测模型的探究 摘要 本文通过差分指数平滑法和自适应过滤法分别建立模型,根据历年学校录取线预测下一年的录取分数线。最后,根据预测出来的最佳数据,给2014年报考本校的考生做出合理的建议。 对于问题一和问题二,首先根据题意和所给出的学校历年的录取分数线,不难分析出高校的录取分数线是由当年的题目难度、考生报考数量、“大年”和“小年”等因素决定的。每年的分数线还是有一定差距的,例如,本校2012在北京市电气专业的录取线是428分,而2013年是488分,相差60分。因此,预测的时候,需要通过一些方法使数据趋于平滑,使之便于预测。通过这些分析,建立了两种可靠的预测模型。 模型一通过差分的方法,利用Matlab软件将后一年Y t与前一年Y t-1的数据相减得到一个差分值,构成一个新序列。将新序列的值与实际值依次迭加,作为下一期的预测值。以此类推,预测出2014年的录取分数线。模型二是根据一组给定的权数w对历年的数据进行加权平均计算一个预测值y,然后根据预测误差调整权数以减少误差,这样反复进行直至找到一组最佳权数,使误差减小到最低限度,再利用最佳权数进行加权平均预测。这两种方法很好的解决了历年录取分数相差较大难以预测的问题。预测值相对准确。预测结果数据量较大,在此以河北省为例,给出预测结果模型一:2014年本校电气专业录取线为495,模型二:2014年本校电气专业录取线为536。 最后,通过预测出的数据,比对模型一和模型二,取最佳预测值,给报考科技学院的考生做出较为合理的建议。 关键词:序列权数差分值加权平均高考录取线

公司估值方法有几种

公司估值方法有几种?最常用的是那几种? 绝对估值法(折现方法) 1.DDM模型(Dividend discount model /股利折现模型) 2.DCF /Discount Cash Flow /折现现金流模型) (1)FCFE (Free cash flow for the equity equity /股权自由现金流模型)模型 (2)FCFF模型(Free cash flow for the firm firm /公司自由现金流模型) DDM模型 V代表普通股的内在价值,Dt为普通股第t期支付的股息或红利,r为贴现率 对股息增长率的不同假定,股息贴现模型可以分为 :零增长模型、不变增长模型(高顿增长模型)、二阶段股利增长模型(H模型)、三阶段股利增长模型和多元增长模型等形式。 最为基础的模型;红利折现是内在价值最严格的定义;DCF法大量借鉴了DDM的一些逻辑和计算方法(基于同样的假设/相同的限制)。 1. DDM DDM模型模型法(Dividend discount model / Dividend discount model / 股利折现模型股利折现模型) DDM模型 2. DDM DDM模型的适用分红多且稳定的公司,非周期性行业; 3. DDM DDM模型的不适用分红很少或者不稳定公司,周期性行业; DDM模型在大陆基本不适用; 大陆股市的行业结构及上市公司资金饥渴决定,分红比例不高,分红的比例与数量不具有稳定性,难以对股利增长率做出预测。 DCF 模型 2.DCF /Discount Cash Flow /折现现金流模型)DCF估值法为最严谨的对企业和股票估值的方法,原则上该模型适用于任何类型的公司。 自由现金流替代股利,更科学、不易受人为影响。 当全部股权自由现金流用于股息支付时,FCFE模型与DDM模型并无区别;但总体而言,股息不等同于股权自由现金流,时高时低,原因有四: 稳定性要求(不确定未来是否有能力支付高股息); 未来投资的需要(预计未来资本支出/融资的不便与昂贵); 税收因素(累进制的个人所得税较高时); 信号特征(股息上升/前景看好;股息下降/前景看淡) DCF模型的优缺点 优点:比其他常用的建议评价模型涵盖更完整的评价模型,框架最严谨但相对较复杂的评价模型。需要的信息量更多,角度更全面, 考虑公司发展的长期性。较为详细,预测时间较长,而且考虑较多的变数,如获利成长、资金成本等,能够提供适当思考的模型。 缺点:需要耗费较长的时间,须对公司的营运情形与产业特性有深入的了解。考量公司的未来获利、成长与风险的完整评价模型,但是其数据估算具有高度的主观性与不确定性。复杂的模型,可能因数据估算不易而无法采用,即使勉强进行估算,错误的数据套入完美的模型中,也无法得到正确的结果。小变化在输入上可能导致大变化在公司的价值上。该模型的准确性受输入值的影响很大(可作敏感性分析补救)。 FCFE /FCFF模型区别 股权自由现金流(Free cash flow for the equity equity ): 企业产生的、在满足了再投资需求之后剩余的、不影响公司持续发展前提下的、可供股东股

深度剖析人物角色模型设计方法

深度剖析人物角色模型设计方法 前言 人物角色模型,在20实际90年代,是可用性研究提出来的概念和方法,特别是在外企中尤其适用的较多。 好的人物角色模型,可以让每个人感到满意,他为团队、为公司提供一个有效、易于理解的方式,来描述用户需求,让受众在讨论中有共同语言。有了人物角色,就可以避免团队站在自己的立场去描诉需求,让我们从多维度来描述需求,在评估需求方案时,更有说服力。 今天主要分为四个部分来讲: 1、人物角色模型的创建 2、人物角色模型包含内容 3、定性、定量人物角色模型 4、人物角色模型与敏捷开发 一个交互设计师,在拿到需求时,应该通过以下6步开启设计: 本次我们着重讲解的是“调研归纳”。人物角色,就是属于这个部分。

在调研归纳中,我们有很多方法,比如用户观察、用户访谈、问卷调研、焦点小组等等,这些方法通过碎片化阅读都可以了解很多。人物角色能够被创建出来,被团队、客户所接受,并且投入到使用中,很重要的前提,就是整个团队都要非常认可以用户为中心的设计。 人物角色模型被创建出来后,能否真正发挥其价值,也是要看团队能否形成这样一个UED的流程,是否愿意把其运用到设计的方方面面。 以用户为中心的设计 以用户为中心的产品设计,强调的是通过场景去分析用户的行为,进而产生目标导向性设计。在对用户群进行分析的时候,都会将用户群按照一定的角色进行细分,有的时候是为了在不同的产品阶段考虑不同角色用户的需求,而更多时候,则是为了找准主流用户的需求。 我们设计当中的每一个流程,都是以围绕用户为中心而进行。 使用人物角色目的

1、带来专注 人物角色的第一信条是“不可能建立一个适合所有人的网站”。成功的商业模式通常只针对特定的群体。一个团队再怎么强势,资源终究是有限的,要保证好钢用在刀刃上~ 之前我所在的团队,进行设计一款旅游产品时,我们的产品经理认为产品应该为公司的战略方向,以中老年群体为目标用户来推这个产品。然而通过用户调研后,发现目前线上产品的用户,分为另外四类,中老年群体比较少。最后,我们UE D部门内部,创建了四个人物角色模型,通过这个人物角色模型和产品沟通,和产品达成一致想法,以目前真实的用户群体来确认需求。 2、引起共鸣 感同身受,是产品设计的秘诀之一 3、促成意见统一 帮助团队内部确立适当地期望值和目标,一起去创造一个精确的共享版本。人物角色帮助大家心往一处想,力往一处使,用理解代替无意义的PK~ 4、创造效率 让每个人都优先考虑有关目标用户和功能的问题。确保从开始就是正确的,因为没有什么比无需求的产品更浪费资源和打击士气了。 5、带来更好的决策 与传统的市场细分不同,人物角色关注的是用户的目标、行为和观点。 人物角色模型创建 1、了解用户:这也是做互联网任何一个产品需要做到的第一步;

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模常用模型方法总结

数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分 析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测 模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

股权估值模型及其比较研究

股权估值其主要目的在于通过估值模型确定股权的内在价值。股权估值模型以包含的不同的估值变量进行划分。具体而言,投资者之所以想购买一项股权(股票),并非想拥有该股权本身,而是因为他期望该项股权能够为他在未来带来一系列经济利益。对股权估值变量的不同选择,构成了估值理论中最基本的三个模型:红利贴现估值模型、贴现现金流量估值模型以及剩余收入估值模型。 一、三种基本的股权估值模型 1.红利贴现模型(DDM) 红利贴现模型又叫Gordon(1962)模型,其核心观点认为:预期分得的现金股利构成股票价值的源泉,股票的内在价值等于估值时点之后无限多次股利收益流量之现值。红利是该模型惟一的估值变量,只有分得的现金红利才是投资者可以直接支配的经济利益,红利模型非常符合股权估值的直观逻辑,所以很自然地成为最传统的估值模型,其实早在Gordon之前就已经被广为使用。然而,MM(1961)提出的“股利无关论”大大动摇了该模型的理论基础,而且在应用中的许多实际问题使得单纯使用现金红利作为估值变量无法完成估值任务。例如,许多股票并没有稳定连续的红利政策。从微软很少发放红利,便可发现,在实践中运用红利贴现模型是十分不明智的。红利贴现模型与价值分配有关,与价值创造无关,提示我们似乎更应该转而从企业内部价值创造的角度来考虑估值问题。下面两种估值模型都是包含与价值增加相关的估值变量的模型。 2.贴现现金流量模型(DCF) 另一种传统的估值模型是贴现现金流量模型(DCF),因为符合财务学的正统计价观点,即现金流量是企业价值 的基础,因而也被公认为是概念上最为正确的估值模型。股权估值模型及其比较研究 DCF模型有以下几种形式(见表1): 表1 DCF模型的形式 还有一种调整净现值模型,核心观点是 :有负债企业的债权价值加上股权价值等于无负债企业的股权价值加上由于利息支出而产生的税收节省的现值(即税庇的价值)。通过数学变换可以很容易地证明,如果使用正确,不管是单期间还是多期间,不管现金流的时间结构如何,负债比率固定还是可变,上述4种方法将得出相同的企业价值。 DCF模型属于多估值变量模型。因为自由现金流等于营运现金流减去现金投资,而营运现金流又需要通过调整会计盈余和一系列应计项目获得。预测各种形式的现金流量是一件极为复杂的任务,许多实践者不得不直接使用会计盈余来代替自由现金流计算企业持续经营的价值。因为在自由现金流量估值模型中,营运现金流的增长当然是增加了企业的价值,但只要现金投资能够产生正的净现 值,就同样也是企业价值的增加因素。然而,在模型中,投资却减少了自由现金流的数量。当企业为了增加价值而进行投资时,自由现金流却减少了,从这个角度看,现金投资反倒成了减少企业价值的因素。如果企业产生负的自由现金流,并不说明企业没有给股东创造价值,事实也许 正相反。 会计盈余实际上是对企业净现金流量按权责发生制程序处理后的产物,可以一定程度地克服DCF模型的这一缺陷。由此,DCF模型涉及的主要估值变量除了营 田 辉 文 内容提要: 股权估值方法是建立在预期基础上的。由于关键估值变量的不同选择,产生了三种基本的股权估值模型:红利贴现模型、贴现现金流量模型和剩余收入模型。本文对三个基本模型进行了理论和实证的分析、综述,研究了基本模型之间的关系,比较了基本模型及其引申模型之间的优劣。 理论与技术方法研讨

数学建模方法模型

数学建模方法模型 一、统计学方法 1 多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候用到。具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1) 回归方程的显著性检验(可以通过 sas 和 spss 来解决) (2) 回归系数的显著性检验(可以通过 sas 和 spss 来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等)

2 聚类分析 1、方法概述 该方法说的通俗一点就是,将 n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取 m 聚类中心,通过研究各样本和各个聚类中心的距离 Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas 软件或者 spss 软件来做聚类分析,就可以得到相应的动态聚类图。这种模型的的特点是直观,容易理解。 2、分类 聚类有两种类型: (1) Q型聚类:即对样本聚类; (2) R型聚类:即对变量聚类; 通常聚类中衡量标准的选取有两种: (1) 相似系数法 (2) 距离法 聚类方法: (1) 最短距离法 (2) 最长距离法 (3) 中间距离法 (4) 重心法 (5) 类平均法 (6) 可变类平均法 (7) 可变法

MATLAB模型预测控制工具箱函数

M A T L A B模型预测控制 工具箱函数 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

M A T L A B模型预测控制工具箱函数 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型; ⑤MPC传递函数模型。

在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod= ss2mod(A,B,C,D) pmod= ss2mod(A,B,C,D,minfo) pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下:

估值的基本方法

估值的基本方法 来源:中国上市公司调研网作者:hjcheung 概述 一般而言,估值的基本方法可以分为以下三种: ?现金流量折现法(DCF); ?相对价值法; ?期权估值法。 在介绍基本的估值方法之前,首先必须明确一个概念:什么是企业价值? 从投资者的角度来看,根据资本市场信息或企业内部信息,对企业未来的现金流量,用反映企业未来现金流量风险的折现率进行折现所做的综合判断,就称为企业的价值。企业价值不是用一个复杂的数学模型算出来的,算出来的只能是一种判断,随着在资本市场上,大家都提供一种判断,综合起来就大致确定出企业证券的价值,它是个波动的概念。因此,企业价值的构成要素有两个:企业未来的现金流量以及反映企业未来现金流量风险的折现率。 决定市场价值的要素: 第一,要看投资者,即追求投资回报最大化的机构和个人; 第二,必须要有一个现代企业,也就是说,在市场经济社会中,企业必须是投资者实现投资回报的社会组织和载体; 第三,就是看企业未来现金流量的折现值; 第四,是基于企业内部的各种信息和资本市场信息而做出的综合判断。 基于不同的模型,现金流量有不同的定义。但无论用何种模型对企业进行估值,一方面要看生产经营:研发、采购、制造、营销等等。另一方面要看资本经营,怎样把债务和权益结合起来,提高企业的获利能力?这就要用生产经营得到的利润,除以整个投资资本,得到投资资本回报率(ROIC),然后减去加权平均资本成本(WACC)。因此,在估值时,既要考虑到生产经营成本,又要考虑到资本经营成本。综合起来,对于企业的价值,最后就形成一个判断。 在进行价值评估时,国内企业存在一个误区。国内企业常常用很多陈旧的会计方法来进行资产评估,其实这并不妥当。因为,对企业价值的评估,要用未来现金流量的折现来判断。假如现在向投资者介绍一个投资机会:某企业有一套全新的生产线设备,生产20英寸黑白晶体管电视,

时间序列模型的建立与预测

第六节时间序列模型的建立与预测 ARIMA过程y t用 Φ (L) (Δd y t)= α+Θ(L) u t 表示,其中Φ (L)和Θ (L)分别是p, q阶的以L为变数的多项式,它们的根都在单位圆之外。α为Δd y t过程的漂移项,Δd y t表示对y t 进行d次差分之后可以表达为一个平稳的可逆的ARMA 过程。这是随机过程的一般表达式。它既包括了AR,MA 和ARMA过程,也包括了单整的AR,MA和ARMA过程。 可取 图建立时间序列模型程序图 建立时间序列模型通常包括三个步骤。(1)模型的识别,(2)模型参数的估计,(3)诊断与检验。

模型的识别就是通过对相关图的分析,初步确定适合于给定样本的ARIMA模型形式,即确定d, p, q的取值。 模型参数估计就是待初步确定模型形式后对模型参数进行估计。样本容量应该50以上。 诊断与检验就是以样本为基础检验拟合的模型,以求发现某些不妥之处。如果模型的某些参数估计值不能通过显著性检验,或者残差序列不能近似为一个白噪声过程,应返回第一步再次对模型进行识别。如果上述两个问题都不存在,就可接受所建立的模型。建摸过程用上图表示。下面对建摸过程做详细论述。 1、模型的识别 模型的识别主要依赖于对相关图与偏相关图的分析。在对经济时间序列进行分析之前,首先应对样本数据取对数,目的是消除数据中可能存在的异方差,然后分析其相关图。 识别的第1步是判断随机过程是否平稳。由前面知识可知,如果一个随机过程是平稳的,其特征方程的根都应在单位圆之外;如果 (L) = 0的根接近单位圆,自相关函数将衰减的很慢。所以在分析相关图时,如果发现其衰减很慢,即可认为该时间序列是非平稳的。这时应对该时间序列进行差分,同时分析差分序列的相关图以判断差分序列的平稳性,直至得到一个平稳的序列。对于经济时间序列,差分次数d通常只取0,1或2。 实际中也要防止过度差分。一般来说平稳序列差分得到的仍然是平稳序列,但当差分次数过多时存在两个缺点,(1)序列的样本容量减小;(2)方差变大;所以建模过程中要防止差分过度。对于一个序列,差分后若数据的极差变大,说明差分过度。 第2步是在平稳时间序列基础上识别ARMA模型阶数p, q。表1给出了不同ARMA模型的自相关函数和偏自相关函数。当然一个过程的自相关函数和偏自相关函数通常是未知的。用样本得到的只是估计的自相关函数和偏自相关函数,即相关图和偏相关图。建立ARMA模型,时间序列的相关图与偏相关图可为识别模型参数p, q提供信息。相关图和偏相关图(估计的自相关系数和偏自相关系数)通常比真实的自相关系数和偏自相关系数的方差要大,并表现为更高的自相关。实际中相关图,偏相关图的特征不会像自相关函数与偏自相关函数那样“规范”,所以应该善于从相关图,偏相关图中识别出模型的真实参数p, q。另外,估计的模型形式不是唯一的,所以在模型识别阶段应多选择几种模型形式,以供进一步选择。

相关主题
文本预览
相关文档 最新文档