当前位置:文档之家› 勾股定理的证明与应用---专题

勾股定理的证明与应用---专题

勾股定理的证明与应用---专题
勾股定理的证明与应用---专题

勾股定理的证明与应用---专题

★【目标要求】

◆1、探索直角三角形的性质———勾股定理; ◆2、勾股定理的运用举例

★ 知识重点:勾股定理及其运用;难点:勾股定理的运用 ★ 【知识要点及典型例题精讲】

◆【知识要点1】-----直角三角形的性质: ①、若90=∠C °,则90=∠+∠B A °;(直角三角形两锐角互余)

②、若90=∠C °,30=∠A °,则c a 2

1

=;(直角三角形中,?30角所对的直角边等于

斜边的一半)。 ◆目标训练1:

(1)在ABC Rt ?中,?=∠90C ,若//

/354137?=∠A ,则______=∠B ;

(2)如图:在ABC Rt ?中,90=∠C °,30=∠A °,试说明:c a 2

1=

◆【知识要点2】-----

直角三角形中,两直角边的平方和等于斜边的平方;

问题探究:如图:用4个全等的直角三角形拼成一个正方形,分别用不同的代数式表示中间的正方形的面积: ;

得到的结论是: ;

【知识要点3】-----勾股定理应用举例

应用1----运用勾股定理求直角三角形中未知的边长 【例1】在90=∠?C ABC Rt 中,°。

(1)

、若3,4a b ==,求c (2

)若b c a ,求13

,5==

a

C

a a

b b

(3)若4:3:,10==b a cm c ,求ABC ?的周长;

(4)若cm b 8=,cm c a 32=+,求c a ,的长;

注:直角三角形三边均为正整数时,称这组数为勾股数。 ◆目标训练2:

1、在ABC ?中,如果23A B C ∠=∠=∠,则ABC ?是( )

A 、锐角三角形

B 、直角三角形

C 、钝角三角形

D 、等腰三角形 2、将一个直角三角形两直角边都扩大到原来的两倍,则斜边扩大到原来的( )

A 、4倍

B 、2倍

C 、不变

D 、无法确定

3、一个三角形三个内角之比为1:2:1,则其相对的三边平方之比为--( ) A 、1:4:1 B 、1:2:1 C 、1:16:1 D 、2:3:1

4、在中,

ABC Rt ?90=∠C °, (1)若,25,7==c a 则______=b ;(2)若2

1

2

,2==c b ,则_________=?ABC S ; (3)如cm c b a 10,3==,则________;______;2

2

==b a (4)若2,,2+==-=m c m b m a ,则_________;=?ABC C 【例2】直角三角形的两直角边分别为6,8,求斜边上的高。

【例3】如图:8562==??AD cm S ABC AD ABC ,的高,是

长;

【例4】如图:在中,ABC Rt ?90=∠C °,5.2,5.1,21==∠=∠BD CD .求AC 的长。

★方法感悟

◆目标训练3:

1、直角三角形的两直角边分别为cm cm 12,5,其斜边上的高为 ;

2、如图:阴影部分是一个正方形,则该正方形的面积是 ;

3、已知直角三角形的三边长为x ,4,3,则2

___________x =

4、如图:已知在ABC ?中,?=∠90ACB

,cm AB 5=,cm BC 3=,AB CD ⊥于D ,

求CD 的长。

应用2----运用勾股定理证明平方关系

【例5】在等腰直角三角形ABC 中,点P 是斜边AB 上任意一点(不与点A 、B 重合),试探

究2

2PB PA +与2

PC 间的数量关系,并说明理由。

B

C

D

◆目标训练4:

如图:在ABC ?中,90=∠C °,AD 是BC 边上的中线,AB DE ⊥,垂足为E 。 求证:222BE AE AC -=

◆应用3—运用勾股定理解决实际问题

【例6】已知折叠长方形(四个角都是直角,对边相等)的一边AD ,使点D 落在BC 边的 点F 处,已知8AB cm =,10BC cm =,求EC 的长。

【例7】某镇为响应中央关于建设社会主义新农村的号召,决定在公路相距km 10的A 、B 两站之间的E 点修建一个土特产加工基地,如图,AB DA ⊥于A ,AB CB ⊥于B 。已知km DA 8=,km CB 2=,要使C 、D 两村庄到基地E 点的距离相等,那么基地E 应建在距A 站多远的地方?

A B

C D E

家庭作业

学生姓名:

A 组---基础达标

1、一直角三角形的斜边长比一条直角边大2,另一直角边为6,则斜边长为( ) A 、4 B 、8 C 、10 D 、12

2、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已 知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )

A 、a 450元

B 、a 225元

C 、a 150元

D 、a 300元

3、如图,所有的四边形都是正方形,所有的三角形

都是直角三角形,其中最大的正方形的边长为7cm ,

则正方形D C B A ,,,的面积之和为 2

cm ;

B 组----能力拓展

1、如图:已知ABC ?中,90ABC ∠=?,AB BC =,三角形的顶点在相互平行的三条直线1 、2 、3 上,且1 、2 之间的距离为2,2 、3 之间的距离为3,则AC 的长为 ;

2、ABC ?中,90=∠C °,6)(,22

=+=b a c

3、在?ABC 中,cm c cm b cm a 15,13,14===,求ABC S ?。

m 20m

30?

1501

勾股定理的证明及其应用2

2017年3月2 勾股定理的证明及其应用 2 P253P25P27?????木板能否过门问题学习内容:勾股定理的类应用梯子下移问题 特别推荐:“海螺图” (27页) 热身:观察以下几组勾股数,并寻找规律:① 3, 4, 5;② 5,12,13;③ 7,24,25; ④ 9,40,41;……请你写出有以上规律的第⑤组勾股数: . 问题1:木板能否过门问题 例1:一个门框的尺寸如图所示,一块长3m ,宽2.2m 的薄木板能否从门框内通过?为什么?(236.25≈) 模仿1:有一个边长为50dm 的正方形洞口,想用一个圆盖盖住这个洞口,圆的直径至少多长 (结果保留整数). 问题2:梯子下移问题 例2:如图,一个3m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为2.5m ,如 果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 也外移0.5m 吗?(658.175.2≈) 解:可以看到,BD=OD —OB ,求BD ,可以先求OB ,OD 。 ∵ 在Rt AOB ?中,∠O =90° ∴ OB= . ∵在Rt COD ?中,∠O =90° ∴ OD= . ∴ BD= , ∴ 梯子的顶端沿墙下滑0.5m ,梯子底端外移 . 模仿2:宝典B 本,第10页,第2题 2m B 木板 C A O B D

问题3 : (1)我们知道,数轴上的点,有的表示有理数,有的表示无理数 (2)复习有理数的表示方法 在数轴上表示下列各数 2 — 2 1 9 4.5 0 画图: (3)思考:无理数如何表示? 例3:在数轴上画出表示2的点. (小组画一画,议一议) 在数轴上找到点A ,使OA= ,作直线l 垂直于OA ,在l 上取点B ,使AB= , 以原点O 为圆心,以OB 为半径作弧,弧与数轴的交点C 即为表示2的点. 画图: 模仿3:分组讨论,理解课本P27图17.1-10,利用勾股定理,在数轴上画出表示5,4,3,2,1的点。 五分钟测试 1、直角三角形中,有两边长分别是6和8,那么第三边长的平方为( ) A 、10 B 、28 C 、100 D 、28或者100 2、在一个直角三角形中,两直角边之比为3﹕4,且斜边长10cm ,则该直角三角形面积( ) A 、24cm 2 B 、36cm 2 C 、48cm 2 D 、60cm 2 3、如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理 数的边数是( ) A . 0 B . 1 C . 2 D . 3 4、 如图所示,在△ABC 中,三边a ,b ,c 的大小关系是( ) A. a <b <c B. c <a <b C. c <b <a D. b <a <c 5、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边 长为7cm ,则正方形A ,B ,C ,D 的面积之和为_______cm 2. A B C 第3题 第4题 第5题

勾股定理的证明方法探究

a2+c2=b2,c=b2-a2!=42-32!=!7(cm).二、忽视定理成立的条件例2在边长都是整数的△ABC 中,AB>AC,如果AC=4cm,BC=3cm,求AB的长.误解:由“勾3股4弦5”知 AC=4cm,BC=3cm,AB>AC,∴AB=5cm.剖析:这种解法受“勾3股4弦5”思维定势的影响,见题中有BC=3,AC=4,就认为AB=5,而忘记了“勾3股4弦5”是在直角三角形的条件下才成立,而本题中没有指明是直角三角形,因此,只能用三角形三条边之间的关系来解。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂。

我们都喜欢把日子过成一首诗,温婉,雅致;也喜欢把生活雕琢成一朵花,灿烂,美丽。可是,前行的道路有时会曲折迂回,让心迷茫无措。生活的上空有时会飘来一场风雨,淋湿了原本热情洋溢的心。 不是每一个人都能做自己想做的事情,也不是每一个人都能到达想去的远方。可是,既然选择了远方,便只有风雨兼程。也许生活会辜负你,但你不可以辜负生活。 匆匆忙忙地奔赴中,不仅要能在阳光下灿烂,也要能在风雨中奔跑!真正的幸福不是拥有多少财富,而是在前行中成就一个优秀的自己! 生命没有输赢,只有值不值得。坚持做对的事情,就是值得。不辜负岁月,不辜负梦想,就是生活最美的样子。 北大才女陈更曾说过:“即使能力有限,也要全力以赴,即使输了,也要比从前更强,我一直都在与自己比,我要把最美好的自己,留在这终于相逢的决赛赛场。” 她用坚韧和执着给自己的人生添上了浓墨重彩的一笔。 我们都无法预测未来的日子是阳光明媚,还是风雨如晦,但前行路上点点滴滴的收获和惊喜,都是此生的感动和珍藏。 有些风景,如果不站在高处,你永远欣赏不到它的美丽;脚下有路,如果不启程,你永远无法揭晓远方的神秘。 我们踮起脚尖,是想离太阳更近一点儿;我们努力奔跑,是想到达远方欣赏最美的风景。 我们都在努力奔跑,我们都是追梦人!没有伞的时候,学会为自己撑伞;没有靠山的时候,学会自己屹立成一座伟岸的山! 远方有多远?多久能达到?勇敢往前冲的人,全世界都会向他微笑。相信,只要启程,哪怕会走许多弯路,也会有到达的那一天。

勾股定理9种证明(有图)

勾股定理的9种证明(有图) 【证法1】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面 积等于ab 21 . 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、 F 、C 三点在一条直线上,C 、 G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ ()2 22 14c ab b a +?=+. ∴ 2 22c b a =+. 【证法2】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P. ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ ∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180o―90o= 90o.

勾股定理的证明和应用

第3章勾股定理知识结构: 勾股定理1.勾股定理 (1)直角三角形中两直角边的平方和等于斜边的平方 (2)勾股定理的验证-------用拼图法,借助面积不变的关系来证明 (3)应用 1.在直角三角形中已知两边求第三边 2.在直角三角形中已知两边求第三边上的高 2.勾股定理 的逆定理 (1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角 三角形 (2)勾股数 1.满足a2+b2=c2的三个正整数a,b,c称为 勾股数 2.常见的勾股数 (1)3,4,5 (2)5,12,13 (3)8,15,17 3.应用 (1)勾股定理的简单应用 求几何体表面上两点间的最短距离 解决实际应用问题 (2)勾股定理逆定理的应用---------判定某个三角形是否为直角三角

形 勾股定理 一、求网格中图形的面积 求网格中图形的面积,通常用两种方法:“割”或“补”。 二、勾股定理 直角三角形两条直角边的平方和等于斜边的平方。 拓展延伸:(1)勾股定理揭示的是直角三角形的三边关系,所以必须注意“在直角三角形中”这一前提。 (2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把所求线段转化为某一直角三角形的边,然后利用勾股定理求解。 三、勾股定理的验证 运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。 勾股定理的逆定理 一、勾股定理的逆定理 如果三角形的三边长分别为a,b,c且a2+b2=c2,那么这个三角形是直角三角形。 注意:(1)还没确定一个三角形是否为直角三角形时,不能说“斜边”“直角边”。 (2)不是所有的c都是斜边,要根据题意具体分析。当满足a2+b2=c2时,c是斜边,它所对的角是直角。 勾股定理与勾股定理的逆定理之间既有区别,又有联系,如下表所示:

勾股定理的证明

勾股定理的证明 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 2 142 142 2 2 ? +=? ++, 整理得 2 2 2 c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 2 1. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF , ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于() 2 b a +. ∴ () 2 2 2 14c ab b a +? =+. ∴ 2 2 2 c b a =+. D G C F A H E B a b c a b c a b c a b c b a b a b a b a c b a c b a c b a c b a c b a c b a

初中数学:勾股定理的多种证明 (1)

初中数学:勾股定理的多种证明 勾股定理的证明方法1 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。 勾股定理的证明方法2

以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o,

∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于a+b的平方。 ∴a加b的平方等于4乘二分之一ab,加上c的平方。. ∴a的平方加b的平方等于c的平方。 勾股定理的证明方法3 以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab。把这四个直角三角形拼成如图所示形状。 ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o,

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

勾股定理毕达哥拉斯定理及各种证明方法

勾股定理(毕达哥拉斯定理) 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。 勾股定理 命题1如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么 。 勾股定理的逆定理 命题2如果三角形的三边长a ,b ,c 满足 ,那么这个三角形是直角三角形。 【证法1】(赵爽证明) 以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每 个直角三角形的面积等于2 1ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB. ∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o, ∴ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵EF=FG=GH=HE=b―a,∠HEF=90o. ∴EFGH 是一个边长为b―a 的正方形,它的面积等于. ∴ ∴. 【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等. 即,整理得. 【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC. ∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o. ∴ΔDEC 是一个等腰直角三角形,它的面积等于 .又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴ ABCD 是一个直角梯形,它的面积等于

勾股定理与几何证明答案(可编辑修改word版)

1、勾股定理与几何证明的综合问题练习一、利用勾股定理证明一些重要的几何定理 1、如图,在Rt△ABC 中,∠ACB=90°,CD 是AB 边上的高. 证明:(1)CD2=AD ?BD (这个结果表明,利用勾股定理可以导出三角形相似的一系列结果) 1 1 1 (2)AC 2+ BC 2 = CD2 练习二、将勾股定理应用于四边形 1、四边形ABCD 的对角线为AC 和BD. (1)证明:若AC ⊥BD ,则AB2+CD2=AD2+BC 2; 2、一个四边形的顶点分别在一个边长为1 的正方形各边上,其边长依次为a、b、c、d. 求证: 2 ≤a2+b2+c2+d 2≤ 4 . 假设MNPQ 分别将正方形ABCD 的四个边分成了线段:m1 m2 n1 n2 p1 p2 q1 q2 ∵MNPQ 都在正方形ABCD 的四个边上,所以有四个直角三角形 ∴a2+b2+c2+d2=m12+m22+n12+n22+p12+p22+q12+q22∵m1+m2=正方形边长即为“1”(其他同理)∴a2+b2+c2+d2=m12+(1-m1)2+n12+(1-n1)2+p12+(1-p1)2+q12+(1-q1)2整理之后得到: a2+b2+c2+d2=2*(m1-/2)2+1/2+2*(n1-/2)2+1/2+2*(p1-/2)2+1/2+2*(q1-/2)2+1/2=2*[(m1-1/2)2+(n1-1/2)2+(p1-1/2)2+(q1-1/2)2] + 2 m1、n1、p1、q1 的长都是最大为1 最小为0 它们都等于1/2 时值最小,都等于1 时值最大那么a2+b2+c2+d2的最小值就是2,最大值就是4

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

勾股定理的证明的方法

【】() 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三 个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上, B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHA E ≌ R t ΔEBF,

∴∠AHE = ∠BEF. ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB.

勾股定理16种经典证明方法与在实际生活中的应用

2 证法 1】(课本的证明) 做 8 个全等的直角三角形,设它们的两条直角边长分别为 a 、b ,斜边长为 c ,再做三个边长分别为 a 、b 、 c 的正 方形,把它们像上图那样拼成两个正方形 . 从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等 . 即 证法 2】(邹元治证明) ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠ BEF. ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180 o ― 90o= 90 o. ∴ 四边形 EFGH 是一个边长为 c 的 正方形 . 它的 面积等于 c 2. ∵ Rt Δ GDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180 o. ∴ ABCD 是一个边长为 a + b 的正方形,它的面积 等于 ∠HEF = 90 o. EFGH 是一个边长为 b ―a 的正方形,它的面积等于 1 ab 以 a 、 b 为直角边,以 c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等 于 角形拼成如图所示形状,使 A 、E 、B 三点在一条直线上, B 、F 、C 三点在一条直 线上, 把这四个直角三 C 、G 、D 三点在一条直线上 b 2 4 12 ab c 2 4 1 ab 2 整理得 c 2 1 4 ab 2 c 2 a 2 b 2 c 2 【证法 3】(赵爽证明) 以 a 、 b 为直角边( b>a ), 以 c 为斜 边作四个全等的直角三角形,则每个直角 1ab 三角形的面积等于 把这四个直角三 角形拼成如图所示形状 ∵ Rt Δ DAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90o , ∴ ∠EAB + ∠HAD = 90o , ∴ ABCD 是一个边长为 c 的正方形,它的面积等于 c 2. ∵ EF = FG =GH =HE = b ― a , ba

勾股定理16种证明方法

v1.0 可编辑可修改 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.

v1.0 可编辑可修改 ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于()2a b-. ∴ ()2 2 2 1 4c a b ab= - + ? .

运用勾股定理证明与计算

勾股定理 学习目标 掌握勾股定理,会用面积法证明勾股定理。 导学过程 一、 忆一忆 1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: (2)若D 为斜边中点,则斜边中线是 (3)若∠B=30°,则∠B 二、学一学 1、(1)、画一个直角边为3cm 和4cm 的直角△ABC (2)、再画一个两直角边为5和12的直角△ABC 问题:你是否发现23+24与25,25+212和213 命题1:如果直角三角形的两直角边分 么 。 三、合作探究: 方法1、已知:在△ABC 中,∠C=90°,∠A 、∠B 求证: 222a b c += 证明:4S △+S 小正=S 大正 根据的等量关系:由此我们得出勾股定理 的内容是 b b

方法2、已知:在△ABC 中,∠C=90°,∠A 、∠B 、 ∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 根据如图所示,利用面积法证明勾 股定理 四、练一练: 1、在Rt △ABC ,∠C=90° (1)已知a=b=5,求c 。(2)已知a=1,c=2, 求b 。(3)已知c=17,b=8, 求a 。 ⑷已知a :b=1:2,c=5, 求a 。⑸已知b=15,∠A=30°,求a ,c 2、一个直角三角形的两边长分别为3cm 和4cm,则第三边的长为 。 3.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________. 4.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 5.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 6、已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高. 求 ①AD 的长;②ΔABC 的面积. 7.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积. b c c a A E B 3m 4m 20m

勾股定理的证明方法及应用研究开题报告

天津师范大学津沽学院2015届本科毕业论文(设计)选题审批表 学生姓名顾鹏飞学号13583115 指导教师张筱玮职称教授所选题目名称:勾股定理的证明方法及应用研究 选题性质:()A.理论研究(√)B.应用研究()C.应用理论研究 选题的目的和理论、实践意义: 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。 它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。为以后学习三角函数奠定基础。 勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。 勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。[12]更为重要的是,其后 希帕索斯根据勾股定理发现了第一个无理数( 2),导致第一次数学危机。 指导教师意见: 签字:年月日系领导小组意见: 签字:年月日备注:

天津师范大学津沽学院2015届本科毕业论文(设计)开题 报告 系别:理学系专业:数学与应用数学 论文题目勾股定理的证明方法及应用研究 指导教师张筱玮职称教授学生姓名顾鹏飞学号13583115 一、研究目的(选题的意义和预期应用价值) 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。为以后学习三角函数奠定基础, 勾股定理作为一个被人类早期发现并证明的重要数学定理之一,对数学的发展产生了不可小视的影响。勾股定理使人们以代数的思想与概念来解决几何问题,正是“数形结合”思想的体现,这样的思想角度是十分重要的。同时,勾股定理的发现推动了人类对数学几何更深的探索;通过勾股定理,我们可以推导出许多其它真命题与定理,这大大地方便了我们对几何问题的解决,也使数学的发展迈出了一大步。[12]更为重要的是,其后希帕索斯根据勾股定 理发现了第一个无理数( 2),导致第一次数学危机。 二、与本课题相关的国内外研究现状,预计可能有所突破和创新的方面(文献综述) 中国:公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。 公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。 在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。 外国:在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。 公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

勾股定理逆定理八种证明方法

证法1 作四个全等的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条直线上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC 的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上,

勾股定理的证明和应用

知识结构: 2. 勾股定理 的逆定理 (2)勾股数 (1)勾股定理的简单应用 3. 应用 (2)勾股定理逆定理的应用 a,b,c 满足a 2+b 2=c 2 ,那么这个三角形是直角 三 1. 满 足 a 2+ b 2=c 2 的三个正整数 a,b,c 称为勾 股数 (1)3,4,5 2. 常见的勾股数 (2)5,12,13 (3)8,15,17 求几何体表面上两点间的最短距离 解决实际应用问题 ----- 判定某个三角形是否为直角三角形 3.1 勾股定理 一、 求网格中图形的面积 求网格中图形的面积,通常用两种方法: “割 ”或“补”。 二、 勾股定理 直角三角形两条直角边的平方和等于斜边的平方。 拓展延伸 :(1)勾股定理揭示的是直角三角形的三边关系, 所以必须注意 “在直角三角形中 这一前提。 (2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把 所求线段转化为某一直角三角形的边,然后利用勾股定理求解。 三、 勾股定理的验证 运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。 第 3 章 勾股定理 勾股定理 (1)直角三角形中两直角边的平方和等于斜边的平方 (2)勾股定理的验证 1.勾股定理 1.在直角三角形中已知两边求第三边 (3)应用 2.在直角三角形中已知两边求第三边上的高 (1)如果三角形的三边长 角形 用拼图法 ,借助面积不变的关系来证明

3.2勾股定理的逆定理 一、勾股定理的逆定理 如果三角形的三边长分别为a,b,c且a2 3+b2=c2,那么这个三角形是直角三角形。 注意:(1)还没确定一个三角形是否为直角三角形时,不能说斜边”直角边”。 (2)不是所有的c都是斜边,要根据题意具体分析。当满足a2+b2=c2时,c是斜边,它所 对的角是直角。 下表所示: 二、勾股数 满足关系a2+b2=c2的3个正整数a,b,c称为勾股数。 勾股数必须是正整数。 一组勾股数中各数的相同的正整数倍也是一组新的勾股数。 记住常用的勾股数可以提高做题速度。 3.3勾股定理的简单应用 一、勾股定理的应用 运用勾股定理可以解决生活中的一些实际问题。在应用勾股定理解决实际问题时,应先 构造出直角三角形,然后把直角三角形的某两条边表示出来。 注意:应用勾股定理解决实际问题时,先弄清直角三角形中哪边是斜边,哪两条边是直角边, 以便进行计算或推理。对于实际问题,应从中抽象出直角三角形或通过添加辅助线构造出直角三角形,以便正确运用勾股定理。

勾股定理证明(7种方法)

证明一 图一 在图一中,D ABC 为一直角三角形,其中D A 为直角。我们在边 AB、BC 和 AC 之上分别画上三个正方形 ABFG、BCED 和 ACKH。过 A 点画一直线 AL 使其垂直於 DE 并交 DE 於 L,交 BC 於 M。不难证明,D FBC 全等於 D ABD(S.A.S.)。所以正方形 ABFG 的面积 = 2 ′ D FBC 的面积 = 2 ′ D ABD 的面积 = 长方形 BMLD 的面积。类似地,正方形 ACKH 的面积 = 长方形 MCEL 的面积。即正方形 BCED 的面积 = 正方形 ABFG 的面积 + 正方形 ACKH 的面积,亦即是 AB2 + AC2 = BC2。由此证实了勾股定理。 这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了,「两条直角边边长平方之和」的几何意义,这就是以 ML 将正方形分成 BMLD 和MCEL 的两个部分! 这个证明的另一个重要意义,是在於它的出处。这个证明是出自古希腊大数学欧几里得之手。 欧几里得(Euclid of Alexandria)约生於公元前 325 年,卒於约公元前 265 年。他曾经在古希腊的文化中心亚历山大城工作,并完成了著作《几何原本》。《几何原本》是一部划时代的著作,它收集了过去人类对数学的知识,并利用公理法建立起演绎体系,对后世数学发展产生深远的影响。而书中的第一卷命题 47,就记载著以上的一个对勾股定理的证明。 证明二 图二 图二中,我们将4个大小相同的直角三角形放在一个大正方形之内,留意大正方形中间的浅黄色部分,亦都是一个正方形。设直角三角形的斜边长度为 c,其余两边的长度为 a 和 b,则由於大正方形的面积应该等於 4 个直角三角形和中间浅黄色正方形的面积之和,所以我们有 (a + b)2 = 4(1/2 ab) + c2 展开得 a2 + 2ab + b2 = 2ab + c2 化简得 a2 + b2 = c2 由此得知勾股定理成立。 证明二可以算是一个非常直接了当的证明。最有趣的是,如果我们将图中的直角三角形翻转,拼成以下的图三,我们依然可以利用相类似的手法去证明勾股定理,方法如下: 图三

勾股定理16种经典证明方法

ab c ab b a 2 1421422 2 ?+=?++ 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21 . 把这四个直角三 角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2 . ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +.

∴ ()2 22 4c ab b a +?=+. ∴ 2 22c b a =+. 【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21 . 把这四个直角三 角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB . ∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2 . ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴ ()2 2 214c a b ab =-+?. ∴ 2 22c b a =+. 【证法4】(1876年美国总统Garfield 证明) 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21 . 把这两个直角三 角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC . ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形, 它的面积等于2 21c .

相关主题
文本预览
相关文档 最新文档