当前位置:文档之家› 行列式计算证明题

行列式计算证明题

行列式计算证明题
行列式计算证明题

1. 设

计算A41 + A42 + A43 + A44 = ?, 其中A4j(j= 1, 2, 3, 4)是|A|中元素a4j的代数余子式.

解. A41 + A42 + A43 + A44

=

2. 计算元素为a ij = | i-j|的n阶行列式.

解.

3. 计算n阶行列式(n 2).

解. 当

+

=+

++

=-

=--= 0

4. 设a, b, c是互异的实数, 证明:

的充要条件是a + b + c =0.

证明: 考察范德蒙行列式:

=

行列式即为y2前的系数. 于是

=

所以的充要条件是a + b + c = 0.

5. 证明:奇数阶反对称矩阵的行列式为零.

证明: (n为奇数). 所以|A| = 0.

6. 设

证明: 可以找出数δ(0 < δ < 1), 使(提示: 使用罗尔定理).

证明: ,

由罗尔定理, 存在数δ(0 < δ < 1), 使.

7. 试证: 如果n次多项式对n+ 1个不同的x值都是零, 则此多项式恒等于零. (提示: 用范德蒙行列式证明)

证明: 假设多项式的n + 1个不同的零点为x0, x1, …, x n. 将它们代入多项式, 得关于C i方程组

…………

系数行列式为x0, x1, …, x n的范德蒙行列式, 不为0. 所以

8. 设

解. ===

=

行列式经典例题及计算方法

行列式的例题 1.已知方程 01125208 42111111154115 21211111154113 21111113 23232=+ + -x x x x x x x x x ,求x 。 解:由行列式的加法性质,原方程可化为 32321 12520842111111154118 4211111x x x x x x + 3 232 2781941321111112793184 211111x x x x x x = = =(2-1)(3-1)(3-2)(x-1)(x-2)(x-3)=0 得x=1或x=2或x=3。 2.计算:(化三角形法) 3.拆行列法 42031 2852 51873 121D =

行列式的计算 (四)升级法(加边法) 112122 1212 ,0 n n n n n n a b a a a a b a D b b b a a a b ++= ≠+ 1 21121221 21 1000n n n n n n n a a a a b a a D a a b a a a a b ++=++ 解:1) 1 21121 1 00(2,31)10010 0n i n a a a b r r i n b b --=+-- 121 (1).n i n i i a b b b b ==+∑ 111 11100 (1,21)00 n i n i i i i n a a a b c b c i n b b =+++ =+∑ 行列式的计算 (二)箭形行列式 0121112 2,0,1,2,3. n n i n n a b b b c a D a i n c a c a +=≠= 解:把所有的第列的倍加到(1,,)i n = i i c a -1i +第1列,得: 11201()n i i n n i i b c D a a a a a +==-∑

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =-L L ,故 011102120 n n n D n n --= --L L M O L 1,1,,2 i i r r i n n --=-= L 0111111 1 1 n ----L L M O L 1,,1 j n c c j n +=-= L 121 1 021 (1)2(1)020 1 n n n n n n ------=----L L L L M O O L M L 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 011102120 n n n D n n --= --L L M O L 11,2,,1 111111120 i i r r i n n n +-=----= --L L L M O L 1 2,,1 0012 01231 j c c j n n n n +=---= ---L L L M O L =1 2(1) 2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+K K M M M M K 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 11 11n x x x -----O O = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n =L = x 1 -n D 1+ a 2x 2 -n +K + a 1-n x + a n =1 11n n n n x a x a x a --++++L 方法2 第2列的x 倍,第3列的x 2倍,K ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 2112 1 010010000n n n n x x x a xa a a x a -----++K K K M M M M K

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

行列式检验测试题(有规范标准答案)

第九讲 行列式单元测试题点评 一、填空题(每小题2分,满分20分) 1.全体3阶排列一共有 6 个,它们是123,132,213,231,312,321; 2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次 对换变为奇排列; 3. 行列式D和它的转置行列式D'有关系式D D' =; 4. 交换一个行列式的两行(或两列),行列式的值改变符号; 5. 如果一个行列式有两行(或两列)的对应元素成比例,则这 个行列式等于零; 6. 一个行列式中某一行(列)所有元素的公因子可以提到 行列式符号的外边; 7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列) 的对应元素上,行列式的值不变; 8. 行列式的某一行(列)的元素与另一行(列)的对应元素的 代数余子式的乘积之和等于零; 9. 11121 222 1122 ; 00 n n nn nn a a a a a a a a a = L L K M M M M L

10.当 k=22 ±时,542k k k =。 二、判断题(每小题3分,满分24分) 1.1)(,)(31221±==k i i i i k i i i n n ΛΛππ则若 (∨) 的符号 的一般项则设n n j i j i j i nn n n n n a a a a a a a a a a a a D ΛΛ M M M M ΛΛ2211D ,.221 2222111211= .)1() (21n j j j Λπ-是 (×) 3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。 (×) 6.若行列式D 的相同元素多于2n n -个,则D=0. (×) 7. 11 121313233321222312 222331 32 33 11 21 31 a a a a a a a a a a a a a a a a a a = (×) 8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。 (×) 三、单项选择题(每小题4分,满分20分) 1.位于n 级排列12111k k n i i i i i -+L L 中的数1与其余数形成的反序个数为( A )

行列式习题答案

行列式习题答案

2 线性代数练习题 第一章 行 列 式 系 专业 班 姓名 学号 第一节 n 阶 行 列 式 一.选择题 1.若行列式x 5 22 31521- = 0,则 = x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组? ? ?=+=+4 733 22 1 21 x x x x ,则方程组的解),(2 1 x x = [ C ] (A )(13,5) (B )(13-,5) (C )(13, 5 -) (D )(5,13--) 3 . 方 程 09 3 142112 =x x 根的个数是 [ C ] (A )0 (B )1 (C )2 (D )3

3 4.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315 a a a a a a (B )6553443226 11a a a a a a (C ) 34 6542165321a a a a a a (D ) 26 654413 3251a a a a a a 5.若55 443211) 541() 1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的 值及该项的符号为[ B ] (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负 6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1 2 21 --k k 0 ≠的充分必要条件是 3,1 k k ≠≠- 2.排列36715284的逆序数是 13 3.已知排列397461t s r 为奇排列,则r = 2,8,5 s

行列式练习题及答案

一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0000000010 020001000 -= ( ). (A )! n (B )!)1(2) 1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- 2.在函数x x x x x x f 2 1 1 23232101)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.

一、填空题 1.若D=._____324324324,133 32 3131 232221211312111113332 31 232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2913251323 2 213211x x --=0的根为___________ . 二、计算题 1. 8 1 71160451530169 14 4312----- 2. d c b a 100 1100 11001--- 3.a b b b a b b b a D n =

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 1 1 a a 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --1n c c += 1 1 1 a a a +-=n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -+1 1 001 (1) 0n n a a +-- 而 1 1 001 (1) 0n n a a +--最后列展开 = 21 (1)n +-2 n a a -=2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a = 11a a 2 n a a -=n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= + (120n b b b ≠) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 12112122 1 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++升阶 213111 n r r r r r r +---= 12121100 1001 n n a a a b b b --- 11 12,,1 j j c c b j n -+ =+= 1 1121 1 12100000000 n n a a a a a b b b b b + ++ =1 12 1 (1)n n n a a b b b b b + ++ 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +=1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式: 12111 1111 1 1n n a a D a ++= +

行列式-矩阵练习题

行列式 矩阵练习题 一、单项选择题 1. 设行列式D=a 522315 21-=0,则a =( B ). A. 2 B. 3 C. -2 D. -3 2. 设A 是k ×l 矩阵,B 是m ×n 矩阵,如果AC T B 有意义,则矩阵C 的为( B ). A. k ×m B. k ×n C. m ×l D. l ×m 3. 设A 、B 均为n 阶矩阵,下列各式恒成立的是( B ). A. AB=BA B. (AB)T =B T A T C. (A+B)2=A 2+2AB+B 2 D. (A+B)(A-B)=A 2-B 2 4. A 为n 阶方阵,下面各项正确的是( C ). A. |-A|=-|A| B. 若|A|≠0,则AX=0有非零解 C. 若A 2=A,则A=E D. 若秩(A)k B. 秩(A)≥k C. 秩(A)=k D. 秩(A)≤k 6. 设A 、B 为同阶方阵,则下面各项正确的是( A ). A. 若|AB|=0, 则|A|=0或|B|=0 B. 若AB=0, 则A=0或B=0 C. A 2-B 2=(A-B)(A+B) D. 若A 、B 均可逆,则(AB)-1=A -1B -1 7. 当k 满足( A )时,?????=+=++=++0 z 2y -kx 0z ky 2x 0z ky kx 只有零解. A. k=2或k=-2 B. k ≠2 C. k ≠-2 D. k ≠2且k ≠-2 8. 设A 为n 阶可逆阵,则下列( B )恒成立. A.(2A)-1=2A -1 B. (2A -1)T =(2A T )-1 C. [(A -1)-1]T =[(A T )-1]-1 D. [(A T )T ]-1=[(A -1)-1]T 二、填空题

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 11 a a O 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - L O =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --O 1n c c += 1 1 1 a a a +-O =n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -O +1 1 001 0(1) 0n n a a +--L O O 而 1 1 01 0(1) 0n n a a +--L O O 最后列展开 =21 (1)n +-2 n a a -O =2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a O = 11a a 2 n a a -O =n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= +L L M M M L (120n b b b ≠L ) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a L ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 121121 221 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++L L L M M M M L 升阶 213111 n r r r r r r +---= L 12121100100100n n a a a b b b ---L L L M M M M L 11 12,,1 j j c c b j n -+ =+= L 111211 1 2100 00000 n n a a a a a b b b b b + ++L L L L M M M M L =1121(1)n n n a a b b b b b + ++L L 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +L L M M M L =1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式:

线性代数习题册行列式-习题详解.doc

行列式的概念 一、选择题 1. 下列选项中错误的是 ( ) a b c d (B) a b d b (A) d a b ; c d c ; c a a 3c b 3d a b a b a b (C) c d c ; (D) c d c . d d 答案: D 2.行列式 D n 不为零,利用行列式的性质对 D n 进行变换后,行 列式的值( ). (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D) 保持相同的正负号. 答案: C 二、填空题 1. log a b 1 =. 1 log b a 解析: log a b 1 log a b log b a 1 1 1 0 . 1 log b a cos sin 2. 3 6 =. sin cos 3 6 cos sin 解析: 3 6 cos cos sin sin cos0 sin cos 3 6 3 6 2 3 6 2x 1 3 3. 函数 f (x) x x 1 中, x 3 的系数为 ; 2 1 x 2x 1 1 g( x) x x x 中, x 3 的系数为. 1 2 x 答案: -2 ; -2.

阶行列式 D n中的n最小值是. 答案: 1. 1 2 3 5.三阶行列式0 2 4 中第2行第1列元素的代数余子式 3 1 1 等于. 答案: 5. 6.若 2x 8 0 ,则x= . 1 2 答案: 2. 7. 在n 阶行列式 D a ij 中,当 i

行列式练习题目及答案

第一章 行列式 一、单项选择题 1.=0001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3. 若2 1 3332 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133312221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 6. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 7. 若2 23 5 00 1 011110403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 8. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解.

( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. 行列式=0 100111010100111. 2.行列式 =-0 10000200 0010Λ ΛΛΛΛΛΛn n . 3.行列式 =--0 01)1(2211)1(111Λ ΛΛΛ Λn n n n a a a a a a . 4.如果M a a a a a a a a a D ==3332 31 232221 131211 ,则=---=32 32 3331 2222232112121311133333 3a a a a a a a a a a a a D . 5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为 . 6.行列式 = --+---+---111 1 111111111111 x x x x . 7.n 阶行列式=+++λ λλ 111 1 11111Λ ΛΛΛ Λ. 8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为 . 9.设行列式5 678123487654 321= D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,

线性代数行列式经典编辑例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =-L L ,故 011102120 n n n D n n --= --L L M O L 1 ,1,,2 i i r r i n n --=-= L 0111111 1 1 n ----L L M O L 1,,1 j n c c j n +=-= L 121 1 021 (1)2(1)020 1 n n n n n n ------=----L L L L M O O L M L 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 011102120 n n n D n n --= --L L M O L 11,2,,1 111111120 i i r r i n n n +-=----= --L L L M O L 1 2,,1 0012 01231 j c c j n n n n +=---= ---L L L M O L =1 2(1) 2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+K K M M M M K 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 11 11n x x x -----O O = x D 1-n + a n 由于D 1= x + a 1,22 1 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n =L = x 1 -n D 1+ a 2x 2 -n +K + a 1-n x + a n =1 11n n n n x a x a x a --++++L 方法2 第2列的x 倍,第3列的x 2倍,K ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 2112 1 010010000n n n n x x x a xa a a x a -----++K K K M M M M K

线性代数行列式经典例题

线性代数行列式经典例题 The Standardization Office was revised on the afternoon of December 13, 2020

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =, 1,1, n a n =-,故 0111 02 12 n n n D n n --= --1,1,,2 i i r r i n n --=-= 0111111 1 1 n ----

1,,1 j n c c j n +=-= 1 2 110 2 1 ( 1) 2 (1) 20 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列.

方法2 01110 21 2 n n n D n n --= --11,2,,1 11111 1 12 i i r r i n n n +-=----= -- 12,, 1 00 1 2 0123 1 j c c j n n n n +=---= ---= 1 2 (1) 2 (1) n n n ----

例2.设a, b, c是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式: = 行列式即为y2前的系数. 于是 = 所以的充要条件是a + b + c = 0. 例3计算D n = 121 10 010 n n n x x a a a x a -- - - + 解:方法1 递推法按第1列展开,有

(完整word版)行列式习题1附答案

命题人或命题小组负责人签名: 教研室(系)主任签名: 分院(部)领导签名: 《线性代数》第一章练习题 一、填空题 1、_____________)631254(=τ8 2、要使排列(3729m14n5)为偶排列,则m =___8____, n =____6_____ 3、关于x 的多项式x x x x x 22 1 11 ---中含23,x x 项的系数分别是 -2, 4 4、 A 为3阶方阵,2=A ,则____________3* =A 108 5、四阶行列式)det(ij a 的次对角线元素之积(即41322314a a a a )一项的符号为 + 6、求行列式的值 (1) 469 24692341234=__1000___; (2)13 14102421 21=_0___ ; (3) 2005 200410020030102002 200120001--=___2005____; (4) 行列式2 430123 21---中元素0的代数余子式的值为___2____ 7、64 81497125 51 = 6 ; 125 27864259416 5 324 1111 --= 1680- 8、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1 5 。 9、0 111011 10= 2 ; =0 0010 0310 2222210 12 。 10、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 11、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 值不变 。 12、行列式 中在项的项共有 214312344214231144 43 42 41 343332312423222114131211,,24 !4a a a a a a a a a a a a a a a a a a a a a a a a =, 21431234a a a a 是该行列式的项,符号是 + 。 13、当a 为 1或2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解。 14、设=-+----=31211142,4 101322 13A A A D 则 0 15、若n 阶行列式中非零元素少于n 个,则该行列式的值为 0 。 16、设A ,B 均为3阶方阵,且,2,2 1 == B A 则=-)(21A B T 32 二、单项选择题

行列式练习题与答案资料讲解

行列式练习题与答案

收集于网络,如有侵权请联系管理员删除 第1章 行列式 (作业1) 一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0 0000010 020 001000Λ ΛΛΛΛΛΛ ΛΛΛ -= ( ). (A )!n (B )!)1(2 )1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- 2.在函数x x x x x x f 2 1 1 23232101)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列.

四、若n阶行列式中,等于零的元素个数大于n n 2,则此行列式的值等于多少?说明理由. 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 第1章 行列式 (作业2) 一、填空题 1.若D=._____324324324,133 3231312322212113 121111133 32 31 232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2913 2 51323 2 213211x x --=0的根为___________ . 二、计算题 1. 8 1 71160451530169 1 4 4312----- 2. d c b a 100 1100 11001--- 3.a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

行列式练习题及答案

第1章行列式(作业1) 一、填空题 1 ?设自然数从小到大为标准次序,则排列 1 3…(2n 1) 2 4…(2n )的逆序数为 排列1 3…(2n 1) (2 n)(2 n 2)…2的逆序数为 3.所有n 元排列中,奇排列的个数共 个. 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列 四、若n 阶行列式中,等于零的元素个数大于 n 2 n ,则此行列式的值等于多少?说明理由 2.在6阶行列式中, 823842831 a 56aga 65这项的符号为 0 0 0 0 0 2 1 0 0 0 1?由定义计算行列式 =( n 1 0 0 0 0 n (n 1)(n 2) (C ) ( 1)n! ( D ) ( 1)n(n "n! 2.在函数f (x ) x x 1 1x23 2 3x2 1 1 2 x x 3的系数是( (A) 1 (B ) -1 (C ) 2 (D ) 3 3.四阶行列式的展开式中含有因子 a 32的项,共有 )个. (A) 4; (B ) 2; (C ) 6; ( D ) 8. 、请按下列不同要求准确写出 n 阶行列式D det (a j )定义式: 、选择题 n( n 1) (A) n! ( B ) ( 1)^ n!

第1章 行列式 (作业2) 、填空题 =0的根为 2 二、计算题 a 11 a 12 a 13 4a 11 2a 11 3a 12 a 13 a 21 a 22 a 23 1,则 D 1 4a 21 2a 21 3a 22 a 2 3 a 31 a 32 a 33 4a 31 2a 31 3a 32 a 3 3 1?若 D= 2 1 3 4 a 1 0 0 4 1 9 16 2. 1 b 1 0 30 15 45 60 0 1 c 1 11 7 1 8 1 d 1. 3. D n 2.方程

行列式练习题及答案

$ 第1章 行列式 (作业1) 一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0000000010 020001000 -= ( ). (A )! n (B )!)1(2 ) 1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- ~ 2.在函数x x x x x x f 2 1 1 23232101)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; @ 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少说明理由. 《

第1章 行列式 (作业2) 一、填空题 1.若D=._____324324324,1333231312322212113 1211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2913251323 2213211x x --=0的根为___________ . 二、计算题 1. 8 1 71160451530169 1 4 4312----- 2. d c b a 100 1100 11001--- … { 3.a b b b a b b b a D n =

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j 即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a ……… a n1 a n2…a nn 这里 n j j j 2 1 表示对所有n元排列求和.称此式为n阶行列式的完全展开式. 用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算. 3、对角行列式计算

行列式典型例题

行列式典型例题-CAL-FENGHAI.-(YICAI)-Company One1

第二讲 行列式综合训练 第一部分 例 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 1 1 a a 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - =11 ()n a a a --=n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --1n c c += 1 1 1 a a a +-=n a -2n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -+1 1 001 (1)0n n a a +-- 而 1 1 001 ( 1)0n n a a +--最后列展开 = 21 (1)n +-2 n a a -=2n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a = 11a a 2 n a a -=n a -2n a - 方法5 利用公式 A O O B =A B . 例 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= + (120n b b b ≠) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a , 可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 12112 122 1 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++升阶213111 n r r r r r r +---= 1212110 01001 n n a a a b b b --- 11 12,,1 j j c c b j n -+ =+= 1 1121 1 1210000000 n n a a a a a b b b b b +++=1 121 (1)n n n a a b b b b b + ++ 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +=1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例 计算n 阶行列式:

相关主题
文本预览
相关文档 最新文档