当前位置:文档之家› 滚动轴承承载能力计算分析

滚动轴承承载能力计算分析

滚动轴承承载能力计算分析
滚动轴承承载能力计算分析

滚动轴承承载能力

计算分析

目录

1 分析基础 (1)

1.1理论基础:Hertz弹性体接触理论 (1)

1.2实验基础:许用接触应力 (2)

2 承载分析 (3)

2.1曲率计算 (3)

2.2轴向承载 (4)

2.3径向承载 (6)

2.4倾覆承载能力 (10)

2.5当量轴向力 (12)

3静容量系数f0系数确定 (13)

3.1许用接触应力 (13)

3.2静容量系数 (14)

4算例 (16)

4.1基本参数 (16)

4.2曲率计算 (16)

4.3计算接触应力常数Cp值 (16)

4.4计算许用接触应力 (16)

4.5计算静容量系数f0值 (17)

4.6静容量计算 (17)

5简化(统一)计算法 (18)

5.1简化公式 (18)

5.2不同曲率比时的静容量系数值 (18)

6 附录 (19)

附表1:曲率函数F(ρ)有关的椭圆积分 (19)

附表2:不同球数时的Jr值 (21)

1 分析基础

1.1 理论基础:Hertz 弹性体接触理论

由Hertz 推导出的点接触弹性变形和接触应力计算基本公式:

32113∑??? ??-?=ρ

μQ m E a (1-1) 3

2113∑??? ??-?=ρνQ m E b (1-2) ab

Q 23max πσ= (1-3) Q Ea

m e K )11()(25.12-=πδ (1-4) 式中 a ——接触椭圆长半轴 (mm )

b ——接触椭圆短半轴 (mm )

σmax ——最大接触应力(N/mm 2)

δ——弹性趋近量 (mm )

μ、ν——与曲率函数F (ρ)有关的椭圆积分,取值见附表1

E ——材料弹性模量(N/mm 2)

m

1——材料泊松比 Q ——使两接触体压紧的法向载荷 (N )

∑ρ——接触处主曲率之和

K(e)——第一类椭圆完全积分。

1.2 实验基础:许用接触应力

Hertz 弹性接触理论不可能包括塑性变形,但在塑性变形区仍然引用Hertz 接触理论,并假定塑性变形b δ与滚动体直径D w 有关,即用b δ/D w 来表示塑性变形。试验证明,在接触条件保持不变的情况下,单位塑性变形b δ/D w 随着负荷增长的幂级数而增长,随着曲率比的降低而增加,对于点接触,可得出图1所示的实验曲线图:

图1-1 点接触塑性变形、接触应力常数与许用接触应力间关系 上图中的实验曲线符合下列方程式

[]5

31p m a x w

b

4310C D ????? ??=σδ (1-5) 式中 [σmax]——最大许用接触应力

Cp ——接触应力常数

δb ——塑性变形量

Dw ——滚动体直径

根据Cp 值计算点接触接触应力的计算公式如下:

3

2

w p m a x D 1Q .010C =σ (1-6)

水资源承载力特征及其评价方法

水资源承载力特征及其评价方法 [摘要] 水资源在社会发展和人们的生产生活中不可或缺。合理的评价水资源是引导产业发展的前提,本文介绍了水资源承载力评价的基本方法;并阐述了水资源承载力的基本特征,为合理评价利用水资源做了铺垫。 [关键词水资源承载力,水资源评价,水资源承载力特征 [abstract] the water resources in social development and people’s production and life is indispensable. The reasonable evaluation of water resources is the premise of the guide industry development, this paper introduces the basic method of evaluation of water resources carrying capacity; And explains the basic characteristics of the water resources carrying capacity for reasonable evaluation and utilization of water resources do twisted. [key words water resources carrying capacity of water resources evaluation, water resources carrying capacity characteristics 1.引言 水资源承载力是指在可预见的技术、经济和社会生产条件下,水资源可供给工农业生产、人民生活和生态环境保护等用水的能力。水资源承载力分析的目的是为了揭示水资源与区域经济和人口之间的关系,实现水资源的合理利用和优化配置,确保区域自然资源和社会经济的可持续发展。本文从区域水资源合理利用和优化配置的主要手段区域水工程出发,针对目前水工程建设、投产运行对区域社会经济效益产生巨大贡献的同时,也带给区域生态环境一定的压力,研究了区域水工程建设对区域水资源人口和“社会经济—资源—环境”承载力的影响;分析计算了区域不同时期水工程影响下的水资源现状承载力和极限承载力以及各个时期区域人口经济的最大支撑规模。 2.水资源承载力评价方法简介 目前,国内外对水资源承载力评价采用的方法主要有三大类:经验估算法、综合指标法和复杂系统分析法,而且后面两种更为常见。 1)经验估算法。经验估算法是指操作主体应用专门知识和丰富的经验,据此提出一个近似的数字,它虽然可以满足决策者概念上的感性认识,但从估算精度来看,显然不能满足要求。经验估算法主要包括背景分析法、经验公式法和趋势预测法。

标准滚动轴承承载能力计算

标准滚动轴承承载能力计算 在跟踪架通用轴系中,标准滚动轴承是重要的部件,轴承的承载能力计算是轴系设计中的关键问题。采用通用轴系后,地平式跟踪架水平轴两端的轴承主要承受径向载荷,同时承受一定量的轴向载荷。垂直轴上的轴承要承载垂直轴及上部转体的负荷,载荷较大;另一方面垂直轴为了满足强度和刚度的要求,轴径一般较大,轴承的尺寸与轴要相互配合,因此使用时必须考虑轴承的尺寸和轴向承载能力。同时为了减少跟踪架的成本,尽量采用轴承厂批量生产的轴承。 角接触球轴承按公称接触角分为15°、25°、40°三种类型,公称接触角越大,轴向承载能力越强。 目前批量生产的角接触球轴承,尺寸最大是接触角为25°的7244AC,其外形尺寸为220 ×400×65。 下表中给出了7244AC 轴承的相关参数 轴承额定载荷选取的流程为: (1)计算滚动轴承的当量载荷 在实际应用中,根据跟踪架承载状况先估算出轴承承受的径向载荷和轴向载荷,则可计算出此时轴承的当量动载荷P 为: 式中X ——径向动载荷系数; Y ——轴向动载荷系数; ——载荷系数。 (2)基本额定动载荷 C 选取 计算出轴承实际工作时的当量载荷后,当轴承的预期使用寿命选定,轴 承最大转速n可知时,可计算出轴承应具有的基本额定动载荷C′,在手册中选择轴承时,所选轴承应满足基本额定载荷 C > C′。

式中 ——温度系数,可从机械设计手册中查得; ε——寿命指数,球轴承取3,滚子轴承取10/3。 由于角接触轴承的径向承载能力大于轴向承载能力,而其在垂直轴上的应用主要承受较大轴向载荷,因此必须考虑其轴向承载能力。 (3)轴承受轴向载荷时承载能力分析 在轴承转速不高时,可以忽略钢球离心力和陀螺力矩的影响,钢球与内外套圈的接触角相等。 由赫兹接触理论得到轴承滚动体与内外滚道的接触变形和负荷之间的相互关系,可以表示为 式中 —滚动体与内外滚道接触变形总量; K —系数; Q —滚动体承受载荷; t —指数,线接触时为0.9,点接触时为2/3。

持久状况承载能力极限状态计算

持久状况承载能力极限状态计算 在承载能力极限状态下,预应力混凝土梁沿正截面和斜截面都有可能破坏,下面验算这两类截面的承载力。 ① 2.4.1 正截面抗弯承载力计算 荷载基本组合表达式按《桥规》式(4.1.6-1) )(1111 00k Q Q k G n i Gi sd M M M γγγγ+=∑= 现以边梁弯矩最大的跨中截面为例进行正截面承载力计算。 1)求受压区高度x 先按第一类T 形截面梁,略去构造钢筋的影响,由式x b f A f A f f cd p pd S sd ' =+计算受压区高度x : mm h mm b f A f A f x f f cd S sd p pd 1803.802100 4.221900 33025021260''=<=??+?= += 受压区全部位于翼缘板内,说明确实是第一类T 形截面梁。 2)正截面承载力计算 跨中截面的预应力钢筋和非预应力钢筋的布置见图2-12和图2-17,预应力钢筋和非预应力钢筋的合力作用点到截面底边的距离(a )为 mm A f A f a A f a A f a s sd p pd s s sd p p pd 1601900 3302502126060 190033018025021260=?+???+??= ++= 所以mm a h h 184016020000=-=-= 按《公预规》式(5.2.2-3),钢筋采用钢绞线,混凝土标准强度为C50,查《公预规》表5.2.1得相对界限受压区高度4.0=b ξ。 mm h x b 73618404.00=?=≤ξ 从表2-10序号⑦知,边梁跨中截面弯矩组合设计值m kN M d ?=01.6612,由式子: )2/(0'0x h x b f M f cd d +≤γ )2/3.801840(3.8021004.22)2/(0'-???=+=x h x b f M f cd u )01.66120.1(595.67980m kN M m kN d ??=≥?=γ 可见边梁弯矩最大的跨中截面正截面承载力满足要求。以下为各个截面的验算,见表

极限状态承载力计算

极限状态承载力计算 1)和载效应组合计算 承载能力极限状态组合(基本组合): 00(1.2 1.4) 1.0(1.210.35 1.413.20)30.90()d Gk Qk M M M kN m γγ=+=-??+?=-? 00(1.2 1.4) 1.0(1.215.20 1.438.83)72.60()d Gk Qk V M M kN γγ=+=??+?= 作用短期效应组合(不计冲击力): 0.710.350.713.2019.59()sd Gk Qk M M M kN m =+=+?=? 作用长期效应组合(不计冲击力): 0.710.350.513.2016.95()ld Gk Qk M M M kN m =+=+?=? 承载能力极限状态组合(偶然组合,不同时组合汽车竖向力): 10.3588.5898.93()d Gk ck M M M kN m =+=+=? 2)正截面抗弯承载力 ①基本组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定: 00()2 ud cd x M f bx h γ≤- sd s cd f A f bx = 受压区高度应符合0b x h ξ≤,查看《公预规》表5.2.1得0.56b ξ=。设0223h mm =可得到: 020*******.90 =0.2230.22322.41000 6.27()121.5ud cd b M x h h f b mm h mm γξ=-- ?-- ?=<= 2s 1000 6.2722.4 502()280 A mm ??= = 其中1000b mm =,0217h mm =,33s a mm =,22.4cd f MPa =,280cd f MPa =。 实际每延米板配10束2根12φ,则222262502s A mm mm =>,满足要求。 ②偶然组合 对于矩形截面其正截面抗弯承载能力应符合《公预规》式(5.2.1-1)规定:

某市水资源承载能力评价报告

某市水资源承载能力评价报告 各县区水利局: 为贯彻落实《水利部办公厅关于做好建立全国水资源承载能力监测预警机制工作的通知》(办资源(XX)57号),根据省水利厅要求,我局组织编制了《XX市水资源承载能力评价报告》,现印发给你们,并就有关事项通知如下: 一、高度重视建立水资源承载能力评价工作。建立水资源承截能力监测预警机制是党中央、国务院全面深化改革的一项重大任务,是中共中央国务院《关于加快推进生态文明建设的意见》《生态文明体制改革总体方案》的重要内容,开展水资源承载能力是探索建立水资源预警机制预的重要基础,也是落实国家、省资源环境能力监测预警机制的一项重要内容,各县区要高度重视水资源承载能力评价工作,在现有评价成果的基础上,认真落实县域水资源承载能力评价工作。 二、严格水资源管控,制定和落实超载区域综合整治措施。各县区要根据水资源承载能力评价成果,严格落实水资源开发利用上线,严格水资源消耗总量和强度控制,大力开展节水型社会建设,积极推进节水减排,因地制宜地高效利用和有效保护水资源;积极利用当地地表水,外调水和非常规水源,替代地下水,认真开展超采区综合治理;对水功能

区纳污控制指标和水环境承载能力超截的水功能区和地区,要分析超载成因,制定和落实限制性措施,维护河湖健康,保障区域内水资源和经济社会可持续发展。各超载有关县区治理方案于2018 年5月底前上报市水利局。 三、积极研究和建立水资源预警机制工作。开展水资源承载力评价是严格水资源管理的基础,建立水资源承载能力动态监测预警机制,是强化水资源管理与保护的目标与任务。各县区要按照建立水资源承载能力预警的统一要求,加快水资源监控能力建设,完善水资源监测体系,建设水资源承载能力监测预警平台制定监测预警措施,力争2018年初步建立县级水资源承载能力动态监测预警机制,定期发布监测预警报告,对水资源承载负荷超过或接近承载能力的地区,实行预警提醒和限制性措施,构建政策引导机制和空间开发风险防控机制,促进水资源与人口经济均衡协调发展

20m箱梁换算截面几何特性计算及承载能力极限状态计算

换算截面几何特性计算 前面计算已知边主梁跨中截面的几何特性。毛截面面积62 1.0410mm A =?。 毛截面重心轴到1/2板高的距离:681551130mm d =-=(向上),毛截面对其中 心轴的惯性矩:114 1.3410mm I =?。 1 换算截面面积 0(1)(1) E p P E s s A A A A αα=+-+- 5 2 4 1.9510 5.65;3700mm 3.4510p Ep p s E A E α?====? 524 2105.8;3617m m 3.4510c E s s s E A E α?====? 621.0410mm A =? 代入得: 620 1.0410(5.651)3700(5.81)36171077821.9(mm ) A =?+-?+-?= 2 换算截面重心的位置 所有钢筋换算截面距毛截面重心的距离为: 01(1)(681100)(1)(68150)Ep p Es s S A A αα=-?-+-?- (5.651)3700581(5.81)3617631=-??+-?? 320951274.6(mm )= 0101020951274.6 19.44mm(1077821.9 S d A = ==向下) 则换算截面重心至箱梁截面下缘的距离为: 0155113019.44661.56mm l y =+-= 则换算截面重心至箱梁截面上缘的距离为: 0155113019.44440.44mm u y =-+= 换算截面重心至预应力钢筋重心的距离为:

01661.56100561.56mm p e =-= 换算截面重心至普通钢筋重心的距离为: 01661.5650611.56mm s e =-= 3换算截面惯性矩 222 0010101(1)(1)Ep p Es s s I I Ad Ape A e αα=++-+- 1162221.3410 1.041019.44(5.651)3700561.56(5.81)3617611.56=?+??+-??+-?? 1141.459610(mm )=? 4换算截面的弹性抵抗矩 下缘: 11 63 00101 1.459610220.6310mm 661.56l l I w y ?===? 上缘: 1163 00101 1.459610331.39610mm 440.44l u I w y ?===?

承载能力极限状态计算

一,为什么进行承载能力极限状态计算?? 答:承载能力极限状态是已经破坏不能使用的状态。正常使用极限状态是还可以勉强使用,承载能力极限状态是根据应力达到破坏强度,为了使建筑避免出现这种状态从而进行计算,使建筑数值高于极限承载能力状态的数值。 二,承载能力极限状态计算要计算那些方面?? 答:1作用效应组合计算;2正截面承载力的计算;3斜截面承载力计算;4扭曲截面承载力计算;5受冲击切承载力计算;6局部受压承载力计算。 三,1作用效应组合计算所用到的公式及其作用: 其效应组合表达式为: ) (2 111 00∑∑==++=n j QjK Qj C K Q Q m i GiK Gi ud S S S S γψγγγγ 跨中截面设计弯矩 M d =γG M 恒+γq M 汽+γq M 人 支点截面设计剪力 V d =γG V 恒+γG1V 汽+γG2V 人 2正截面承载力的计算所用到的公式及其作用:

(1)T形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。 翼缘板的平均厚度h′f =(100+130)/2=115mm ①对于简支梁为计算跨径的1/3。 b′f=L/3=19500/3=6500mm ②相邻两梁轴线间的距离。 b′f = S=1600mm ③b+2b h+12h′f,此处b为梁的腹板宽,b h为承托长度,h′f为不计承托的翼缘厚度。 b′f=b+12h′f=180+12×115=1560mm (2)判断T形截面的类型 设a s=120mm,h0=h-a s=1300-120=1180mm;

mm N M mm N h h h b f d f f f cd -?=>-?=- ??='- ''60601022501000.2779) 2 115 1180(11515608.13)2(γ 故属于第一类T 形截面。 (3)求受拉钢筋的面积A s mm h mm x x x x h x b f M f f cd d 11517.92:) 2 1180(15608.13102250) 2(:600='<=-?=?-'=解得根据方程γ 2 708728017 .9215608.13mm f x b f A sd f cd s =??= '= 满足多层钢筋骨架的叠高一般不宜超过0.15h~0.20h 的要求。 梁底混凝土净保护层取32mm ,侧混凝土净保护层取32mm ,两片焊接平面骨架间距为: ?? ?=>>=?-?-mm d mm mm 4025.1404.448.352322180 §2.2正截面抗弯承载力复核 ⑴跨中截面含筋率验算 mm a s 60.1137238) 4.188.35432(804)8.35232(6434=+?++?+= h 0=h -a s =1300-113.60=1186.40mm ???=>>=>=?== %19.0/45.0%2.0%39.340.11861807238 min 0sd td s f f bh A ρρ ⑵判断T 形截面的类型 N A f N h b f s sd f f cd 331064.202628072381072.247511515608.13?=?=>?=??=''

滚动轴承的分类及性能

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/9913233546.html,)滚动轴承的分类及性能 滚动轴承是将运转的轴与轴座之间的滑动摩擦变为滚动摩擦,从而减少摩擦损失的一种精密的机械元件。下面小编就简单介绍一下滚动轴承。 一、滚动轴承的分类 按结构类型分类 按滚动体和套圈的结构可分为: 深沟球轴承,滚针轴承,角接触轴承,调心球轴承,调心滚子轴承,推力球轴承,推力调心滚子轴承,圆柱滚子轴承,圆锥滚子轴承,带座外球面球轴承等等。 滚动轴承按照结构可分为: 1.深沟球轴承 深沟球轴承结构简单,使用方便,是生产批量最大,应用范围最广的一类轴承。它主要用一承受径向载荷,也可承受一定的轴向载荷。当轴承的径向游隙加大时,具有角接触轴承的功能,可承受较大的轴向载荷。应用于汽车,拖拉机,机床,电机,水泵,农业机械,纺织机械等。 2.滚针轴承 滚针轴承装有细而长的滚子(滚子长度为直径的3~10倍,直径一般不大于5mm),因此径向结构紧凑,其内径尺寸和载荷能力与其他类型轴承相同时,外径最小,特别适用与径向安装尺寸受限制的支承结构。根据使用场合不同,可选用无内圈的轴承或滚针和保持架组件,此时与轴承相配的轴颈表面和外壳孔表面

直接作为轴承的内.外滚动表面,为保持载荷能力和运转性能与有套圈轴承相同,轴或外壳孔滚道表面的硬度.加工精度和表面和表面质量应与轴承套圈的滚道相仿。此种轴承仅能承受径向载荷。例如:万向节轴,液压泵,薄板轧机,凿岩机,机床齿轮箱,汽车以及拖拉机机变速箱等。 3.角接触轴承 角接触球轴承极限转速较高,可以同时承受经向载荷和轴向载荷,也可以承受纯轴向载荷,其轴向载荷能力由接触角决定,并随接触角增大而增大。多用于:油泵、空气压缩机、各类变速器、燃料喷射泵、印刷机械。 4.调心球轴承 调心球轴承有两列钢球,内圈有两条滚道,外圈滚道为内球面形,具有自动调心的性能。可以自动补偿由于轴的绕曲和壳体变形产生的同轴度误差,适用于支承座孔不能保证严格同轴度的部件中。该中轴承主要承受径向载荷,在承受径向载荷的同时,亦可承受少量的轴向载荷,通常不用于承受纯轴向载荷,如承受纯轴向载荷,只有一列钢球受力。主要用在联合收割机等农业机械,鼓风机,造纸机,纺织机械,木工机械,桥式吊车走轮及传动轴上。 5.调心滚子轴承 调心滚子轴承句有两列滚子,主要用于承受径向载荷,同时也能承受任一方向的轴向载荷。该种轴承径向载荷能力高,特别适用于重载或振动载荷下工作,但不能承受纯轴向载荷;调心性能良好,能补偿同轴承误差。主要用途:造纸机械、减速装置、铁路车辆车轴、轧钢机齿轮箱座、破碎机、各类产业用减速机等等。 6.推力球轴承 推力球轴承是一种分离型轴承,轴圈"座圈可以和保持架"钢球的组件分离。轴圈是与轴相配合的套圈,坐圈是与轴承座孔相配合的套圈,和轴之间有间隙。推力球轴承只能抽手轴向负荷,单向推力球轴承只能承受一个房间的轴向负荷,

滚动轴承的额定载荷与寿命(必学)

滚动轴承寿命计算 滚动轴承的额定载荷与寿命: 1轴承的寿命与承载能力 1.1寿命 1.2基本额定载荷 2 根据额定动载荷选择轴承尺寸 2.1轴承的当量动载荷 2.2寿命公式 2.3影响轴承动载荷能力的主要因素 2.4修正额定寿命 3 根据额定静载荷选择轴承尺寸 3.1轴承的当量静载荷 3.2轴承所需额定静载荷的确定 3.3当量静载荷计算方法 3.4安全因数的选取 1 轴承的寿命与承载能力 1.1 寿命 轴承即使在正常的条件下使用,套圈和滚动体的滚动面也会因受到交变应力作用而发生材料疲劳,以致造成剥落。疲劳剥落是滚动轴承的主要失效形式,因此,轴承的寿命一般情况指其疲劳寿命。疲劳寿命的定义为:一套轴承,其中一个套圈(或垫圈)或滚动体的材料出现第一个疲劳扩展迹象之前,一个套圈(或垫圈)相对另一个套圈(或垫圈)的转数。 在某些特定情况下,轴承也可能因磨损过度或丧失必须的精度而失效,这时轴承的寿命是指磨损寿命或精度寿命,需另行考虑。 此外,轴承因烧伤,磨损,裂纹,卡死,生锈等都可能无法使用,但这些应称为轴承故障,须与轴承寿命区分开。轴承选用不当,安装欠妥,润滑不良及密封不好等都是发生故障的原因,排除这些原因便可避免轴承发生故障。(1)可靠性实验室试验和实际应用中表明,同一结构型式和外形尺寸的一组轴承,在相同的运转条件下,实际疲劳寿命大不相同。一批轴承的疲劳寿命服从一定的概率分布规律,所以轴承的寿命总是与其失效概率相联系。轴承寿命的可靠性用可靠度指标衡量,它指一组在同一条件下运转的,近于相同的滚动轴承所期望达到或超过规定

寿命的百分率。单个滚动轴承的可靠度为该轴承达到或超过规定寿命的概率。 (2)基本额定寿命和修正额定寿命对于一套滚动轴承或一组在同一条件下运转的,近于相同的滚动轴承,其寿命是指与90%的可靠度,常用的材料和加工质量以及常规的运转条件相关的寿命,称之为基本额定寿命。考虑所要求的可靠性水平,特殊的轴承性能和具体的运转条件,而对基本额定寿命进行修正所得到的寿命则称为修下正额定寿命。 1.2 基本额定载荷 基本额定载荷包含基本额定动载荷和额定静载荷。表征轴承在旋转(转速n>10r/mim)时的承载能力为基本额定动载荷,表征轴承在静止或缓慢旋转(转速n≤10r/min)时的承载能力为额定静载荷。 (1)径向基本额定动载荷径向基本额定动载荷系指一套轴承的基本额定寿命为一百万转时假想能承受的恒定径向载荷。对于单列角接触轴承,该载荷指引起轴承套圈相互间产生纯径向位移的载荷的径向分量。 (2)轴向基本额定动载荷轴向基本额定动载荷系指滚动轴承的基本额定寿命为一百万转时假想作用于滚动轴承上恒定中心轴向载荷。 (3)径向额定静载荷径向额定静载荷系指在滚动轴承静止或缓慢旋转状态下,其最大载荷滚动体与滚道接触中心处引起与下列接触应力相当的假想径向静载荷。 4600MPa调心球轴承 4200MPa所有其他的向心球轴承 4000MPa所有的向心滚子轴承 对于单列角接触球轴承,其径向额定静载荷是指使轴承套圈间仅产生相对纯径向位移的载荷的径向分量。 (4)轴向额定静载荷轴向额定静载荷系指在滚动轴承在最大滚动体与滚道接触中心处引起与下列接触应力相当的假想中心轴向静载荷。 4200MPa推力球轴承 4000MPa所有推力滚子轴承 2 根据额定动载荷选择轴承尺寸 2.1轴承的当量动载荷 轴承的基本额定动载荷是在假定的运转条件下确定的。其载荷条件为:向心轴承仅承受纯径向载荷,推力轴承仅承受纯轴向载荷。实际上,轴承在大多数应用场合,常常同时承受径向和轴向载荷,因此,在进行轴承寿命计算时,必须把实际载荷转换成与额定动载荷的载荷条件相一致的当量动载荷。径向当量动载荷是指一恒定的径向载荷。轴向当量动载荷是指一恒定中心轴向载荷。在这一载荷作用下,滚动轴承具有与实际载荷作用相同的寿命。 2.2 寿命公式 轴承的基本额定寿命,基本额定动载荷和当量动载荷三者之间的关系,可用下列公式表示:

建筑结构应按承载能力极限状态和正常使用极限状态设计

第一章概述 建筑结构应按承载能力极限状态和正常使用极限状态设计。前者指结构或构件达到最大承载力或达到不适于继续承载的变形时的极限状态;后者为结构或构件达到正常使用的某项规定限值时的极限状态[1]。钢结构可能出现的承载能力极限状态有:①结构构件或连接因材料强度被超过而破坏;②结构转变为机动体系;③整个结构或其中一部分作为刚体失去平衡而倾覆;④结构或构件丧失稳定;⑤结构出现过度塑性变形,不适于继续承载;⑥在重复荷载下构件疲劳断裂。其中稳定问题是钢结构的突出问题,在各种类型的钢结构中,都可能遇到稳定问题,因稳定问题处理不利造成的事故也时有发生。 1.1钢结构的失稳破坏 钢结构因其优良的性能被广泛地应用于大跨度结构、重型厂房、高层建筑、高耸构筑物、轻型钢结构和桥梁结构等。如果钢结构发生事故则会造成很大损失。 1907年,加拿大圣劳伦斯河上的魁北克桥,在用悬臂法架设桥的中跨桥架时,由于悬臂的受压下弦失稳,导致桥架倒塌,9000t钢结构变成一堆废铁,桥上施工人员75人罹难。大跨度箱形截面钢桥在1970年前后曾出现多次事故[2]。 美国哈特福德市(Hartford City)的一座体育馆网架屋盖,平面尺寸92m×110m,该体育馆交付使用后,于1987年1月18日夜突然坍塌[3]。由于网架杆件采用了4个等肢角钢组成的十字形截面,其抗扭刚度较差;加之为压杆设置的支撑杆有偏心,不能起到预期的减少计算长度的作用,导致网架破坏[4]。20世纪80年代,在我国也发生了数起因钢构件失稳而导致的事故[5]。 科纳科夫和马霍夫曾分析前苏联1951—1977年期间所发生的59起重大钢结构事故,其中17起事故是由于结构的整体或局部失稳造成的。如原古比雪夫列宁冶金厂锻压车间在1957年末,7榀钢屋架因压杆提前屈曲,连同1200 m2屋盖突然塌落。 高层建筑钢结构在地震中因失稳而破坏也不乏其例。1985年9月19日,墨西哥城湖泊沉淀区发生8.1级强震,持时长达180s,只隔36h又发生一次7.5级强余震。震后调查表明,位于墨西哥城中心区的Pino Suarez综合楼第4层有3根钢柱严重屈曲(失稳),横向X形支撑交叉点的连接板屈曲,纵向桁架梁腹杆屈曲破坏[6]。1994年发生在美国加利福尼亚州Northridge的地震震害表明,该地区有超过100座钢框架发生了梁柱节点破坏[7],对位于Woodland Hills地区的一座17层钢框架观察后发现节点破坏很严重[8],竖向支撑的整体失稳和局部失稳现象明显。1995年发生在日本Hyogoken-Nanbu的强烈地震中,钢结构发生的典型破坏主要有局部屈曲、脆性断裂和低周疲劳破坏[9]。 对结构构件,强度计算是基本要求,但是对钢结构构件,稳定计算比强度计算更为重要。强度问题与稳定问题虽然均属第一极限状态问题,但两者之间概念不同。强度问题关注在结构构件截面上产生的最大内力或最大应力是否达到该截面的承载力或材料的强度,因此,强度问题是应力问题;而稳定问题是要找出作用与结构内部抵抗力之间的不稳定平衡状态,即变形开始急剧增长的状态,属于变形问题。稳定问题有如下几个特点: (1)稳定问题采用二阶分析。以未变形的结构来分析它的平衡,不考虑变形对作用效应的影响称为一阶分析(FOA—First Order Analysis);针对已变形的结构来分析它的平衡,则是二阶分析(SOA—Second Order Analysis)。应力问题通常采用一阶分析,也称线性分析;稳定问题原则上均采用二阶分析,也称几何非线性分析。 (2)不能应用叠加原理。应用叠加原理应满足两个条件:①材料符合虎克定律,即应力与应变成正比;②结构处于小变形状态,可用一阶分析进行计算。弹性稳定问题不满足第二个条件,即对二阶分析不能用叠加原理;非弹性稳定计算则两个条件均不满足。因此,叠加原理不适用于稳定问题。 (3)稳定问题不必区分静定和超静定结构。对应力问题,静定和超静定结构内力分析方法

水资源承载力

水资源承载力科技名词定义 中文名称:水资源承载力 英文名称:water resources supporting capacity;water resource carrying capacity 定义1:在一定的社会经济和技术条件下,在水资源可持续利用前提下,某一区域(流域)当地水资源能够维系和支撑的最大人口和经济规模(或总量)。应用学科:地理学(一级学科);水文学(二级学科) 定义2:一定范围内,可利用水资源能维护支撑人类社会和自然环境生存与发展的能力。应用学科:资源科技(一级学科);水资源学(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 目前,许多学者给出了水资源承载力的定义,水资源承载力一词也广泛应用于研究某一地区尤其是缺水地区的工业、农业、城市乃至整个地区的经济发展所需要的水资源供需平衡和生态系统保护,但水资源承载力迄今仍是一个外延模糊、内涵混沌的概念,其内涵的界定尚存在一定的分歧和不足。分析这些定义,主要可以归纳为三种类型,第一种观点是水资源开发规模论,水资源开发规模论认为水资源承载能力是在一定社会技术经济阶段,在水资源总量的基础上,通过合理分配和有效利用所获得的最合理的社会、经济与环境协调发展的水资源开发利用的最大规模。水资源承载能力是水资源可开发利用量,必须首先满足维护生态环境的起码用水要求,以及合理分配国民经济各部的用水比例。“在一定的技术经济水平和社会生产条件下,水资源可最大供给工农业生产、人民生活和生态环境保护等用水的能力,也即水资源最大开发容量;第二种观点是水资源承载最大人口论,水资源承载力为:在某一具体的发展阶段下,以可以预见的技术、经济和社会发展水平为依据,以可持续发展为原则,以维护生态环境良性发展为前提,在水资源合理配置和高效利用的条件下,区域社会经济发展的最大人口容量;第三种观点是水资源支撑社会经济系统持续发展能力论,持这种观点的学者较多,虽然承认水资源承载力最终要以一定的人口总量规模为落脚点,但进一步认为这种人口规模是与最大的生活水平也就是人均综合效用水平相对应的,换言之,在可持续发展的前提下,“最大”的含义就是对应着最优的发展水平。认为水资源承载力是“某一地区的水资源在某一具体历史发展阶段下,以可预见的技术、经济和社会发展水平为依据,以可持续发展为原则,以维护生态环境良胜循环发展为条件,经过合理优化配置,对该地区社会经济发展的最大支撑能力。“在一定的水资源开发利用阶段,满足生态需水的可利用水量能够维系有限发展目标的最大的社会一经济规模。

滚动轴承实验

滚动轴承实验报告 一、实验目的 1、测定和绘制滑动轴承径向油膜压力曲线,求轴承的承载能力。 2、观察载荷和转速改变时油膜压力的变化情况。 3、观察径向滑动轴承油膜的轴向压力分布情况。 4、了解径向滑动轴承的摩擦系数f的测量方法和摩擦特性曲线的绘制原理及方法。 二、实验原理 1. 左、右滚动轴承座可轴向移动,各装有轴向载荷传感器,可通过电脑或数显测试并计算单个滚动轴承轴向载荷与总轴向载荷的关系; 2. 右滚动轴承上装有8个径向载荷传感器,可通过计算机或操作面板显示测绘滚动轴承在轴向、径向载荷作用下轴承径向载荷分布变化情况; 3. 通过电脑直接测量滚子对外圈的压力及变化情况,绘制滚动体受载荷变化曲线。 二、实验设备 1. ZQ-GZ滚动轴承实验台 2. 滚动轴承:圆锥滚子轴承30310 深沟球轴承6310 3. 可移动的滚动轴承座:1对; 4. 滚动轴承、径向加载装置:1套;(作用点位置可在0~180mn内任意调节); 5. 滚动轴承径向载荷传感器:精度等级:0.05 量程:10000N 1个/台; 6. 轴向载荷传感器:量程:5000N 2个/台; 四、实验内容及注意事项 1. 滚动轴承径向载荷分布及变化实验;测试在总轴向和径向载荷作用下,滚动轴承径向载荷分布及变化情况,并作出载荷分布曲线。 2. 注意事项 a)选定一对实验轴承,本实验装置提供向心球轴承和圆锥滚子轴承,每一种轴承有大小型号各一种出厂已装配好可任选一台 b)实验前首先调整好左右轴向受力支撑(称重传感器支座)位置,使端盖外伸与传感器刚好接触. c)静态实验需调节加载支座,使加载力的方向保持在一定角度,并保持空载。

6容许应力法和承载能力极限状态法在钢结构设计中的区别

容许应力法和概率(极限状态)设计法 在钢结构设计中的应用 中铁五局集团公司经营开发部肖炳忠 内容提要 本文简要介绍了容许应力法、破坏阶段法、极限状态法、概率(极限状态)设计法四个结构设计理论,并且列出了我们经常用的容许应力法和概率(极限状态)设计法的实用表达式和参数选用,通过对上述两种方法参数的比较,总结出我们在工程施工中临时结构设计的实用办法和注意事项,以期望提高广大现场施工技术人员的设计水平的目的。 1、前言 我们在钢结构设计中经常用到容许应力法和概率(极限状态)设计法,有些没有经验的技术人员在设计计算中经常将二者混淆,因此有必要将两种设计计算方法进行介绍和比较,供广大技术人员参考。 2、四种结构设计理论简述 、容许应力法 容许应力法将材料视为理想弹性体,用线弹性理论方法,算出结构在标准荷载下的应力,要求任一点的应力,不超过材料的容许应力。材料的容许应力,是由材料的屈服强度,或极限强度除以安全系数而得。 容许应力法的特点是: 简洁实用,K值逐步减小; 对具有塑性性质的材料,无法考虑其塑性阶段继续承载的能力,设计偏于保守; 用K使构件强度有一定的安全储备,但K的取值是经验性的,且对不同材料,K值大并不一定说明安全度就高; 单一K可能还包含了对其它因素(如荷载)的考虑,但其形式不便于对不同的情况分别处理(如恒载、活载)。 、破坏阶段法 设计原则是:结构构件达到破坏阶段时的设计承载力不低于标准荷载产生的构件内力乘以安全系数K。 破坏阶段法的特点是: 以截面内力(而不是应力)为考察对象,考虑了材料的塑性性质及其极限强度; 内力计算多数仍采用线弹性方法,少数采用弹性方法; 仍采用单一的、经验的安全系数。 、极限状态法 极限状态法中将单一的安全系数转化成多个(一般为3个)系数,分别用于考虑荷载、荷载组合和材料等的不定性影响,还在设计参数的取值上引入概率和统计数学的方法(半概率方法)。 极限状态法的特点是: 在可靠度问题的处理上有质的变化。这表现在用多系数取代单一系数,从而避免了单一系数笼统含混的缺点。 继承了容许应力法和破坏阶段法的优点; 在结构分析方面,承载能力状态以塑性理论为基础;正常使用状态以弹性理论为基础; 对于结构可靠度的定义和计算方法还没法给予明确回答。 、概率(极限状态)设计法

二建考试必备-建筑结构与建筑设备 (14)承载能力极限状态计算

第三节 承载能力极限状态计算 承受荷载产生的弯矩和剪力的构件,称为受弯构件(如梁、板)。它在弯矩作用下可能会发生正截面受弯破坏;同时在弯矩和剪力的共同作用下又可能会发生斜截面受剪破坏。 承受荷载产生的轴力、弯矩和剪力的构件,称为受压构件(即柱)。当然它也存在着正截面受弯破坏和斜截面受剪破坏的可能。 一、正截面承截能力计算 (一)破坏形态 ( 1 )受弯构件(梁),因其配筋率ρ的不同,可能出现适筋梁破坏,超筋梁破坏和少筋梁破坏等三种。它们的破坏特征为; 1 )适筋梁破坏(配筋量适中)——受拉区钢筋先达屈服强度,然后受压区边缘纤维混凝土的压应变达到其极限压应变。εcu 值而破坏。该破坏属延性破坏。 2 )超筋梁破坏(配筋量过多) ——当受拉压钢筋还未达屈服强度,而受压区边缘纤维混凝土就因已达εcu 值而破坏。该破坏属脆性破坏。 3 )少筋梁破坏(配筋量过少)——当梁一开裂,受拉钢筋立即达屈服强度,梁被拉为两部分而断裂破坏。它的极限弯矩与开裂弯矩几乎相等,该破坏也属脆性破坏。 ( 2 )偏压构件(柱)的破坏形态有:大偏心受压破坏和小偏心受压破坏等两种。它们的破坏特征为: 1 )大偏心受压破坏 ——远离轴向力 N 一侧的受拉钢筋先达屈服强度,然后另一侧截面外边缘纤维混凝土的压应变达εcu 而破坏。(' 2s x a 时,该侧的受压钢筋也达受压屈服强度)。该破坏属延性破坏。 2 )小偏心受压破坏——靠近轴向力 N 一侧的外边缘纤维混凝土压应变先达到εcu ,同时这一侧的受压钢筋也达受压屈服强度;而远离轴向力 N 一侧的钢筋,无论是受拉还是受压,均未屈服而破坏。该破坏属脆性破坏。 (二)计算基本假定 ( 1 )截面应变保持平面; ( 2 )不考虑混凝土的抗拉强度; ( 3 )混凝土受压的应力与应变关系曲线,如图 4 一 3 所示:

【精品】滚动轴承的额定载荷与寿命(必学)

滚动轴承寿命计算滚动轴承的额定载荷与寿命: 1轴承的寿命与承载能力 1.1寿命 1.2基本额定载荷 2根据额定动载荷选择轴承尺寸 2.1轴承的当量动载荷 2.2寿命公式 2。3影响轴承动载荷能力的主要因素 1 / 21

2.4 修正额定寿命 3根据额定静载荷选择轴承尺寸 3.1轴承的当量静载荷 3.2轴承所需额定静载荷的确定 3。3当量静载荷计算方法 3.4安全因数的选取 1轴承的寿命与承载能力 1.1寿命 轴承即使在正常的条件下使用,套圈和滚动体的滚动面也会因受到交变应力作用而发生材料疲劳,以致造 2 / 21

成剥落。疲劳剥落是滚动轴承的主要失效形式,因此,轴承的寿命一般情况指其疲劳寿命.疲劳寿命的定义为:一套轴承,其中一个套圈(或垫圈)或滚动体的材料出现第一个疲劳扩展迹象之前,一个套圈(或垫圈)相对另一个套圈(或垫圈)的转数。 在某些特定情况下,轴承也可能因磨损过度或丧失必须的精度而失效,这时轴承的寿命是指磨损寿命或精度寿命,需另行考虑. 此外,轴承因烧伤,磨损,裂纹,卡死,生锈等都可能无法使用,但这些应称为轴承故障,须与轴承寿命区分开.轴承选用不当,安装欠妥,润滑不良及密封不好等都是发生故障的原因,排除这些原因便可避免轴承发生故障。(1)可靠性 3 / 21

实验室试验和实际应用中表明,同一结构型式和外形尺寸的一组轴承,在相同的运转条件下,实际疲劳寿命大不相同。一批轴承的疲劳寿命服从一定的概率分布规律,所以轴承的寿命总是与其失效概率相联系。轴承寿命的可靠性用可靠度指标衡量,它指一组在同一条件下运转的,近于相同的滚动轴承所期望达到或超过规定寿命的百分率。单个滚动轴承的可靠度为该轴承达到或超过规定寿命的概率。 (2)基本额定寿命和修正额定寿命对于一套滚动轴承或一组在同一条件下运转的,近于相同的滚动轴承,其寿命是指与90%的可靠度,常用的材料和加工质量以及常规的运转条件相关的寿命,称之为基本额定寿命。考虑所要求的可靠性水平,特殊的轴承性能和具体的运转条件,而对基本额定寿命进行修正所得到的寿命则称为修下正额定寿命。 1。2基本额定载荷 基本额定载荷包含基本额定动载荷和额定静载荷.表征轴承在旋转(转速n>10r/mim)时的承载能力为基本额定动载荷,表征轴承在静止或缓慢旋转(转速n≤10r/min)时的承载能力为额定静载荷。 (1)径向基本额定动载荷径向基本额定动载荷系指一套轴承的基本额定寿命为一百万转时假想能承受的恒定径向载荷.对于单列角接触轴承,该载荷指引起轴承套圈相互间产生纯径向位移的载荷的径向分量. (2)轴向基本额定动载荷轴向基本额定动载荷系指滚动轴承的基本额定寿命为一百万转时假想作用于滚动轴承上恒定中心轴向载荷。 (3)径向额定静载荷径向额定静载荷系指在滚动轴承静止或缓慢旋转状态下,其最大载荷滚动体与滚道接触中心处引起与下列接触应力相当的假想径向静载荷。 4600MPa 调心球轴承 4200MPa 所有其他的向心球轴承 4000MPa 所有的向心滚子轴承 对于单列角接触球轴承,其径向额定静载荷是指使轴承套圈间仅产生相对纯径向位移的载荷的径向分量. (4)轴向额定静载荷轴向额定静载荷系指在滚动轴承在最大滚动体与滚道接触中心处引起与下列接触应力相当的假想中心轴向静载荷。 4200MPa 推力球轴承 4000MPa 所有推力滚子轴承 2根据额定动载荷选择轴承尺寸 2。1轴承的当量动载荷 轴承的基本额定动载荷是在假定的运转条件下确定的。其载荷条件为:向心轴承仅承受纯径向载荷,推力轴承仅承受纯轴向载荷.实际上,轴承在大多数应用场合,常常同时承受径向和轴向载荷,因此,在进行轴承寿命计算时,必须把实际载荷转换成与额定动载荷的载荷条件相一致的当量动载荷。径向当量动载荷是指一恒定的径向载荷。轴向当 2 / 21

承载能力极限状态包括结构构件或连接因强度超过而破坏结构

一级建造师建筑实务学习资料 承载能力极限状态:包括①结构构件或连接因强度超过而破坏。②结构或其一部分作为刚体而失去平衡(如倾覆、滑移)③在反复荷载下构件或连接发生疲劳破坏。 正常使用的极限状态:包括①构件在正常使用条件下产生过度变形,导致影响正常使用或建筑外观。②构件过早产生裂缝或裂缝发展过宽。③动力荷载下结构或构件产生过大振幅等。 预应力混凝土构件的混凝土最低强度等级不应低于C40。 细长压杆的临界力公式柱的一端固定一端自由时,L0=2L,L为杆件的实际长度;两端固定时,L0=0.5L;一端固定一端铰支时,L0=0.7L;两端铰支时,L0=L.均布荷载作用下悬臂梁的最大变形公式(),矩形截面梁的惯性矩 要求设计使用年限为50年的钢筋混凝土及预应力混凝土结构,其纵向受力钢筋的混凝土保护层厚度不应小于钢筋的公称直径,一般为15~40mm(保护层最小厚度:一类环境,板墙壳≤C20的20mm,≥C25的15mm;梁≤C20的30mm,≥C25的25mm;柱均为30mm) 一类环境设计年限50年的结构混凝土:最小保护层厚度,最大水灰比0.65,最小水泥用量225kg/m3,最低混凝土强度等级C20,最大氯离子含量点水泥用量1.0%,最大碱含量(kb/m3)(不限制) M抗≥(1.2~1.5)M倾 现行抗震设计规范适用于抗震设防烈火度为6、7、8、9度地区。三个水准“小震不坏,中震可修,大震不倒”。抗震设计根据功能重要性分为甲,乙,丙,丁四类。大量的建筑物属于丙类。 多层砌体房屋的抗震构造措施:①设置钢筋混凝土构造柱;②设置钢筋混凝土圈梁与构造柱连接起来,增强房屋的整体性;③墙体有可靠的连接,楼板和梁应有足够的搭接长度和可靠连接④加强楼梯间的整体性 框架结构的抗震构造措施:框架结构震害的严重部位多发生在框架梁柱节点和填充墙处;一般柱震害重于梁,柱顶震害重于柱底,角柱震害重于内柱,短柱震害重于一般柱。框架设计成延性框架,遵守强柱、强节点、强锚固,避免短柱、加强角柱,框架沿高度不宜突变,避免出现薄弱层,控制最小配筋率,限制配筋最小直径等原则。构造上采取受力筋锚固适当加长,节点处箍筋适当加密等措施。 导热系数小于0.25W/(m.K)的材料称为绝热材料 防水隔离层:楼板四周除门洞外,混凝土翻边高度不应小于120mm。防水隔离层不得做在与墙交接处,应翻边高度不宜小于150mm。孔洞四周和平台临空边缘,翻边高度不宜小于100mm。 楼梯平台上部及下部过道处的净高不应小于2米,梯段净高不应小于2.2米.楼梯踏步

1承载能力极限状态

1承载能力极限状态:包括①结构构件或连接因强度超过而破坏。②结构或其一部分作为刚体而失去平衡(如倾覆、滑移)③在反复荷载下构件或连接发生疲劳破坏。 2正常使用的极限状态:包括①构件在正常使用条件下产生过度变形,导致影响正常使用或建筑外观。②构件过早产生裂缝或裂缝发展过宽。③动力荷载下结构或构件产生过大振幅等。 3预应力混凝土构件的混凝土最低强度等级不应低于C40。 4细长压杆的临界力公式柱的一端固定一端自由时,L0=2L,L为杆件的实际长度;两端固定时,L0=0.5L;一端固定一端铰支时,L0=0.7L;两端铰支时,L0=L.均布荷 载作用下悬臂梁的最大变形公式(),矩形截面梁的惯性矩 5要求设计使用年限为50年的钢筋混凝土及预应力混凝土结构,其纵向受力钢筋的混凝土保护层厚度不应小于钢筋的公称直径,一般为15~40mm(保护层最小厚度:一类环境,板墙壳≤C20的20mm,≥C25的15mm;梁≤C20的30mm,≥C25的25mm;柱均为30mm)6一类环境设计年限50年的结构混凝土:最小保护层厚度,最大水灰比0.65,最小水泥用量225kg/m3,最低混凝土强度等级C20,最大氯离子含量点水泥用量1.0%,最大碱含量(kb/m3)(不限制) M抗≥(1.2~1.5)M倾 7现行抗震设计规范适用于抗震设防烈火度为6、7、8、9度地区。三个水准“小震不坏,中震可修,大震不倒”。抗震设计根据功能重要性分为甲,乙,丙,丁四类。大量的建筑物属于丙类。 8多层砌体房屋的抗震构造措施:①设置钢筋混凝土构造柱;②设置钢筋混凝土圈梁与构造柱连接起来,增强房屋的整体性;③墙体有可靠的连接,楼板和梁应有足够的搭接长度和可靠连接④加强楼梯间的整体性 框架结构的抗震构造措施:框架结构震害的严重部位多发生在框架梁柱节点和填充墙处;一般柱震害重于梁,柱顶震害重于柱底,角柱震害重于内柱,短柱震害重于一般柱。框架设计成延性框架,遵守强柱、强节点、强锚固,避免短柱、加强角柱,框架沿高度不宜突变,避免出现薄弱层,控制最小配筋率,限制配筋最小直径等原则。构造上采取受力筋锚固适当加长,节点处箍筋适当加密等措施。 导热系数小于0.25W/(m.K)的材料称为绝热材料 防水隔离层:楼板四周除门洞外,混凝土翻边高度不应小于120mm。防水隔离层不得做在与墙交接处,应翻边高度不宜小于150mm。孔洞四周和平台临空边缘,翻边高度不宜小于100mm。 楼梯平台上部及下部过道处的净高不应小于2米,梯段净高不应小于2.2米.楼梯踏步最小宽度和最大宽度:住宅共用楼梯0.25m,0.18m;幼儿园小学校等楼梯0.26m,0.15m。 散水的坡度可为3%~5%。散水宜为600~1000mm,无组织排水,散水宽度可按檐口线放出200~300mm。散水与外墙之间宜设缝,缝宽可为20~30mm,缝内应填弹性膨胀防水材料。 女儿墙:与屋顶交接处必须做泛水(高度≥350mm),压檐板上表面应向屋顶方向倾斜10%,并出挑≥60mm。 防火门、防火窗应划分为甲、乙、丙三级。其耐火极限:甲级为1.2h,乙级为0.9h,丙级为0.6h。 六大常用水泥的初凝时间均不得短于45min,硅酸盐水泥的终凝时间不得长于6.5h,其他五类常用水泥的终凝时间不得长于10h。初凝时间不符合规定者为废品,终凝时间不符合规定者为不合格品。

相关主题
文本预览
相关文档 最新文档