当前位置:文档之家› 高中物理高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题

高中物理高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题

高中物理高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题
高中物理高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题

高中物理高考物理速度选择器和回旋加速器常见题型及答题技巧及练习题

一、速度选择器和回旋加速器

1.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场

区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;

(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?

【答案】(1)AB 连线上距离A 3

L 处,(2)34。

【解析】 【详解】

(1)电场、磁场共存时,粒子匀速通过可得:

qvB qE =

仅有电场时,粒子水平方向匀速运动:

L vt =

竖直方向匀加速直线运动:

2

122L qE t m

= 联立方程得:

2qEL

v m

=

仅有磁场时:

2

mv qvB R

= 根据几何关系可得:

R L =

设粒子从M 点飞出磁场,由几何关系:

AM 2

22L R ??- ???

=32L 所以粒子离开的位置在AB 连线上距离A 点

3

2

L 处; (2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:

2tan 12

L

L α==

解得:45α?=

仅有磁场时,设飞出时速度偏角为β:

tan 3AM

OA

β=

= 解得:60β?

= 所以偏转角之比:

34

αβ=。

2.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。其中一些粒子能沿图中虚线做直线运动到达上方竖直圆上的a 点,圆内存在磁感应强度大小为B 2、方向水平向里的匀强磁场。其中S 、a 、圆心O 点在同一竖直线上。不计粒子的重力和粒子之间的作用力。求: (1)能到达a 点的粒子速度v 的大小;

(2)若e 、f 两粒子带不同种电荷,它们的比荷之比为1︰3,都能到达a 点,则对应A 、B 两金属板间的加速电压U 1︰U 2的绝对值大小为多大;

(3)在满足(2)中的条件下,若e 粒子的比荷为k ,e 、f 两粒子在磁场圆中射出的两位置恰好

在圆形磁场的同一条直径上,则两粒子在磁场圆中运动的时间差△t 为多少?

【答案】(1)1

E v B =;(2)12:3:1U U =;(3)12

29t t t kB π

?=-= 【解析】 【详解】

解:(1)能达到a 点的粒子速度设为v ,说明在C 、D 板间做匀速直线运动,有:1qvB qE = 解得:1

E

v B =

(2)由题意得e 、f 两粒子经A 、B 板间的电压加速后,速度都应该为v ,根据动能定理得:

21

qU mv 2

=

它们的比荷之比:

e f

e f

q q :1:3m m = 得出:12U :U 3:1=

(3)设磁场圆的半径为R ,e 、f 粒子进入磁场圆做圆周运动

对e 粒子:2

1211v q vB m r =

对f 粒子:2

2222

v q vB m r =

解得:12r 3r 1

=

e 、

f 两粒子在磁场圆中射出的两位置恰好在同一条直径上,说明两粒子的偏转角之和为

180, e 、f 两粒子的轨迹图如图所示,由几何关系有:

1

R tan θr =

2

R tan θr =

θα90+=

联立解得:θ30=,α60=

e 、

f 两粒子进入磁场圆做匀速圆周运动的周期满足:

1

12πr T v = 2

22πr T v

=

e f

e f

q q :1:3m m = 在磁场中运动的时间:

112θ

t T 360= 222α

t T 360

=

12t t >

两粒子在磁场中运动的时间差为:122

π

Δt t t 9kB =-=

3.如图所示,OO′为正对放置的水平金属板M 、N 的中线,热灯丝逸出的电子(初速度、重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射人两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动,已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e 。求:

(1)电子通过小孔O 时的速度大小v ;

(2)板间匀强磁场的磁感应强度的大小B 和方向。 【答案】(1)2eU

m

(2)12mU L e 方向垂直纸面向里

【解析】 【详解】

(1)电子通过加速电场的过程中,由动能定理有:2

12

eU mv = 解得:2eU

v m

=

(2)两板间电场的电场强度大小为:2U

E L

=

由于电子在两板间做匀速运动,故:evB eE = 解得:12mU

B L e

=

根据左手定则可判断磁感应强度方向垂直纸面向外.

4.实验中经常利用电磁场来改变带电粒子运动的轨迹.如图所示,氕、氘、氚三种粒子同时沿直线在纸面内通过电场强度为E 、磁感应强度为B 的复合场区域.进入时氕与氘、氘与氚的间距均为d ,射出复合场后进入y 轴与MN 之间(其夹角为θ)垂直于纸面向外的匀强磁场区域Ⅰ,然后均垂直于边界MN 射出.虚线MN 与PQ 间为真空区域Ⅱ且PQ 与MN 平行.已知质子比荷为

q

m

,不计重力.

(1)求粒子做直线运动时的速度大小v ; (2)求区域Ⅰ内磁场的磁感应强度B 1;

(3)若虚线PQ 右侧还存在一垂直于纸面的匀强磁场区域Ⅲ,经该磁场作用后三种粒子均能汇聚于MN 上的一点,求该磁场的最小面积S 和同时进入复合场的氕、氚运动到汇聚点的时间差△t .

【答案】(1)E

B (2)mE qdB (3)(2)Bd E

πθ+

【解析】 【分析】

由电场力与洛伦兹力平衡即可求出速度;由洛伦兹力提供向心力结合几何关系即可求得区域Ⅰ内磁场的磁感应强度B 1;分析可得氚粒子圆周运动直径为3r ,求出磁场最小面积,在结合周期公式即可求得时间差. 【详解】

(1)粒子运动轨迹如图所示:

由电场力与洛伦兹力平衡,有:Bqv =Eq 解得:E

v B

=

(2)由洛伦兹力提供向心力,有:2

1v qB v m r

=

由几何关系得:r =d

解得:1mE

B qdB

=

(3)分析可得氚粒子圆周运动直径为3r ,磁场最小面积为:2

2

13222r r S π????

=- ? ?????

解得:S =πd 2 由题意得:B 2=2B 1

由2r

T v

π= 可得:2m T qB π=

由轨迹可知:△t 1=(3T 1﹣T 1)2θ

π

, 其中11

2m

T qB π=

△t 2=12

(3T 2﹣T 2)其中222m T qB π= 解得:△t =△t 1+△t 2=()()1

22m dB

qB E

θπθπ++=

【点睛】

本题考查带电粒子在电磁场中的运动,分析清楚粒子运动过程是解题的关键,注意在磁场中的运动要注意几何关系的应用.

5.某粒子实验装置原理图如图所示,狭缝1S 、2S 、3S 在一条直线上,1S 、2S 之间存在电压为U 的电场,平行金属板1P 、2P 相距为d ,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为1B 。比荷为k 的带电粒子由静止开始经1S 、2S 之间电场加速后,恰能沿直线通过1P 、2P 板间区域,从狭缝3S 垂直某匀强磁场边界进入磁场,经磁场偏转后从距离

3S 为L 的A 点射出边界。求:

(1)1P 、2P 两板间的电压; (2)偏转磁场的磁感应强度。 【答案】(1)12U B kU ='2)222U

B L k

=【解析】 【分析】

(1)粒子先在电场中加速,然后匀速通过1P 、2P ,则根据平衡可求出1P 、2P 两板间的电压

(2)根据粒子的运动轨迹找到运动半径,借助于2

2v qvB m r

=可求出偏转磁场的磁感应强

度 【详解】

(1)设带电粒子质量为m ,所带电荷量为q ,已知

q

k m

= 粒子在电场中S 1与S 2之间加速,根据动能定理可得:2

102

qU mv =

-; 带电粒子在P 1和P 2间运动,根据电场力与洛伦兹力平衡可得:1U q qvB d

='

解得:12U B kU ='

(2)带电粒子在磁场中做匀速圆周运动,根据洛伦兹力充当向心力:2

2v qvB m r

=;

已知2L r =,解得:222U

B L k

=

6.如图所示,在两个水平平行金属极板间存在着竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E=2×106N/C 和B 1=0.1T ,极板的长度

,间距足够大.在板的右侧还存在着另一圆形区域的匀强磁场,磁场的方向为垂直

于纸面向外,圆形区域的圆心O 位于平行金属极板的中线上,圆形区域的半径

有一带正电的粒子以某速度沿极板的中线水平向右飞入极板后恰好做匀速直线运动,然后进入圆形磁场区域,飞出圆形磁场区域后速度方向偏转了60°,不计粒子的重力,粒子的比荷

(1)求粒子沿极板的中线飞入的初速度v 0; (2)求圆形区域磁场的磁感应强度B 2的大小;

(3)在其他条件都不变的情况下,将极板间的磁场B 1撤去,为使粒子飞出极板后不能进入圆形区域的磁场,求圆形区域的圆心O 离极板右边缘的水平距离d 应满足的条件. 【答案】(1)v 0=2×107m/s (2)B 2=0.1T (3)m (或

m )

【解析】 【分析】

(1)抓住粒子做匀速直线运动,根据洛伦兹力和电场力平衡求出粒子的初速度.(2)粒子在磁场中做匀速圆周运动,根据几何关系求出粒子在磁场中运动的半径,结合半径公式求出磁感应强度的大小.(3)粒子在板间做类平抛运动,离开极板后做匀速直线运动,由类平抛运动知识与匀速运动规律可以求出d 需要满足的条件. 【详解】

(1)粒子在极板间做匀速直线运动,有:

,代入数据解得:.

(2)设粒子的初速度大小为v ,粒子在极板间匀速直线运动,则:

设粒子在圆形区域磁场中做圆周运动的半径为r ,由牛顿第二定律得:

粒子运动轨迹如图所示,粒子速度方向偏转了60°,由数学知识可得:

解得:

(3)撤去磁场后粒子在极板间做平抛运动,设在板间运动时间为t,运动的加速度为a 飞出电场时竖直方向的速度为,速度的偏转角为,由牛顿第二定律得:qE=ma

水平方向:,竖直方向:,

解得:,即

设粒子飞出电场后速度恰好与圆形区域的边界相切时,圆心O离极板右边缘的水平距离为d,如图所示:

由几何关系得:,解得:

所以圆心O离极板右边缘的水平距离d应满足(或)。

【点睛】

本题考查了带电粒子在电磁场中运动的相关问题,考查学生综合分析、解决物理问题能力.分析清楚粒子的运动过程,应用运动的合成与分解、平衡条件、牛顿运动定律、运动学公式即可正确解题.

7.如图所示的平面直角坐标系,x轴水平,y轴竖直,第一象限内有磁感应强度大小为B,方向垂直坐标平面向外的匀强磁场;第二象限内有一对平行于x轴放置的金属板,板间有正交的匀强电场和匀强磁场,电场方向沿y轴负方向,场强大小未知,磁场垂直坐标平面向里,磁感应强度大小也为B;第四象限内有匀强电场,电场方向与x轴正方向成45°角斜向右上方,场强大小与平行金属板间的场强大小相同.现有一质量为m,电荷量为q的粒子以某一初速度进入平行金属板,并始终沿x轴正方向运动,粒子进入第一象限后,从x轴上的D点与x轴正方向成45°角进入第四象限,M点为粒子第二次通过x轴的位置.已知OD距离为L,不计粒子重力.求:

(1)粒子运动的初速度大小和匀强电场的场强大小. (2)DM 间的距离.(结果用m 、q 、v 0、L 和B 表示) 【答案】(1)22B qL

E m

= (2)22

0222m v DM B q L =

【解析】 【详解】

(1)、粒子在板间受电场力和洛伦兹力做匀速直线运动,设粒子初速度为v 0,由平衡条件有:qv 0B=qE…①

粒子在第一象限内做匀速圆周运动,圆心为O 1,半径为R ,轨迹如图,

由几何关系知R =

245L

L cos =?

…② 由牛顿第二定律和圆周运动的向心力公式有:qv 0B =m 2

0 v R

…③

由②③式解得:v 0=2

BqL

m

…④ 由①④式解得:E =22 B qL

m

…⑤ (2)、由题意可知,粒子从D 进入第四象限后做类平抛运动,轨迹如图,设粒子从D 到M 的运动时间为t ,将运动分解在沿场强方向和垂直于场强的方向上,则粒子沿DG 方向做匀速直线运动的位移为:DG =v 0t …⑥

粒子沿DF 方向做匀加速直线运动的位移为:2

2122Eqt DF at m

==

…⑦ 由几何关系可知: DG DF =, 2DM DG =…⑧

由⑤⑥⑦⑧式可解得22

0222 m v DM q B L

. 【点睛】

此类型的题首先要对物体的运动进行分段,然后对物体在各段中进行正确的受力分析和运动的分析,进行列式求解; 洛伦兹力对电荷不做功,只是改变运动电荷的运动方向,不改变运动电荷的速度大小.带电粒子做匀速圆周运动的圆心、半径及运动时间的确定:①、圆心的确定:因为洛伦兹力提供向心力,所以洛伦兹力总是垂直于速度的方向,画出带电粒子运动轨迹中任意两点(一般是射入磁场和射出磁场的两点)洛伦兹力的方向,其延长线的交点即为圆心.②、半径的确定:半径一般都是在确定圆心的基础上用平面几何的知识求解,常常用到解三角形,尤其是直角三角形.③、运动时间的确定:利用圆心角与弦切角的关系或者四边形的内角和等于360°计算出粒子所经过的圆心角θ的大小,用公式t=

360T θ

?

可求出运动时间.

8.如图所示,两竖直金属板间电压为U 1,两水平金属板的间距为d .竖直金属板a 上有一质量为m 、电荷量为q 的微粒(重力不计)从静止经电场加速后,从另一竖直金属板上的小孔水平进入两水平金属板间并继续沿直线运动.水平金属板内的匀强磁场及其右侧宽度一定、高度足够高的匀强磁场方向都垂直纸面向里,磁感应强度大小均为B ,求:

(1)微粒刚进入水平金属板间时的速度大小v 0; (2)两水平金属板间的电压;

(3)为使微粒不从磁场右边界射出,右侧磁场的最小宽度D . 【答案】(1)1

02qU v m =12qU U m = (3)12qU m D Bq m

=【解析】 【分析】

(1)粒子在电场中加速,根据动能定理可求得微粒进入平行金属板间的速度大小; (2)根据粒子在平行板间做直线运动可知,电场力与洛伦兹力大小相等,列式可求得电压大小;

(3)粒子在磁场中做匀速圆周运动,根据几何关系可知半径与D 之间的关系,再由洛伦兹充当向心力可求得最小宽度. 【详解】

(1)在加速电场中,由动能定理,得 qU 1=

1

2

mv 02, 解得v 01

2qU m

(2)在水平金属板间时,微粒做直线运动,则

Bqv 0=q

U d

, 解得U =Bd

1

2qU m

(3)若微粒进入磁场偏转后恰与右边界相切,此时对应宽度为D ,则

Bqv 0=m 20

v r

且r =D ,

解得D =

1

2qU m Bq m

【点睛】

题考查带电粒子在电场和磁场中的运动,要注意明确带电粒子在磁场中运动时注意几何关系的应用,明确向心力公式的应用;而带电粒子在电场中的运动要注意根据功能关系以及运动的合成和分解规律求解.

9.如图所示为回旋加速器的结构示意图,匀强磁场的方向垂直于半圆型且中空的金属盒D 1和D 2,磁感应强度为B ,金属盒的半径为R ,两盒之间有一狭缝,其间距为d ,且R ?d ,两盒间电压为U 。A 处的粒子源可释放初速度不计的带电粒子,粒子在两盒之间被加速后进入D 1盒中,经半个圆周之后再次到达两盒间的狭缝。通过电源正负极的交替变化,可使带电粒子经两盒间电场多次加速后获得足够高的能量。已知带电粒子的质量为m 、电荷量为+q 。

(1)不考虑加速过程中的相对论效应和重力的影响。 ①求粒子可获得的最大动能E k m ;

②若粒子第1次进入D 1盒在其中的轨道半径为r 1,粒子第2次进入D 1盒在其中的轨道半径为r 2,求r 1与r 2之比;

③求粒子在电场中加速的总时间t 1与粒子在D 形盒中回旋的总时间t 2的比值,并由此分析:计算粒子在回旋加速器中运动的时间时,t 1与t 2哪个可以忽略?(假设粒子在电场中的加速次数等于在磁场中回旋半周的次数);

(2)实验发现:通过该回旋加速器加速的带电粒子能量达到25~30MeV 后,就很难再加速了。这是由于速度足够大时,相对论效应开始显现,粒子的质量随着速度的增加而增大。结合这一现象,分析在粒子获得较高能量后,为何加速器不能继续使粒子加速了。

【答案】(1)①222

2q B R m

;③2d R π, t 1可以忽略;(2)见解析

【解析】 【分析】 【详解】

(1)①粒子离开回旋加速器前,做的还是圆周运动,由洛仑兹力提供向心力,根据牛顿第二定律可得

2

m v qv B m R =

212

km m E mv =

解得

222

2km

B R E q m

=

②设带电粒子在两盒间加速的次数为N ,在磁场中有

2

v qvB m r

=

在电场中有

212

NqU mv =

第一次进入D 1盒中N=1,第二次进入D 1盒中N=3,可得

12r r = ③带电粒子在电场中的加速度为

qE qU

a m md =

= 所以带电粒子在电场中的加速总时间为

1m v BdR t a U

=

= 设粒子在磁场中回旋的圈数为n ,由动能定理得

2

122

m nqU mv =

带电粒子回旋一圈的时间为

2πm

T qB

=

所以带电粒子在磁场中回旋的总时间为

2

2π2BR t nT U

==

1 22π

t d

t R

=

已知R d

>>可知

12

t t

<<,所以

1

t可以忽略。

(2)带电粒子在磁场中做匀速圆周运动周期为

2πm

T

qB

=

对一定的带电粒子和一定的磁场来说,这个周期是不变的。如果在两盒间加一个同样周期的交变电场,就可以保证粒子每次经过电场时都能被加速,当粒子的速度足够大时,由于相对论效应,粒子的质量随速度的增加而增大,质量的增加会导致粒子在磁场中的回旋周期变大,从而破坏了与电场变化周期的同步,导致无法继续加速。

10.诺贝尔物理学奖得主劳伦斯发明了回旋加速器,其原理可简化如下.如图所示,两个中空的半径R=0.125m的半圆金属盒,接在电压U=5000V、频率恒定的交流电源上;两盒狭缝之间距离d=0.01m,金属盒面与匀强磁场垂直,磁感应强度B=0.8T.位于圆心处的质子源能不断产生质子(初速度可以忽略,重力不计,不计质子间的相互作用),质子在狭缝之间能不断被电场加速,最后通过特殊装置引出.已知质子的比荷

19

8

27

1.610

110

1.6710

q C

m kg

-

-

?

=≈?

?

C/kg,求:

(1)质子能获得的最大速度;

(2)质子在电场加速过程中获得的平均功率;

(3)随轨道半径r的增大,同一盒中相邻轨道的半径之差Δr如何变化?简述理由.

(4)设输出时质子束形成的等效电流为100mA,回旋加速器输出功率是多大?

【答案】(1)7

max

110

v=?m/s (2) 7

410

P-

≈?W

(3) Δr逐渐减小 (4)P=5000W

【解析】

【详解】

(1)粒子在磁场中回旋,有

2

mv

qvB

r

=

引出时有r=R,

7max 110gBR

v m

=

=?m/s (2)引出前质子(在电场中)加速的次数

100km E

n qU

==

质子在电场中多次加速,可等效为一次性做匀加速直线运动 该过程中的平均速度为v /2,则

7210/2

nd

t s v -=

=?电 平均功率

()227777

1 1.6710102

410210

W P t ---???==≈??W W 电电 (3)粒子回旋半径mv

r qB

=

,设加速一次后的速度为v 1,加速三次后的速度为v 3,则有

31v =

,51v =……,

由此

31r =

,5r

因为1111)r r r >>>

,故Δr 逐渐减小

(4)研究出口处截面Δt →0时间内的质子,设有N 个,则

N·q =I ·Δt

在该时间内,回旋加速器做的功等效于把N 个质子从静止加速到km E 即

21

(0)2

W N mv =-

W P t

=

?, 代入得

P =5000W

11.在近代物理实验中,常用回旋加速器加速得到高速粒子流.回旋加速器的结构如图所示,D 1、D 2是相距很近的两个处于匀强磁场中的半圆形金属盒,D 形盒的缝隙处接交流电源,A 处的粒子源产生的带电粒子在两盒之间被电场加速.设带电粒子质量为m ,电量为q ,匀强磁场磁感应强度为B ,D 形盒的最大半径为R ,两个D 形盒之间的距离为d ,d 远小于R ,D 形盒之间所加交变电压大小为U .不计粒子的初速度及运动过程中质量的变化,求:

(1)所加交变电压的周期T;

(2)带电粒子离开D形盒时的动能E km;

(3)带电粒子在回旋加速器磁场中运动的时间t1及在两D形盒间电场中运动的时间t2,并证明粒子在电场中运动的时间可以忽略不计.

【答案】(1)(2)(3)见解析

【解析】

【详解】

(1)带电粒子在磁场中运动半周的时间与交变电压的半个周期相等,得

(2)带电粒子离开D形盒时的轨迹半径为R,由圆周运动的规律得

解得:

带电粒子离开D形盒时的动能

(3)设带电粒子在电场中加速的次数为n,有

解得:

又因为带电粒子在磁场中运动的周期

所以带电粒子在磁场中运动的时间

解得:

带电粒子在电场中的运动可看成匀加速直线运动,得v=at

其中所以带电粒子在电场中运动的时间

因为d远小于R,有t2远小于t1,所以带电粒子在电场中运动的时间可以忽略.

【点睛】

此题关键是知道回旋加速器的工作原理,知道电场的周期等于粒子在磁场中的周期,当粒

子的半径等于D 型盒的半径时,粒子的速度最大,能量最大.

12.高能粒子是现代粒子散射实验中的炮弹,加速器是加速粒子的重要工具,是核科学研究的重要平台.质子回旋加速器是利用电场和磁场共同作用,使质子作回旋运动,在运动中通过高频电场反复加速、获得能量的装置.质子回旋加速器的工作原理如图(a )所示,置于真空中的D 形金属盒半径为R ,两盒间狭缝的间距为d ,磁感应强度为B 的匀强磁场与盒面垂直,被加速质子(1

1H )的质量为m ,电荷量为q +.加在狭缝间的交变电压如

图(b )所示,电压值的大小为0U 、周期02

m

T qB

π=

.为了简化研究,假设有一束质子从M 板上A 处小孔均匀地飘入狭缝,其初速度视为零.不考虑质子间的相互作用.

(1)质子在磁场中的轨迹半径为r (已知)时的动能k E ;

(2)请你计算质子从飘入狭缝至动能达到k E (问题(1)中的动能)所需要的时间.(不考虑质子间的相互作用,假设质子每次经过狭缝均做加速运动.)

(3)若用该装置加速氦核(4

2He ),需要对偏转磁场或交变电压作出哪些调整?

【答案】(1)222

2q B r m

(2)2022BR BRd m U qB ππ+-

(3)方案一:增大磁感应强度B ,使得氦核的圆周运动周期等于上述电场的周期即可. 方案二:增大交变电场的周期,使得电场的周期等于氦核圆周运动的周期. 【解析】 【分析】

回旋加速器的工作条件是电场的变化周期与粒子在磁场中运动的周期相等,回旋加速器运用电场加速磁场偏转来加速粒子,根据洛伦兹力提供向心力进行求解即可; 【详解】

(1)洛伦兹力提供向心カ,根据牛顿第二定律有:2

v qvB m r =

粒子的动能为212E mv =,解得222

2k q B r E m

=;

(2)设粒子被加速n 次后达到最大动能,则有0k E nqU =,解得:220

2B r q

n mU =

粒子在狭缝间做匀加速运动,加速度为0

qU a md

=

设n 次经过狭缝的总时间为1

t ,根据运动学公式有:()2112

nd a t =

设在磁场中做圆周运动的周期为T ,某时刻质子的速度为v ',半径为r '

则2

v qv B m r '=''

, 22r m T v Bq ππ''==,由()112T t n t =-?+总 解得:2220002122B r q m Brd BR BRd m t mU Bq U U qB πππ??+=-?+=- ???

总; (3)氦核的荷质比与质子不同,要实现每次通过电场都被加速,需要保证交变电场的周期与磁场中圆周运动的周期相同,粒子在磁场中的圆周运动周期2m

T qB

π=,氦核的荷质比大于质子,使得圆周运动周期变大

方案一:增大磁感应强度B ,使得氦核的圆周运动周期等于上述电场的周期即可. 方案二:增大交变电场的周期,使得电场的周期等于氦核圆周运动的周期. 【点睛】

解决本题的关键知道回旋加速器电场和磁场的作用,知道最大动能与什么因素有关,以及知道粒子在磁场中运动的周期与电场的变化的周期相等.

13.回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计,磁感应强度为B 的匀强磁场与盒面垂直,A 处粒子源产生的粒子初速度可忽略不计,质量为m 、电荷量为+q ,每次在两D 形盒中间被加速时加速电压均为U ,加速过程中不考虑相对论效应和重力作用。求:

(1)粒子第4次加速后的运动半径与第5次加速后的运动半径之比; (2)粒子在回旋加速器中获得的最大动能及加速次数。

【答案】(152) 2222km q B R E m = 22

2qB R n mU

=

【解析】 【分析】

(1)带电粒子在磁场中做匀速圆周运动,根据动能定理和洛伦兹力提供向心力求出轨道半径与加速电压的关系,从而求出轨道半径之比。

(2)通过D 形盒的半径求出粒子的最大速度和最大动能,结合动能定理求出加速的次

数。 【详解】

(1)设粒子每加速一次动能增加qU ,第n 次被加速后粒子的动能:nqU=

1

2

mv n 2 qv n

B=m 2n

n

v r

解得:12n nmU

r B q

=

粒子笫4次加速后的运动半径与笫5次加速后的运动半径之比:4

5

5

r r =

(2)设粒子在回旋加速器中运动的最大半径为R ,粒子的最大速度为v m ,受力分析可知

qv m B=m 2 m

n

v r

粒子的最大动能:2222

122k m m q B R E m

v m ==

粒子在回旋加速器中加速总次数:22

2km E qB R n qU mU

== 【点睛】

解决本题的关键掌握回旋加速器的原理,运用电场加速和磁场偏转,知道粒子在磁场中运动的周期与加速电场的变化周期相等。

14.回旋加速器是加速带电粒子的常用仪器,其结构示意图如图甲所示,其中置于高真空中的金属D 形盒的半径为R ,两盒间距极小,在左侧D 形盒圆心处放有粒子源S ,匀强磁场的磁感应强度为B ,方向如图乙所示(俯视).设带电粒子质量为m ,电荷量为+q ,该粒子从粒子源S 进入加速电场时的初速度不计,两金属盒狭缝处加高频交变电压,加速电压大小U 可视为不变,粒子重力不计,粒子在电场中的加速次数等于回旋半周的次数,求: (1)粒子在回旋加速器中经过第一次加速可以达到的速度和第一次在磁场中的回旋半径; (2)粒子在第n 次通过狭缝前后的半径之比;

(3)粒子若能从上侧边缘的引出装置处导出,则R 与U 、B 、n 之间应满足什么条件?

【答案】 (3) qBR m

【解析】

(1)粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动, 根据Uq =2

112

mv

v 1 根据2

v qvB m r

=

1r =

(2)根据nUq =212

n mv

v n 根据2

v qvB m r

=

n r =

粒子在第n

(3)根据2

v qvB m r

=

nUq =

212

n mv

知v m =

qBR

m =

15.如图所示为回旋加速器的简易图,整个装置置于方向竖直向下磁感应强度大小为B 的匀强磁场中,已知两D 盒的半径大小为R ,两个狭缝之间的间距为d ,现将一粒子发射源放在D 盒的圆心处,且该粒子发射源能释放质量为m 、电荷量为q 的带正电粒子,且粒子的初速度视为零,当在两狭缝之间施加一高频交变电压,加速电压U 的大小认为不变,粒子的重力可忽略,该带电粒子在电场中的加速次数与粒子在磁场中回旋半个圆周的次数相同.求:

高中物理速度选择器和回旋加速器专题训练答案及解析

高中物理速度选择器和回旋加速器专题训练答案及解析 一、速度选择器和回旋加速器 1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B = 3 3 T ,方向垂直于纸面向里。一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π 3 ,不计离子重力。求: (1)离子速度v 的大小; (2)离子的比荷 q m ; (3)离子在圆形磁场区域中运动时间t 。(结果可含有根号和分式) 【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6 π -? 【解析】 【详解】 (1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即: B 0qv =qE 解得: 2000m/s E v B = = (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示

由洛仑兹力公式和牛顿第二定律有: 2 v Bqv m r = 由几何关系有: 2 R tan r θ = 离子的比荷为: 4 210C/kg q m =? (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t , 2t T θπ= 2m T qB π= 解得: 43106 t s π -= 2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置; (2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?

高中物理回旋加速器

高中物理回旋加速器 一.选择题(共4小题) 1.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来加速带电粒子 D.带电粒子在D形盒中运动时,磁场力使带电粒子速度增大 2.在回旋加速器中() A.D形盒内有匀强磁场,两D形盒之间的窄缝有高频电源产生的电场 B.两D形盒之间的窄缝处有场强大小、方向不变的匀强电场 C.高频电源产生的电场用来使带电粒子做圆周运动 D.带电粒子在D形盒中运动时,磁场力使带电粒子加速 3.关于回旋加速器的说法正确的是() A.回旋加速器是利用磁场对运动电荷的作用使带电粒子的速度增大的 B.回旋加速器是通过多次电场加速使带电粒子获得高能量的 C.粒子在回旋加速器中不断被加速,故在磁场中做圆周运动一周所用时间越来越小D.若加速电压提高到4倍,其它条件不变,则粒子获得的最大速度就提高到2倍4.回旋加速器由下列哪一位物理学家发明() A.洛伦兹B.奥斯特C.劳伦斯D.安培 二.填空题(共1小题) 5.回旋加速器的D型金属盒半径为R,两D型盒间电压为U,电场视为匀强电场,用来加速质量为m,电荷量为q的质子,使质子由静止加速到能量为E后,由小孔射出.(设质子每次经过电场加速后增加相同的能量)求: (1)加速器中匀强磁场B的大小. (2)加速到上述能量所需的回旋次数. (3)加速到上述能量所需时间.(不计经过电场的时间)

三.解答题(共1小题) 6.如图回旋加速器D形盒的半径为r,匀强磁场的磁感应强度为B.一个质量了m、电荷量为q的粒子在加速器的中央从速度为零开始加速. (1)求该回旋加速器所加交变电场的频率; (2)求粒子离开回旋加速器时获得的动能; (3)有同学想自利用该回旋加速器直接对质量为m、电量为2q的粒子加速.能行吗?行,说明理由;不行,提出改进方案.

高中物理高考物理速度选择器和回旋加速器的技巧及练习题及练习题

高中物理高考物理速度选择器和回旋加速器的技巧及练习题及练习题 一、速度选择器和回旋加速器 1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求: (1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L (3)粒子在磁场B 2中的运动时间. 【答案】(1)1 E B (2) 12 2mE qB B (3) 2m qB π 【解析】 【详解】 (1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据 B 1qv =qE 解得: v = 1 E B (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故: 2 2v qvB m r = 解得: r =2mv qB =12 mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为: L = 45r sin =2r 12 2mE

(3) 粒子做匀速圆周运动的周期2 m T qB π= 2t m qB π = 2.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷q m =3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。求: (1)粒子初速度v 0的大小; (2)圆形匀强磁场区域的磁感应强度B 2的大小; (3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。 【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。 【解析】 【详解】 (1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡 qv 0B 1=Eq 带电粒子初速度 v 0=5×104m/s (2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力 20 02v qv B m r = 轨迹如图所示:

高中物理速度选择器和回旋加速器专项练习及解析

高中物理速度选择器和回旋加速器专项练习及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题

高中物理速度选择器和回旋加速器解题技巧(超强)及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U ;

(2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R= tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】 (1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E= U d ,解得两平行板间的电势差:U=Bv0d (2)在圆形磁场区域中,由洛伦兹力提供向心力可知: Bv0q=m 2 v r 同时有T= 2r v π 粒子在圆形磁场区域中运动的时间t= 2 θ π T 解得t= m Bq θ (3)由几何关系可知:r tan 2 θ =R 解得圆形磁场区域的半径R=0 tan 2 mv qB θ 3.如图为质谱仪的原理图。电容器两极板的距离为d,两板间电压为U,极板间的匀强磁场的磁感应强度为B1,方向垂直纸面向里。一束带电量均为q但质量不同的正粒子从图示方

专项训练磁场测试卷.docx

专题训练:磁场单元 1. 关于电场强度E与磁感应强度仪下列说法中错误的是() A.电场强度E是矢量,方向与正电荷受到的电场力方向相同 B.磁感应强度B是欠量,方向与小磁针N极的受力方向相同 C.电场强度定义式为E =匚,但电场中某点的电场强度E与尸、9无关 q D.磁感应强度定义式R -匚,同样的电流元〃在磁场中同一点受到的力一定相同 H 2.如图所示,均匀绕制的螺线管水平放置,在具正屮心的上方附近用绝缘绳水平吊起通电直导 线/并处于平衡状态,/与螺线管垂肓,M导线中的电流方向垂玄纸面向里,开关S闭仑后,绝缘绳 对/拉力变化情况是() A.增人 B.减小 C.不变 D.无法判断 3.如图所示,在兀轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为3。在xOy内, 从原点O处沿与x轴疋方向成0角(0<〃<兀)以速率v发射一个带正电的粒子(重力不计)。则下列说法正确的 A.若卩一定,&越大,则粒子在磁场中运动的时间越短 B.若u—定,0越人,则粒子在离开磁场的位置距O点越远 C.若0—定,v越人,则粒子在磁场屮运动的时间越短 D.若&一定,v越大,则粒了在磁场中运动的角速度越大 4.如图所示为电视机显像管偏转线圈的示意图,当 线圈通以图示的直流电吋,形成的磁场如图所示,一束沿着管颈轴线射向纸内的电子将() A.向上偏转 B.向下偏转 C.向左偏转 D.向右偏转 5.如图所示,光滑的平行导轨与电源连接后,与水平方向成&角倾斜放置,导轨上另放一个质量为加的金属导体棒。通电后,在棒所在区域内加-个合适的匀强磁场,可以使导体棒静止平衡,图中分别加了不同方向的磁场,其中一定不能平衡的是() 6.关于回旋加速器加速带电粒了所获得的能量,下列结论中正确的是() A.只与加速器的半径有关,半径越大,能量越大 B.与加速器的磁场和半径均有关,磁场越强、半径越人,能量越人 C.只与加速器的电场有关,电场越强,能量越大 D.与带电粒子的质量和电荷量均有关,质量和电荷量越大,能量越大 7.如图所示,冇一四面体OABC处在Ox方向的匀强磁场中,下列关于穿过各个面的 磁通量的说法错误的 是() XXX /XXX A.13.

高中物理速度选择器和回旋加速器专项训练及答案及解析

高中物理速度选择器和回旋加速器专项训练及答案及解析 一、速度选择器和回旋加速器 1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1) 求第二象限中电场强度和磁感应强度的比值0 E B ; (2)求第一象限内磁场的磁感应强度大小B ; (3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。 【答案】(1)32.010m/s ?;(2)3210T -?;(3)不会通过,0.2m 【解析】 【详解】 (1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有 00qvB qE = 解得 30 2.010m/s E B =? (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径 1.0m R d == 根据洛伦兹力提供向心力有 2 v qvB m R = 解得磁感应强度大小 3210T B -=? (3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小 sin y v v θ=

(物理)高考必备物理速度选择器和回旋加速器技巧全解及练习题

(物理)高考必备物理速度选择器和回旋加速器技巧全解及练习题 一、速度选择器和回旋加速器 1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1) 求第二象限中电场强度和磁感应强度的比值0 E B ; (2)求第一象限内磁场的磁感应强度大小B ; (3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。 【答案】(1)32.010m/s ?;(2)3210T -?;(3)不会通过,0.2m 【解析】 【详解】 (1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有 00qvB qE = 解得 30 2.010m/s E B =? (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径 1.0m R d == 根据洛伦兹力提供向心力有 2 v qvB m R = 解得磁感应强度大小 3210T B -=? (3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小 sin y v v θ=

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析

高中物理速度选择器和回旋加速器试题类型及其解题技巧及解析 一、速度选择器和回旋加速器 1.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。 (1)求匀强磁场的磁感应强度的大小和方向; (2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α 粒子的比荷 q m ; (3) 若把匀强磁场撤去,α粒子的比荷 q m 不变,α粒子仍从P 点沿+x 方向射入,从N 点离开圆形区域,求α粒子在P 点的速度大小。 【答案】(1)0E v ,方向垂直纸面向里(2)03BR (3)3v 0 【解析】 【详解】 (1)由题可知电场力与洛伦兹力平衡,即 qE =Bqv 0 解得 B = E v 由左手定则可知磁感应强度的方向垂直纸面向里。 (2)粒子在磁场中的运动轨迹如图所示, 设带电粒子在磁场中的轨迹半径为r ,根据洛伦兹力充当向心力得 Bqv 0=m 20 v r

由几何关系可知 r=3R,联立得 q m =0 3BR (3)粒子从P到N做类平抛运动,根据几何关系可得 x=3 2 R=vt y= 3 2 R= 1 2 × qE m t2 又 qE=Bqv0联立解得 v=3 2 3 Bqv R m = 3 v0 2.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求: (1)两平行板间的电势差U; (2)粒子在圆形磁场区域中运动的时间t; (3)圆形磁场区域的半径R. 【答案】(1)U=Bv0d;(2) m qB θ ;(3)R=0 tan 2 mv qB θ 【解析】 【分析】 (1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差. (2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R. 【详解】

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题及解析 一、速度选择器和回旋加速器 1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。 (1)求该离子沿虚线运动的速度大小v ; (2) 求该离子的比荷 q m ; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。 【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E ?= 【解析】 【分析】 【详解】 (1)离子沿虚线做匀速直线运动,合力为0 Eq =B 1qv 解得 1 E v B = (2)在偏转磁场中做半径为R 的匀速圆周运动,所以 2 2mv B qv R = 解得 12 q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意 R 2=R 1+ 2 d 它们带电量相同,进入底片时速度都为v ,得

2 121 m v B qv R = 2 222 m v B qv R = 联立得 22121()B q m m m R R v ?=-= - 化简得 122B B qd m E ?= 2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。求: (1)射出粒子的速率; (2)射出粒子的比荷; (3)MN 与挡板之间的最小距离。 【答案】(1)1U B d (2)22cos v B L α(3)(1sin )2cos L αα - 【解析】 【详解】 (1)粒子在速度选择器中做匀速直线运动, 由平衡条件得: qυB 1=q U d 解得υ=1U B d ; (2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:

2020届高考物理冲刺专项训练21 带电粒子在复合场中的运动 (原卷版)

带电粒子在复合场中的运动 一、单选题 1.(2020·全国高三专题练习)作用在导电液体上的安培力能起到推动液体流动的作用,这样的装置称为电磁泵,它在医学技术上有多种应用,血液含有离子,在人工心肺机里的电磁泵就可作为输送血液的动力.某电磁泵及尺寸如图所示,矩形截面的水平管道上下表面是导体,它与磁感强度为B的匀强磁场垂直,并有长为的部分在磁场中,当管内充满血液并通以横穿管子的电流时血液便能向前流动.为使血液在管内不流动时能产生向前的压强P,电流强度I应为 A.B.C.D. 2.(2020·全国高三专题练习)笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为υ.当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭.则元件的() A.前表面的电势比后表面的低 B.前、后表面间的电压U与υ无关 C.前、后表面间的电压U与c成正比 D.自由电子受到的洛伦兹力大小为eU a 3.(2020·江苏省高三月考)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的

是 A .增大匀强电场间的加速电压 B .增大磁场的磁感应强度 C .减小狭缝间的距离 D .减小D 形金属盒的半径 4.(2020·江苏省高三月考)磁流体发电机的结构简图如图所示。把平行金属板A 、B 和电阻R 连接,A 、B 之间有很强的磁场,将一束等离子体(即高温下电离的气体,含有大量正、负带电粒子)以速度v 喷入磁场,A 、B 两板间便产生电压,成为电源的两个电极。下列推断正确的是( ) A .A 板为电源的正极 B .电阻R 两端电压等于电源的电动势 C .若减小两极板的距离,则电源的电动势会减小 D .若增加两极板的正对面积,则电源的电动势会增加 5.(2020·四川省高三二模)反质子的质量与质子相同,电荷与质子相反。一个反质子从静止经电压U 1加速后,从O 点沿角平分线进入有匀强磁场(图中未画岀)的正三角形OAC 区域,之后恰好从A 点射岀。已知反质子质量为m ,电量为q ,正三角形OAC 的边长为L ,不计反质子重力,整个装置处于真空中。则( ) A B .保持电压U 1不变,增大磁感应强度,反质子可能垂直OA 射出

高中物理速度选择器和回旋加速器技巧(很有用)及练习题

高中物理速度选择器和回旋加速器技巧(很有用)及练习题 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A为粒子加速器,加速电压为U1;B为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U2,距离为d;C为偏转分离器,磁感应强度为B2,方向垂直纸面向里。今有一质量为m、电荷量为e的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D上。求: (1)磁场B1的大小和方向 (2)现有大量的上述粒子进入加速器A,但加速电压不稳定,在11 U U -?到 11 U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C,则打在照相底片D上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2 1 1 2 U m B d U e =2) ()() 1111 2 22 2m U U m U U D B e e +?-? =, () 11 min 1 U U U U U -? = () 11 max 1 U U U U U +? = ] 【解析】 【分析】 【详解】 (1)在加速电场中 2 1 1 2 U e mv = 1 2U e v m = 在速度选择器B中

2 1U eB v e d = \ 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = \ 222 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 【 代入B 1得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

电场磁场计算题专项训练及答案

电场磁场计算题专项训练 【注】该专项涉及运动:电场中加速、抛物线运动、磁场中圆周 1、(2009浙江)如图所示,相距为d 的平行金属板A 、B 竖直放置,在两板之间水平放置一绝缘平板。有一质量m 、电荷量q (q >0)的小物块在与金属板A 相距l 处静止。若某一时刻在金属板A 、B 间加一电压U AB =- q mgd 23μ,小物块与金属板只发生了一次碰撞,碰撞后电荷量变为-q /2,并以与碰前大小相等的速度反方向弹回。已知小物块与绝缘平板间的动摩擦因数为μ,若不计小物块几何量对电场的影响和碰撞时间。则 (1)小物块与金属板A 碰撞前瞬间的速度大小是多少? (2)小物块碰撞后经过多长时间停止运动?停在何位置? 2、(2006天津)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度应大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界的交点C 处沿+y 方向飞出。 (1)判断该粒子带何种电荷,并求出其比荷q /m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B /,该粒子仍以A 处相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B /多大?此粒子在磁场中运动所用时间t 是多少? 3、(2010全国卷Ⅰ)如下图,在a x 30≤ ≤区域内存在与xy 平面垂直的匀强磁场,磁感 应强度的大小为B 。在t = 0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。已知 B

高中物理速度选择器和回旋加速器及其解题技巧及练习题

高中物理速度选择器和回旋加速器及其解题技巧及练习题 一、速度选择器和回旋加速器 1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。 【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2 222k qUh mU E d B d =+ 【解析】 【详解】 (1)电场强度U E d = (2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd = = (3)粒子从N 点射出,由动能定理得:2012 k qE h E mv ?=- 解得2 222k qUh mU E d B d =+ 2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.

(1)求两极板间电压U 的大小 (2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围. 【答案】(1)20mv q (2)002121 22 v v v -+≤≤ 【解析】 试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度. (1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有: 212 R at = ,02R v t =,2qU a Rm = 解得:2 mv U q = (2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R = 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图: 由几何关系有:2r r R = 由洛伦兹力提供向心力有:2 11v qv B m r = 解得:1021 2 v v = 若打到b 点,如图乙所示:

2020年高考物理考点题型归纳与训练专题十一 带电粒子在组合场、复合场中的运动(含解析)

2020高考物理考点题型归纳与训练 专题十一 带电粒子在组合场、复合场中的运动 题型一、带电粒子在复合场中运动的应用实例 【典例1】.(1)(2019·安徽省示范高中高三调研)如图所示为一种质谱仪的工作原理示意图,此质谱仪由以下几部分构成:离子源、加速电场、静电分析器、磁分析器、收集器。静电分析器通道中心线MN 所在圆的半径为R ,通道内有均匀辐射的电场,中心线处的电场强度大小为E ;磁分析器中分布着方向垂直于纸面,磁感应强度为B 的匀强磁场,磁分析器的左边界与静电分析器的右边界平行。由离子源发出一个质量为m 、电荷量为+q 的离子(初速度为零,重力不计),经加速电场加速后进入静电分析器,沿中心线MN 做匀速圆周运动,而后由P 点进入磁分析器中,最终经过Q 点进入收集器。下列说法中正确的是( 0 A .磁分析器中匀强磁场的方向垂直于纸面向内 B .加速电场中的加速电压U =12 ER C .磁分析器中轨迹圆心O 2到Q 点的距离d = mER q D .任何带正电的离子若能到达P 点,则一定能进入收集器 【答案】 B 【解析】 该离子在磁分析器中沿顺时针方向转动,所受洛伦兹力指向圆心,根据左手定则可知,磁分析器中匀强磁场的方向垂直于纸面向外,A 错误;该离子在静电分析器中做匀速圆周运动,有qE =m v 2R ,在加速电场中加速有qU =12mv 2,联立解得U =1 2ER ,B 正确;该离 子在磁分析器中做匀速圆周运动,有qvB =m v 2r ,又qE =m v 2R ,可得r = 1 B mER q ,该离子经Q 点进入收集器,故d =r = 1 B mER q ,C 错误;任一初速度为零的带正电离子,质量、电荷

高考物理速度选择器和回旋加速器解题技巧讲解及练习题

高考物理速度选择器和回旋加速器解题技巧讲解及练习题 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高中物理速度选择器和回旋加速器解题技巧及练习题及解析

高中物理速度选择器和回旋加速器解题技巧及练习题及解析 一、速度选择器和回旋加速器 1.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求: (1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小; (3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。(不计重力)。粒子到达x =R 0平面时速度v 大小以及粒子到x 轴的距离; (4)M 点的横坐标x M 。 【答案】(1)0mv qB (2)E B (302v ,02R h +(4)2 2000724 M x R R R h h =++-【解析】 【详解】 (1)若只有磁场,粒子做圆周运动有:2 00 qB m R =v v 解得粒子做圆周运动的半径0 0m R qB ν= (2)若同时存在电场和磁场,粒子恰好做直线运动,则有:0qE qB =v 解得粒子的速度0E v B = (3)只有电场时,粒子做类平抛,有: 00y qE ma R v a t v t === 解得:0y v v =

所以粒子速度大小为:22 002y v v v v =+= 粒子与x 轴的距离为:2 0122 R H h at h =+ =+ (4)撤电场加上磁场后,有:2 v qBv m R = 解得:02R R = 粒子运动轨迹如图所示: 圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4 π ,由几何关系得C 点坐标为: 02C x R =, 02 C R y H R h =-=- 过C 作x 轴的垂线,在ΔCDM 中: 02CM R R == 2 C R C D y h ==- 解得:2 2 2 20074 DM CM CD R R h h =-=+-M 点横坐标为:2 2000724 M x R R R h h =+- 2.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析

高中物理速度选择器和回旋加速器技巧(很有用)及练习题及解析 一、速度选择器和回旋加速器 1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。求: (1)磁场B 1的大小和方向 (2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -?到11U U +?范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。 【答案】(1)2112U m B d U e = 2)()()11112222m U U m U U D B e e +?-?=,()11min 1 U U U U U -?=() 11max 1 U U U U U +?=【解析】 【分析】 【详解】 (1)在加速电场中 2112 U e mv = 12U e v m = 在速度选择器B 中

2 1U eB v e d = 得 1B = 根据左手定则可知方向垂直纸面向里; (2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为 1v = 1 12 mv R eB = 最大值为 2v = 2 22 mv R eB = 打在D 上的宽度为 2122D R R =- 22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有 1U eB v e d = 得 U=B 1vd 代入B 1 得 2U U = 再代入v 的值可得电压的最小值 min U U =最大值 max U U =

高中物理带电粒子在无边界匀强磁场中运动专项练习含解析

一、带电粒子在无边界匀强磁场中运动1专项训练 1.某种回旋加速器的设计方案如俯视图甲所示,图中粗黑线段为两个正对的极板,两个极板的板面中部各有一极窄狭缝(沿OP 方向的狭长区域,),带电粒子可通过狭缝穿越极板(见图乙),极板A 、B 之间加如图丙所示的电压,极板间无磁场,仅有的电场可视为匀强电场;两细虚线间(除两极板之间的区域)既无电场也无磁场;其它部分存在垂直纸面向外的匀强磁场.在离子源S 中产生的质量为m 、带电荷量为q 的正离子,飘入电场,由电场加速后,经狭缝中的O 点进入磁场区域,O 点到极板右端的距离为0.99D ,到出射孔P 的距离为5D .已知磁感应强度大小可调,离子从离子源上方的O 点射入磁场区域,最终只能从出射孔P 射出.假设离子打到器壁即被吸收,离子可以无阻碍的通过离子源装置.忽略相对论效应,不计离子重力,0.992≈1.求: (1)磁感应强度B 的最小值; (2)若磁感应强度62mU B D q =,则离子从P 点射出时的动能和离子在磁场中运动的时 间; (3)若磁感应强度62mU B D q = ,如果从离子源S 飘出的离子电荷量不变,质量变为原来 的K 倍(K 大于1的整数),为了使离子仍从P 点射出,则K 可能取哪些值. 【答案】225mU D q 33962D m qU π K =9,n =25;K =15,n =15;K =25,n =9;K =45,n =5;K =75,n =3;K =225,n =1 【解析】 【详解】 (1)设离子从O 点射入磁场时的速率为v ,有 21 02 qU mv =- 设离子在磁场中做匀速圆周运动的轨迹半径为r , 2 v qvB m r = 若离子从O 点射出后只运动半个圆周即从孔P 射出,有2r =5D 225mU D q

相关主题
文本预览
相关文档 最新文档