当前位置:文档之家› 氦氖激光器调节

氦氖激光器调节

氦氖激光器调节
氦氖激光器调节

本科学生综合性实验报告

学号:姓名:

学院:专业、班级:

实验课程名称:激光原理课程实验

教师:周海春

开课学期:2015 至2016 学年第一学期填报时间:2015 年 6 月15 日

云南师范大学教务处编印

氦氖激光器调节

一、实验目的:

1、掌握氦氖激光器出光原理

2、掌握氦氖激光器谐振腔的调节方法

二、实验仪器:

氦氖激光器,调节板,谐振腔反射镜,半内腔氦氖激光器,台灯(或其它光源,请用户自备)

三、实验原理:

在激光器内充有一定比例的氦气和氖气。封上以后,谐振腔A 被严格的固定在激光管管子上,谐振腔B 在管子外部,可以延光轴前后移动。当在激光器正、负极加直流高压时(一般3KV 以上),氖离子发生粒子数反转。当氖离子从高能级降到低能级时,将放出一束光。这两个谐振腔的反射镜一个反射率接近100%,即完全反射。另一个反射率约为98%。这束光被两个谐振腔进行多次反射后,经镀有反射率约为98%膜的一端射出,即为激光。

四、操作步骤

(一)十字光靶法(自准直法)

1、将半内腔氦氖激光器、谐振腔反射镜和调节板放到导轨上,如图3 所示。

(图3)

2、将半内腔氦氖激光器与激光器电源接好(注意:红色与红色相接,黑色与黑

色相接,切勿接反),打开电源,激光管发出橙红色的光。

3、将调节板有十字叉丝面对准激光器,并用光源(如用台灯)照亮十字线,在十字叉丝中间有一小孔,眼睛通过小孔,看到激光管的毛细管另一端,调节激光器调整架六个旋钮,被谐振腔A 反射到眼睛中的一个“小白点”(即眼睛、小孔、毛细管在一条直线上),如图4所示。

4、观察被谐振腔B 反射回的调节板的十字叉丝像的位置,此时的十字叉丝像可能在图5 的某一位置,调节谐振腔B 架后的两个螺丝,使十字叉丝完全落在小孔的正中间,见图6。这说明谐振腔反射镜与激光管管内的毛细管完全垂直,此时,应马上有激光射出。若谐振腔与毛细管光轴调节的范围大于λ/4 就不出激光,还需继续调节谐振腔的两个螺丝,直到谐振腔与毛细管光轴调节范围小于λ/4,

激光才能出来。

注意:在调节叉丝位置的时候,不能用眼睛一直观察,以免激光突然出射打伤眼睛。一定要先观察叉丝的位置,然后把眼睛离开小孔,在根据偏移方向进行调节。重复以上步骤,直至出光为止。

(二)激光准直法

1、将各元件按照图7 顺序摆放到导轨上。

(图7)

2、取下半内腔氦氖激光器与谐振腔反射镜。将氦氖激光器点亮,利用调节板的小孔调整氦氖激光器出光方向,直至激光器出光方向与导轨平行。

3、将半内腔氦氖激光器按照图7 所示放到导轨上(此时不放谐振腔反射镜),仔细调节调整架的6 个手钮,直至激光光束穿过半内腔氦氖激光器毛细管,并且后反射镜反射回的激光光点打到小孔中心位置。

4、打开半内腔氦氖激光器电源,放入谐振腔反射镜,将谐振腔反射镜反射激光光点打到调节板小孔中心位置,这时应该有激光发出。如果没有激光出射,可以微调谐振腔反射镜上两个手钮,直至出光为止。

(3)跟踪法:

此方法适用于垂直度失调,但失调度不大,有激光输出的情况。激光器虽然有激光输出,但功率并不高,再分别调节反射镜时,功率也不升高,达不到原功率指标。这是因为两个反射镜的平行度虽然已调好,但垂直度仍有很小的失调,此时虽有激光输出,但功率低,如图7。

图(8)

在调节反射镜时,无论调到哪一端,都会使功率下降。因为只要调节,首先破坏了两反射镜的平行度,则功率就会下降,仅调一端反射镜解决不了反射镜与毛细管轴的垂直度问题。

在此状态下,观察输出光斑图样,其图样不呈圆形,又不均匀,也不对称。

在上述情况,激光器的垂直度失调不大时,很难判断其失调的方位。由于有激光输出,可以用功率计监视调节。首先调节激光器尾端的一个旋钮,顺时针方

向旋转一个小角度,有意破坏其平行度,同时观察激光功率,使输出功率下降到原来调时功率值的1/4。然后再调节激光器前端所对应的那个旋钮,如果后端调节的是反射镜绕X轴转动的那个旋钮,则前端也应调节反射镜绕X轴转动的那个旋钮。实际是用前端镜片跟踪后端的镜片,来恢复两镜片的平行度。此时观察输出的功率值,如功率比原功率低,说明垂直度更差了,应改为逆时针旋动后端旋钮,前端再跟踪调节。如功率呈上升趋势,则继续跟踪调节,直至垂直度最佳,而平行度不被破坏,使功率达到最大值。用同样的方法调节另外的那对旋钮,使功率上升到最高值。要获得最佳的垂直度,需要用该方法对两组旋钮反复进行调整,最后达到激光功率最大。此时光斑图样也达到最佳,光强呈高斯型分布。

四、实验内容

1.开启激光器电源,使毛细管中的气体点燃,如谐振腔是正常状态,则有激光输出。

2.调节一端的反射镜旋钮,使之失调,即两个反射镜的平行度遭到破坏,则光不能在介质中来回反射放大,不能产生激光。

3.采用自准直(十字光靶法)调光实验。

4.继续调节,氦氖激光器的输出功率最大。

5.本次试验最终调节结果如下图

氦氖激光器的调腔实验

氦氖激光器的调腔实验 (北京师范大学物理系) 摘要:本实验分别通过准直法和十字叉丝法来调节谐振腔两端腔镜的位置,使得两个腔镜平行且和毛细管垂直,发射激光,并通过统调法获得最强激光。 理论: 激光器由激励电流、增益介质和谐振腔组成,如图1。对He-Ne激光器而言增益介质就是在两端封有布儒斯特窗的毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。 介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。由于介质的增益具有饱和特性,增益随激光强度增加而减小。初始建立激光振荡时增益大于损耗,随着激光的增强而增益逐渐减小直到增益等于损耗时才有持续稳定的振荡。 图1 激光器原理图 实验内容: 1.清洗镜头 在清洗镜头时候可以通过腔镜的具体情况选择合适的清洗方法,首先应用洗耳球吹去镜头上的灰尘等颗粒物,对于软膜我们采用拖曳的方法,首先将镜头放置在水平的桌面上,取一张镜头纸并将光滑一面放置在镜头上,并且在此之前确保不会用手去接触光滑面,在擦镜纸上接触镜头的部位滴一到两滴丙酮试剂,轻轻拖曳擦镜纸的一端直到整张擦镜纸擦过镜头。

图2 软膜清洗法 对于硬膜,洗耳球吹去镜头上的灰尘等颗粒物之后,将镜头着对折,如图,用止血钳夹住擦镜纸,露出一段,在露出一端上滴一到两滴丙酮,轻甩之后擦 拭镜头,擦拭的过程保证擦拭方向永远朝着一个方向,不来回擦拭。 图3 硬膜清洗法 2.准直法调腔 用具:He-Ne激光器、准直激光器、贴有白纸的立板。 步骤: (1)通过上述方法清洗完镜头和布儒斯特窗后,打开准直激光器; (2)首先调节准直激光器的上下高度和俯仰角度,使得准直激光器打出来的光与毛细管的中心在同一水平线上; (3)将准直激光器固定在谐振腔一端的前段,将激光穿透整个毛细管,此时可以调节准直激光器的横向位移和左右偏移动,直到穿透的光打在对面的白 纸上呈现同心圆环状; (4)装上阴极反射镜,调整反射镜的左右偏转和俯仰,使反射回的激光与出来的激光重合出现在准直激光器镜头上的正中心; (5)装上阳极反射镜,调整反射镜的左右偏转和俯仰,使反射回的激光出现规则的明暗变化;

专业实验 实验四 氦氖多谱线激光器实验讲义

多谱线氦氖激光器 实验 实验讲义 大恒新纪元科技股份有限公司 版权所有不得翻印 多谱线氦氖激光器

在增益管长为1m的外腔式He-Ne激光器中,用腔内插入色散棱镜选择谱线的方法,在可见光区分别使氖原子的九条谱线产生激光振荡。实验要求掌握He-Ne多谱线激光线器的工作原理及腔型结构的特点;学习外腔式激光器及腔内带棱镜激光器的调节方法;测量各条激光谱线的波长;找出各条谱线的最佳放电电流及测量最大输出功率。 一、实验原理 一台激光器除激励电流外主要由两部分组成,一是增益介质;二是谐振腔。对He-Ne激光器而言增益介质就是在两端封有布儒斯特窗的毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。由于介质的增益具有饱和特性,增益随激光强度增加而减小。初始建立激光振荡时增益大于损耗,随着激光的增强而增益逐渐减小直到增益等于损耗时才有持续稳定的振荡。稳定振荡时的增益叫阈值增益,初始的增益叫小信号增益。小信号增益与阈值增益之差越大,腔内的激光强度越强,对小信号增益很低的激光谱线是否能获得激光振荡,关键在于谐振腔的损耗能降低到什么程度。 1、在可见光区激光谱线的小信号增益系数 在氦氖混合气体的增益管中氖原子的3S2能级对2P i(2P i是2P1,2P2,…,2P8,2P10九个能级的简称,3S2-2P9的跃迁是违禁的)九个能级之间能够产生粒子数反转,使介质具有增益,九条谱线的小信号增益系数G0如表1所示。 测量时各谱线的放电电流值不相同;表中相对增益系数是用用光谱相对强度研究氦氖放电管的增益特性的装置测得的,各谱线的放电电流相同。 表1 He-Ne 3S2-2P i谱线的小信号增益系数

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某 种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于 自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被 增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一 周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模 序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2/121,)1)(1(arccos )(12''R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ??????????????--?=?=?=?+?2/12111)1)(1(arccos 1'R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫 描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜 构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦 腔)。其中一块反射镜固定不动,另一块反射镜固定在可随 外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀 系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2 总处于共焦状态。 当一束波长为λ的光近轴入射到 干涉仪内时,在忽略球差的条件 下,在共焦腔中经四次反射形成 一条闭合路径,光程近似为4l , 如右图所示 编号为1和1’ 的两组透光强分别为: 1222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2 /121,)1)(1(arccos )(12' 'R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ? ?????????????--?=?=?=?+?2 /12111)1)(1(arccos 1' R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长 与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦腔)。其中一块反射镜固定不动,另一块反射镜固定在可随外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2总处于共焦状态。 当一束波长为λ的光近轴入射到干涉仪内时,在忽略球差的条件下,在共焦腔中经四次反射形成一条闭合路径,光程近似为4l ,如右图所示 编号为1和1’ 的两组透光强分别为: 1 222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即 λπβ/22?=ul

外腔用半导体激光管基本原理及应用

外腔用半导体激光器基本原理及应用 1. 外腔用半导体激光器的概念 早期普通FP腔结构的半导体激光管腔长一般在800μm—1500μm, 后反射面的反射率接近全反射,出射端面的反射率一般在百分之几十以内。由于谐振腔的精细度不够高,而自由光谱范围又很宽,造成普通FP腔半导体激光器的线宽比较宽,甚至会出现多模运转,所以通常不能直接用在原子分子精密光谱,光频标,冷原子操控,原子干涉仪等研究领域。后续出现了DFB/DBR等激光器,因为内置光栅的原因,线宽得到了一定的压窄,可以达到2MHz甚至更小,基本可以应用到上述领域中。但随着对研究精度的提高,MHz级别的线宽已经不能满足更高要求的实验需求了,于是通过在激光管外再增加一些光反馈元件,使得激光管的后反射面和光反馈元件之间形成一个外腔,这样的激光器称为外腔半导体激光器(ECDL)。由于外腔对激光器的模式选择作用,可以大幅度压窄半导体激光器的线宽到KHz级别,同时通过外腔光学元件的调谐作用,使得激光波长可以精确调谐。由于外腔半导体激光器具有易于调谐、谱线宽度窄、维护简单等特点,成为精密光谱研究中一个重要的工具。当然外腔用半导体激光器也有结构稳定性和紧凑度不如DFB激光器的情况,但更窄的线宽以及更高的功率依然是它的最大优势所在。 两种典型的外腔半导体激光管结构(Littrow结构和Littman结构)

2. 外腔用半导体激光管的线宽压窄原理 设入射光的波长为λ0 ,为了使1级光形成外腔反射,必须满足以下方程组: 从激光管出来的光谱范围较大,波长成分较多,但只有满足第一个方程的波长成分才会发生一级闪耀反射回去,同时腔长必须满足第二个方程,反射回去的光才能形成谐振放大。零级出射光里的波长成分主要是一级反射光的波长,其它波长成分因为没有放大过程会大幅衰减,表现出来的光谱特性就是极窄的线宽。 3. 主要应用 外腔用半导体激光器因为它极窄的线宽和较高的光功率,在冷原子,原子分子精密光谱研究领域具有广泛的用途,目前主要应用在原子冷却,光频标,原子干涉仪,激光陀螺,高精度原子钟和光钟。 ?????==0002sin 2λλθq L d

基础性实验:趣味光学实验汇总

光学基础性趣味实验 目录 实验1 光与彩虹(人造彩虹) (2) 实验2 人造彩虹2 (3) 实验3 光的折射实例 (5) 实验4 自制放大镜 (6) 实验5 红外线实验的设计 (7) 实验6 多功能小孔成像仪的制作 (8) 实验7 自制针孔眼镜——小孔成像的应用 (9) 实验8 镜子中有无数个镜子 (10) 实验9 日食和月食的演示 (11) 实验10 制作针孔照相机 (12) 实验11 用激光器演示光的直线传播 (13) 实验12 全反射现象观察......................................... 14错误!未定义

实验1 光与彩虹(人造彩虹) 思考:你用什么办法能制作出与空中彩虹颜色一样的彩虹? 实验准备:清水1盆、平面镜1个 实验操作: 1.取一小盆并加入2/3的水,再把镜子斜放于盆内; 2.使镜面对着阳光,在水盆对面的墙上就能看到美丽的彩虹。 实验中的科学:将镜子插入水中时,在对面的墙上就能看到美丽的彩虹。它是光的折射作用,实验表明:白光通过三棱镜后就会分解为红、橙、黄、绿、蓝、靛、紫等七种颜色的光,这就是光的色散。这里镜面左侧的水就好像一个三棱镜,因而光射出水面后就会发生色散,形成彩虹。 创新:想一想,还有什么办法,可以制造出美丽的彩虹?

实验2 人造彩虹2 准备材料:水、一个玻璃杯、一张白纸。 实验步骤: 1.在玻璃杯中装满水,把杯子拿到阳光可以照射到的窗台上;2.把纸放到阳光透过杯子投射进来的地方,这样在纸上就可以看到彩虹的色彩。 实验中的科学: 光线被水折射了,因而投射到纸上的颜色是阳光被分解之后的颜色,原理跟天空中彩虹的形成是一样的。当阳光以40到42度的角度照射空中的水珠时,阳光通过水珠时发生折射,投射到空中形成了彩虹。 知识问答:彩虹为什么总是弯曲的? 想象你看着东边的彩虹,太阳在从背后的西边落下。白色的阳光(彩虹中所有颜色的组合)穿越了大气,向东通过了你的头顶,碰到了从暴风雨落下的水滴。当一道光束碰到了水滴,会有两种可能:一是光可能直接穿透过去,或者更有趣的是,它可能碰到水滴的前缘,在进入时水滴内部产生弯曲,接着从水滴后端反射回来,再从水滴前端离开,往我们这里折射出来。这就是形成彩虹的光。 水滴对光的反射,折射加色散形成彩虹。色散后不同色光出射的方向不同,对一个水滴出射的光我们只有站在特定的观察点上才能看见特定的颜色光,而我们平时是站在固定的观察点上去看空中多个水滴,这样,不同水滴中出射的同一种色光能够到达眼睛,这些水滴

实验40 用迈克尔逊干涉仪测量氦氖激光器波长

实验40 用迈克尔逊干涉仪测量氦氖激光器波长 一、实验目的 1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长 2.通过实验观察等倾干涉现象 二、实验仪器 氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。 迈克尔逊干涉仪外形如图一所示。 其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 图一图二 三、实验原理 1.仪器基本原理 迈克尔逊干涉仪的光路和结构如图二所示。M1、M2是一对精密磨光的平面反射镜。P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它

们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.干涉条纹的图样 本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。S ˊ是S 的等效光源,是经半反射面A 所成的虚像。S 1′是S ′经M 1′所成的虚像。S 2′是S ′经M 2所成的虚像。由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为 ?cos 2d L =? (1) 式中?为S 2′射到P ″点的光线与M 2法线之间的夹角。当λ?k d =?cos 2时,为明纹;当 2/)12(cos 2λ?+=?k d 时,为暗纹。 由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。?=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。 图三 图四 由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有

氦氖激光器模式分析

模式分析 一.氦-氖(He-Ne)激光器简介 氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。内腔式激光器的腔镜封装在激光管两端。 二.氦-氖(He-Ne)激光器的工作原理 氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。 三.He-Ne激光器结构及谐振腔 He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。激光管由放电管、电极和光学谐振腔组成。放电管是氦一氖激光器的心脏,它是产生激光的地方。放电管通常由毛细管和贮气室构成。放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。放电管一般是用GG17玻璃制成。输出功率和波长要求稳定性好的器件可用热胀系数小的石英玻璃制作。He-Ne激光管的阳极一般用钨棒制成,阴极多用电子发射率高和溅射率小的铝及其合金制成。为了增加电子发射面积和减小阴极溅射,一般都把阴极做成圆筒状,然后用钨棒引到管外。He-Ne激光器由于增益低,谐振腔一般用平凹腔,平面镜为输出端,透过率约1%~2%,凹面镜为全反射镜。He-Ne激光管的结构形式是多种多样的,按谐振腔与放电管的放置方式不同可分内腔式、外腔式和半内腔式。 四.氦-氖(He-Ne)激光器的速率方程

氦氖激光器实验论文

共焦球面扫描干涉仪调整及高斯光束变换与测量实验 刘岩1, 贾艳1 (1.东北师范大学,吉林长春 130000) 摘要:本文介绍了氦氖激光器的原理及其相关的基本结构,并系统的做了氦氖激光器系列实验中的共焦球面扫描干涉仪调整实验和高斯光束变换与测量实验。 关键词:氦氖激光器;共焦球面扫描;高斯光束;干涉仪 中图分类号:G3 文献标识码:A 引言 虽然在1917年爱因斯坦就预言了受激辐射的存在,但在一般热平衡情况下,物质的受激辐射总是被收激吸收所掩盖,未能在实验中观察到。直到1960年,第一台红宝石激光器才面世,他标志了激光技术的诞生。激光器由光学谐振腔、工作物质、激励系统构成,相对一般光源,激光有良好的方向性,也就是说,光能量在空间的分布高度集中在光的传播方向上,但它也有一定的发散度。在激光的横截面上,光强是以高斯函数型分布的,故称作高斯光束。同时激光还具有单色性好的特点,也就是说,它可以具有非常窄的谱线宽度。受激辐射后经过谐振腔等多种机制的作用和相互干涉,最后形成一个或者多个离散的、稳定的谱线,这些谱线就是激光的模。在激光生产与应用中,如定向、制导、精密测量、焊接、光通讯等,我们常常需要先知道激光器的构造,同时还要了解激光器的各种参数指标。因此,激光原理与技术综合实验是光电专业学生的必修课程。 1 实验原理 1.1氦氖激光器原理与结构 氦氖激光器(简称He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。对He-Ne 激光器而言增益介质就是在毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言,腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。内腔式He-Ne激光器的腔镜封装在激光管两端,而外腔式He-Ne激光器的激光管、输出镜及全反镜是安装在调节支架上的。调节支架能调节输出镜与全反镜之间平行度,使激光器工作时处于输出镜与全反镜相互平行且与放电管垂直的状态。在激光管的阴极、阳极上串接着镇流电阻,防止激光管在放电时出现闪烁现象。氦氖激光器激励系统采用开关电路的直流电源,体积小,份量轻,可靠性高,可长时间运行。 图1 氦氖激光器原理图 1.2 高斯光束的基本性质 众所周知,电磁场运动的普遍规律可用Maxwell方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: () 2 2 2() [] 2() 00 , () r z kr i R z A A r z e e z ω ψ ω ω --- =?(1) 式中,A0为振幅常数;ω(z)定义为场振幅减小到最大值的e-1的r值称为腰斑,它是高斯光束光斑半径的最小值;ω(z)、R(z)、Ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:

氦氖激光器系列实验

氦氖激光器实验 袁庆勇 081273018 信息工程 一、实验仪器 氦氖激光器、光功率指示仪、硅光电池接收器、狭缝、微动位移台、扫描干涉仪、高速光电接收器及其电源、锯齿波发生器、示波器、氦氖激光器及其电源。 氦氖激光器技术参数: 谐振腔曲率半径 1m ∞ 中心波长 632.8nm 共焦球面扫描干涉仪技术参数: 腔长20mm 凹面反射镜曲率半径20mm 凹面反射镜反射率99% 精细常数>100 自由光谱范围4GHz 二、实验目的 Ⅰ、氦氖激光束光斑大小和发散角 1、掌握测量激光束光斑大小和发散角的方法。 2、深入理解基模激光束横向光场高斯分布的特性及激光束发散角的意义。 Ⅱ、共焦球面扫描干涉仪与氦氖激光束的模式分析 1、了解扫描干涉仪原理,掌握其使用方法。 2、学习观测激光束横模、纵模的实验方法。 三、实验原理 激光束的发散角和横向光斑大小是激光应用中的两个重要参数,激光束虽有方向性好的特点,但它不是理想的平行光,而具有一定大小的发散角。在激光准直和激光干涉测长仪中都需要设置扩束望远镜来减小激光束的发散度。 1、激光束的发散角θ θ为激光束的发散角,()()0=2/2/z z θλπωω=,z 很大 只要我们测得离束腰很远的z 处的光斑大小2 w(z),便可算出激光束发散角。 2、激光束横向光场分布 将光束半径w(z)定义为振幅下降到中心振幅1/e 的点离中心的距离,光束半径w(z)也可定义为光强下将为中心光强e -2倍的点离中心点的距离。 3、光束半径和发散角的测量 束腰处的光斑半径为 由这个值,也可从算出激光束的发散角θ 4、纵模频率差△ν=c/2n 2L ,L 为激光器腔长 5、不同横模之间的频率差 6、自由光谱范围△λ: 7、精细常数F :()F=1-R

3-氦氖激光器的参数测量

氦氖激光器的参数测量(参考讲义) 一台激光器的小信号增益系数,腔内损耗α,饱和光强及最佳透过率是重要的激光参数,直接影响着激光器的输出功率。本实验在外腔激光器中用全反射腔镜,激光输出是通过在腔内插入可旋转平行板,利用平行板的反射率与入射角的关系,使激光的输出功率随平行板的旋转角度而改变,旋转平行板等效于可变透射率的输出镜。通过测量激光输出功率与等效透射率的关系,用作图法获得以上参数。 0G s I opt Γ一、 实验原理 光谱线的宽度一般由以下几部分组成:自然增宽N v Δ,碰撞增宽 ,和多谱勒增宽 ,自然增宽和碰撞增宽属均匀增宽线型,多谱勒增宽属非均匀增宽线型,自然增宽与谱线上下能级寿命成反比,如下式所示 ????????+=Δττπν121121N (1) 式中1τ,2τ分别为上、下能级寿命。碰撞增宽与气体压力p 成正比,如下式所示 ap =Δρν (2) 式中a 为压力加宽系数,因不同气体不同谱线而异。多谱勒增宽由激发谱线的粒子速度分布决定,与介质温度T 及原子量M 有关,还与激发谱线的中心频率0ν成正比,如下式所示 ()02/17/1016.7ννM T D ?×=Δ (3) 式中0ν为谱线中心频率。对某一谱线究竟哪种增宽起主要作用,属哪种线型有具体的物理条件决定。 1. 不同线型的增益饱和特性 激光介质的增益吸收关于是随腔内光强的增加而下降的,这种现象叫做增益饱和,不同线型其增益饱和行为不同。以均匀增宽为主的线型其增益饱和特性由下式描述: )()/1()2/()()2/()(002202 v G I I v v v v v G s v +Δ+?Δ= (4) 式中为腔内光强趋于零时频率中心处的益系数,叫做小信号增益系数。 为线型宽度,为频率为)(00v G v Δv I v 的激光强度,为饱和光强。s I s I 与下列物理量的关系)1(为

894nm外腔半导体激光器

收稿日期:2011-03-07;修订日期:2011-04-19 基金项目:国家自然科学基金(10874012,10974177);国际科技合作计划(2010DFA04690) 作者简介:黄凯凯(1971-),男,讲师,博士,主要从事激光与物质相互作用方面的研究。Email:huangkaikai@https://www.doczj.com/doc/995532666.html, 894nm 外腔半导体激光器 黄凯凯,李 楠,陆璇辉 (浙江大学物理系光学研究所,浙江杭州310027) 摘 要:介绍了一种基于Littrow 结构的894nm 外腔半导体激光器的设计原理,给出了光栅转轴的 优化点计算,分析了无跳模范围和实际转轴位置的关系,指出了实际光栅转轴点的合理位置。针对铯原子激光抽运磁力仪的应用要求,通过外腔的选频功能,以及低噪声激光电流源、低温漂温控器和低噪声压电陶瓷驱动器,实现了自由运转波长为904nm 的激光管调谐到894nm 的单模运转,连续无跳模范围在3GHz 以上。共焦FP 腔的观测表明,外腔半导体激光器对自由运转激光管的线宽进行了有效压窄。搭建了饱和吸收谱装置,成功观测到了Cs 原子D 1线的F =3->F ′=3,4和F =4->F ′=3,4两套饱和吸收谱线。 关键词:外腔半导体激光器;铯D 1线;饱和吸收谱中图分类号:TN248.4 文献标志码:A 文章编号:1007-2276(2011)11-2129-05 894nm external cavity diode laser Huang Kaikai,Li Nan,Lu Xuanhui (Institute of Optics,Physics Department,Zhejiang University,Hangzhou 310027,China) Abstract:The design principle of 894nm external cavity laser diode with Littrow configuration was introduced.The calculation on optimized grating mount pivot point position was given.Analysis of the mode -hop -free range versus practical pivot point position as well as the reasonable pivot point position were pointed.By frequency selection of external cavity and application of low noise current driver,low temperature drift controller and low noise piezo driver,single mode operation of the laser at 894nm was realized on a laser diode with a free running wavelength of 904nm,which was to be applied in laser pumped Cesium magnetometer.The mode -hop -free range was above 3GHz.It could be seen from the confocal FP cavity that the laser linewidth was effectively narrowed in the external cavity.In order to obtain Cs D 1spectrum,a saturation absorption spectroscopy layout was built and the hyperfine lines spectrum of F =3->F ′=3,4and F =4->F ′=3,4transition were successfully obtained.Key words:external cavity diode laser; cesium D 1lines; saturation absorption spectroscopy 第40卷第11期 红外与激光工程 2011年11月Vol.40No.11 Infrared and Laser Engineering Nov.2011

一种新型的垂直外腔面发射半导体激光器讲解

一种新型的垂直外腔面发射半导体激光器 沈少棠 北京工业大学应用数理学院 000611 指导教师:宋晏蓉 摘要介绍了一种新型的垂直外腔面发射半导体激光器的结构、制作工艺、优点及其应用。 关键词激光器,半导体,垂直外腔面 一、引言 垂直腔面发射激光器(VCSEL及其阵列是一种新型半导体激光器,它是光子学器件在集成化方面的重大突破,它与侧面发光的端面发射激光器在结构上有着很大的不同。端面发射激光器的出射光垂直于晶片的解理平面;与此相反,VCSEL 的发光束垂直于晶片表面。它优于端面发射激光器的表现在:易于实现二维平面和光电集成;圆形光束易于实现与光纤的有效耦合;有源区尺寸极小, 可实现高封装密度和低阈值电流;芯片生长后无须解理、封装即可进行在片实验;在很宽的温度和电流范围内都以单纵模工作;价格低。

二、垂直腔面发射激光器的结构 图 1为 VCSEL 的结构示意图,由布拉格反射镜,有源层和金属 层接触组成。其衬底的选择有以下 3种。 1、硅衬底在硅 (Si 上制作的 VCSEL 还不曾实现室温连续波工作。 这是由于将 AlAs/GaAs DFB直接生长在 Si 上,其界面不平整所致, 使 DFB 的反射率较低。日本 Toyohashi 大学的研究者由于在 GaAs/Si 异质界面处引入多层(GaAsm(GaPn 应变短周期超晶格(SSPS 结构而降低了 GaAs-on-Si 异质结外延层的密度。 2、蓝宝石衬底美国南方加利福利亚大学的光子技术中心为使 VCSEL 发射的850nm 波长光穿过衬底, 采用晶片键合工艺将 VCSEL 结构从吸收光的 GaAs 衬底移开,转移到透明的蓝宝石衬底上,提高了 wall-plug 效率,最大值达到 25%。 3、砷化钾衬底基于砷化钾(GaAs基材料系统的 VCSEL 由于高的 Q 值而备受研究者青睐,目前 VCSEL 采用最多也是生长在 GaAs 衬底上。但以 GaAsSb QW作为有源区的 CW 长波长 VCSEL 发射波长被限制在 1.23 微米。发射波长 1.3 微米的 GaAsSb-GaAs 系统只有侧面发射激光器中报道过。日前美国贝尔实验室的 F.Quochi 等人演示了室温 CW 时激射波长为~1.28 微米的生长在 GaAs 衬底下的光泵浦 GaAsSb-GaAs QW VCSEL。这个波长是目前报道的 GaAsSb-GaAs 材料系最长的输出波长。 三、垂直腔面发射激光器的制作新工艺 1、氧化物限制工艺氧化物限制的重大意义在于:能较高水平地控制发射区面积和芯片尺寸,并能极大地提高效率和使光束稳定地耦合进单模和多模光纤。因此,采用氧化物限制方案器件有望将阈值电流降到几百 A,而驱动电流达到几个 mA 就

氦氖激光器的输出功率

氦氖激光器的输出功率 1.放电条件对输出功率的影响。 激光器的输出功率是一个重要的参数,对于一个激光器必须选择适当的放电条件(气体总气压、气体配比以及放电电流等),才能获得最大的激光输出功率。 (1)对一个激光器,在一定的气体的配比下,输出功率随充气压变化有一个极大值。气压比较低时随气压增加输出功率增大,逐渐达到一个输出功率极大值,再增高气压,输出功率却下降,即存在一个最佳充气气压。 (2)输出功率与放电毛细管的直径有关。 (3)在最佳充气条件下,使输出功率最大的放电电流叫最佳放电电流。 2.谱线竞争效应对输出功率的影响。 有些激光跃迁具有同一个激光上能级(或下能级),在它们之间存在着通过公有能级粒子数发生的相互影响,即某一条纹光谱线产生振荡以后,将使其它激光谱线的粒子数反转差额降低,从而使它的增益和输出功率降低。这就是所谓谱线竞争效应。在He/Ne激光器中常采用抑制3.39um的振荡,来提高632.8nm激光的输出功率。常用方法: (1)在腔中加色散元件。在谐振腔一个反射镜与布氏窗片之间放置一块三棱镜。利用棱镜的色散作用,使经过反射只有632.8nm的激光返回激光放电管,而 3.39um的激光则偏离腔轴而逸出腔外。 (2)在谐振腔中加入对3.39um的激光有吸收作用的元件。对小型激光器可利用K8玻璃的布纸窗片对3.39um的激光进行吸收。对较长的激光器必须在腔中装入甲烷气体吸收盒,因甲烷气体在3.39um波长处有一个强的吸收峰。 (3)外加轴向非均匀磁场。由于塞曼效应,磁场可引起谱线分裂使谱线变宽,这种由于非均匀磁场所引起的谱线展宽,称为“塞曼展宽”。 氦氢激光器632.8nm和3.39um的线宽Δv分别为1500MHz和300MHz左右,如果激光器处于200-300高斯的非均匀磁场中,由磁场造成的谱线加宽对3.39um 的激光影响大,而对632.8nm的激光谱线影响小。因增益系数反比于线宽,谱线的增宽将使增益下降,从而起到抑制3.39um激光的作用。

氦氖激光器的结构及原理

氦氖激光器的结构及原理 1.氦氖激光器的结构 氦氖(He-Ne)激光器的结构一般由放电管和光学谐振腔所组成。激光管的中心是一根毛细玻璃管,称作放电管(直径为1mm左右);外套为储气部分(直径约45mm);A是钨棒,作为阳极;K是钼或铝制成的圆筒,作为阴极。壳的两端贴有两块与放电管垂直并相互平行的反射镜,构成平凹谐振腔。两个镜版都镀以多层介质膜,一个是全反射镜,通常镀17层膜。交替地真空蒸氟化镁(MgF2与硫化锌(ZnS)。另一镜作为输出镜,通常镀7层或9层膜(由最佳透过率决定)。毛细管内充入总气压约为2Torr(托)的He、Ne混合气体,其混合气压比为5:1-7:1左右。内腔管结构紧凑,使用方便,所以应用比较广泛。但有时为了特殊的需要也常选用全外腔式或半外腔式。全外腔式的放电管和镜片是完全分离的,半外腔式是上两种形式的结合。外腔式和半外腔式都需要粘贴布儒斯特片,窗片法线与激光光轴有一夹角,应等于布儒斯特角θ:θ=tg-1n , K8玻璃对632.8nm激光 n=1.5159;θ=56°35';熔融石英 n=1.46;θ=55°36'。因此,全外腔式和半外腔式激光器输出的光束是电矢量平行于入射面的线偏振光。 2.氦氖激光器激发机理 氦氖激光器中工作物质是氦气和氖气,其中氦气为辅助气体,氖气为工作气体。产生激光的是氖原子,不同能级的受激辐射跃迁将产生不同波长的激光,主要有632.8nm、1.15um和3.39um三个波长。氦原子有两个亚稳态能级21S0、23S1,它们的寿命分别为5×10-6s和10-4s,在气体放电管中,在电场中加速获得一定动能的电子与氦原子碰撞,并将氦原子激发到21S0、23S1,此两能级寿命长容易积累粒子。因而,在放电管中这两个能级上的氦原子数是比较多的。这些氦原子的能量又分别与处于3S和2S态的氖原子的能量相近。处于21S0、23S1能级的氦原子与基态氖原子碰撞后,很容易将能量传递给氖原子,使它们从基态跃迁到3S和2S 态,这一过程称能量共振转移。由于氖原子的2P、3P态能级寿命较短,这样氖原子在能级3S-3P、3S-2P、2S-2P间形成粒子数反转分布,从而发射出3.39um、632.8nm、1.5um三种波长的激光。上述过程可表示为: e**+He(11S0)→e*+He*(21S0) e**+He(11S0)→e*+He*(23S0) He*(21S0)+Ne(2P6)→He(21S0)+Ne*(3S) He*(23S1)+Ne(2P6)→He(21S0)+Ne*(2S) Ne*(3S)→Ne*(2P)产生波长为632.8nm的激光 Ne*(3S)→Ne*(3P)产生波长为3.39um的激光 Ne*(2S)→Ne*(2P)产生波长为1.15um的激光 从理论上讲,这三种波长的激光都有可能发射,但我们可以采取一些方法去抑制其中的两种,而使我们所需要的一种波长的激光得到输出。632.8nm(红光)因输出为可见波段的激光,实际应用较广泛。 3,结构及原理 在激光电源外壳上,有一能自由转动的支柱,上面装有可改变斜角的管套,管套内装有氦—氖激光管。(氦—氖激光器的种类很多,外形各异,但都由激光电源和氦-氖激光管两部分组成。)激光电源的电原理如图1-103所示。电源变压器BY次级输出1.2KV高压。此电压不足以使激光管JG起辉。由于JG此时截止,使D1-D4,C1-C4工作在多倍压整流状态。当JG两端电压升至5KV左右,JG起辉,放出红色束状激光。由于JG导通,使D1、D3、D4间正向电位差很小,对上千伏高压来讲近似于零,因此C3、C4不再起作用。D1-D4与C1、C3工作在倍压整流状态。使JG两端电压降至约2KV,维持其工作。R4是限流电阻。 氦-氖激光管:这是一种原子型气体激光管。结构如图1-104所示。玻璃管M内封有按一定比

实验六 迈克尔逊干涉仪的调节和使用

实验五迈克尔逊干涉仪的调节和使用 一、实验目的 1.了解迈克尔逊干涉仪的构造原理,掌握迈克尔逊干涉仪的调节方法; 2.学会调节非定域干涉、等倾干涉、等厚干涉和白光干涉条纹,研究这几种干涉条纹形成的条件和条纹特点,变化规律及相互间的区别; 3.学会用迈克尔逊干涉仪测定光波波长。 二、实验仪器 迈克尔逊干涉仪、氦氖激光器、扩束透镜、毛玻璃等。 三、实验原理 1.迈克尔逊干涉仪的原理 图1是迈克尔逊干涉仪的光 路示意图,图中M 1和M 2 是在相 互垂直的两臂上放置的两个平 面反射镜,其中M 1 是固定的;M 2 由精密丝杆控制,可沿臂轴前、 后移动,移动的距离由刻度转盘 (由粗读和细读2组刻度盘组合 而成)读出。在两臂轴线相交处, 有一与两轴成45°角的平行平面玻璃板p1,它的第二个平面上镀有半透(半反 射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故p 1 又 称为分光板。p 2也是平行平面玻璃板,与p 1 平行放置,厚度和折射率均与p 1 相 同。由于它补偿了光线⑴和⑵因穿越p 1 次数不同而产生的光程差,故称为补偿板。 从扩展光源S射来的光在p 1处分成两部分,反射光⑴经p 1 反射后向着M 2 前 进,透射光⑵透过p 1向着p 1 前进,这两束光分别在p 2 、p 1 上反射后逆着各自的 入射方向返回,最后都达到E处。因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹。 由M 1反射回来的光波在分光板p 1 的第二面上反射时,如同平面镜反射一样, 使M 1在M 2 附近形成M 1 的虚像M 1 ′,因而光在迈克尔逊干涉仪中自M 2 和M 1 的反 图1 迈克尔逊干涉仪光路

相关主题
文本预览
相关文档 最新文档