当前位置:文档之家› 直流电机双闭环调速大作业

直流电机双闭环调速大作业

直流电机双闭环调速大作业
直流电机双闭环调速大作业

题目(中)直流电机双闭环控制调速

姓名与学号

指导教师

年级与专业

所在学院

目录:

一、电机控制实验目的和要求 (3)

二、双闭环调速控制内容 (3)

三、主要仪器设备和仿真平台 (4)

四、仿真建模步骤及分析 (4)

1.直流电机双闭环调速各模块功能分析 (4)

2.仿真结果分析(转速、转矩改变) (16)

3.转速PI调节器参数对电机运行性能的影响 (23)

4.电流调节器改用PI调节器后的仿真 (25)

5.加入位置闭环后的仿真 (26)

6.速度无超调仿真 (28)

七、实验心得 (30)

一、电机控制实验目的和要求

1、加深对直流电机双闭环PWM调速模型的理解。

2、学会利用MATLAB中的SIMULINK工具进行建模仿真。

3、掌握PI调节器的使用,分析其参数对电机运行性能的影响。

二、双闭环调速控制内容

必做:

1、描述Chopper-Fed DC Motor Drive中每个模块的功能。

2、仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象。

3、转速PI调节器参数对电机运行性能的影响。

4、电流调节器改用PI调节器后,对电机运行调速结果的影响。

选做:

5、加入位置闭环

6、速度无超调

三、主要仪器设备和仿真平台

1、MATLAB R2014b

2、Microsoft Officials Word 2016

四、仿真建模步骤及分析

1.直流电机双闭环调速各模块功能分析

参考Matlab自带的直流电机双闭环调速的SIMULINK仿真模型:

demo/simulink/simpowersystem/Power Electronics Models/Chopper-Fed DC Motor Drive

1.1转速给定模块

转速给定有两种方式:一为恒定转速给定,二是阶跃的给定。两种方式的选择通过单刀双掷开关实现。

恒转速给定可由以下窗口修改设置:

阶跃转速给定可由以下窗口修改设置:

Step Time为从初始状态到阶跃完成所需的时间,Initial Value为初始转速,Final Value为阶跃后最终转速,Sample Time为采样时间间隔。

从图中可得出,当前转速给定为一个从120rad/s到160rad/s的阶跃过程,直到阶跃过程结束耗时0.4s。

1.2转矩给定模块

转矩给定也有两种方式:一为恒定转矩给定,二是阶跃转矩的给定。两种方式的选择通过单刀双掷开关实现。

恒转矩给定可由以下窗口修改设置:

阶跃转矩给定可由以下窗口修改设置:

Step Time为从初始状态到阶跃完成所需的时间,Initial Value为初始转矩,Final Value为阶跃后最终转矩,Sample Time为采样时间间隔。即从图中可得出,当前转矩给定为一个从5 Nm到25 Nm的阶跃过程,直到阶跃过程结束耗时1.2s。

1.3速度控制器Speed Controller

速度控制器其内部结构如下:

两个输入量分别为由转速给定模块提供作为转速参考值的wref和当前速度实际值wm,得出差值通过比例积分环节,再通过Saturation限幅环节,获得输出电流值Iref。

可知该环节为PI控制环节,其内部参数主要有比例调节系数Kp和积分调节系数Ki。

可通过如下窗口修改设置:

由图中可观察得该PI调节系统的系数Kp=1.6,Ki=16,Current Limit为输出电流最大限定值,设置为30A。

1.4 电流控制器Current Controller

其内部结构如下:

可得知该电流控制系统为滞环调节系统,其两个输入量分别为由电流给定模块提供参考电流值Iref和当前实际电流反馈值Ia,经过滞环调节,输出GTO的通断开关信号。

滞环模块的参数设置如下,可设置滞环的开关时间点和开关时各自的输出值:

电流控制系统内部参数设置如下图,当Hysteresis Band滞环电流两个输入量差别超过正负2A时,输出GTO关或开信号进行调节电路。

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

直流电动机转速电流双闭环控制系统设计

直流电动机转速/电流双闭环控制系统设计 摘要:提出并介绍了基于转速和电流双闭环直流调速系统的模型,对建立的数学模型在Matlab/Simulink下进行了仿真。从而验证了转速电流双闭环直流调速系统具有较好的动态性能以及在保证系统稳定的前提下实现转速无差。同时对负载变化和电网电压的波动都能起到很好的抗扰作用。 关键词:直流电动机;双闭环;MA TLAB ABSTRACT: Proposed and introduced DC system model based on speed and current double closed loop, the mathematical model is simulated under Matlab / Simulink. Therefore the speed and current double closed loop DC system having good dynamic performance is verified and ensure system achieve stability under the premise of no speed difference. At the same time the load changes and power grid voltage fluctuations can play a very good anti-interference function. Keyword: DC motor; double loop; MA TLAB 0 引言 对直流电动机建立数学模型是对其分析的重要一环。双闭环直流调速系统可以保证系统稳定的前提下实现转速无静差以及满足系统快速起制动、突加负载动态速降小等要求,克服单闭环直流调速系统的不能随意控制电流和转矩的动态过程。双闭环系统可以在电机最大允许电流和转矩受限制的条件下,充分利用电机的过载能力,在过渡过程中保证电流为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。在直流电动机起动时只采用电流负反馈,得到近似的恒流过程,在达到稳态转速后只利用转速负反馈保证系统稳定运行。 1 转速电流双闭环控制系统的组成 系统中设置两个调节器,分别用来调节转速和电流。转速负反馈和电流负反馈实现嵌套连接,转速调节器的输出当作电流调节器的输入,再利用电流调节器的输出控制电力电子变换器,从而形成转速、电流双闭环调速系统。从闭环结构上看,电流环在里面,称为内环,转速环在外面称为外环。为了实现静、动态性能,调节器采用比例部分能够迅速响应控制作用,积分部分最终消除稳态偏差,因此两个调节器都采用PI调节器。同时两个调节器还带有限幅作用,通过限幅作用,转速调节器输出限幅电压决定电流调节器的最大输入,ACR输出的限幅电压限制了电力电子变换器件的最大输出电压。 = 图1 转速、电流双闭环直流调速系统 2 双闭环调速系统的数学模型 2.1 直流调速系统动态数学模型 直流电机运行时的电压和转矩方程分别为 =R (1) (2) 额定励磁下的感应电动势和电磁转矩分别为(3)

直流电机双闭环调速大作业

题目(中)直流电机双闭环控制调速 姓名与学号 指导教师 年级与专业

所在学院

目录: 一、电机控制实验目的和要求 (4) 二、双闭环调速控制内容 (4) 三、主要仪器设备和仿真平台 (5) 四、仿真建模步骤及分析 (5) 1.直流电机双闭环调速各模块功能分析 (5) 2.仿真结果分析(转速、转矩改变) (18) 3.转速PI调节器参数对电机运行性能的影响 (24) 4.电流调节器改用PI调节器后的仿真 (27) 5.加入位置闭环后的仿真 (28) 6.速度无超调仿真 (30) 七、实验心得 (32)

一、电机控制实验目的和要求 1、加深对直流电机双闭环PWM调速模型的理解。 2、学会利用MATLAB中的SIMULINK工具进行建模仿真。 3、掌握PI调节器的使用,分析其参数对电机运行性能的影响。 二、双闭环调速控制内容 必做: 1、描述Chopper-Fed DC Motor Drive中每个模块的功能。 2、仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象。 3、转速PI调节器参数对电机运行性能的影响。 4、电流调节器改用PI调节器后,对电机运行调速结果的影响。 选做: 5、加入位置闭环 6、速度无超调

三、主要仪器设备和仿真平台 1、MATLAB R2014b 2、Microsoft Officials Word 2016 四、仿真建模步骤及分析 1.直流电机双闭环调速各模块功能分析 参考Matlab自带的直流电机双闭环调速的SIMULINK仿真模型: demo/simulink/simpowersystem/Power Electronics Models/Chopper-Fed DC Motor Drive

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

双闭环直流电机调速系统

双闭环直流电机调速系统 摘要: 关键词: 引言:速度和电流双臂环直流调速系统,是由单闭环调速系统发展而来的,调速系统采用比例积分调节器,实现了转速的无静差调速。又采用直流截止负反馈环节,限制了启(制)动时的最大电流。这对一般要求不太高的调速系统,基本已能满足要求。但是由于电流截止反馈限制了最大电流,再加上电动机反电动势随着电机转速的上升而增加,使电流达最大值后便迅速将下来。此时,电机的转矩也减小,使启动过程变慢,启动时间较长。 一、双闭环直流调速系统的组成 转速、电流双闭环直流调速系统原理如图 1 所示。系统的组成框图如图2所示。

图1 转速-电流双闭环直流调速系统 图2 转速-电流双闭环直流电机调速系统组成框图 由图可见,该系统由两个反馈构成两个闭环回路,其中一个是由电流调节器ACR和电流检测——反馈环节构成的电流环,另一个是由速度调节器ASR和转速检测——反馈环节构成的速度环。由于速度环包围电流环,因此称电流环为内环,称速度环为外环。在电路中,ASR和ACR实行串级联接,即由ASR去“驱动”ACR,再由ACR去控制“触发电路”。图中ASR和ACR均为PI调节器。ASR、ACR的输入、输出量的极性主要视触发电路对控制电压的要求而定。 (一)直流电机各物理量间的关系 直流电动机的电路图如图3所示。由图可知,直流电动机有两个独立回路,一个是电枢回路,另一个是励磁回路。

1.电枢绕组的电磁转矩和转矩平衡关系: 2.电枢回路电压平衡关系 结合以上公式可推出即e e T a e a T K K R K U n ?Φ -Φ= 2 其中,Φ ?= e a K U n 0,称为电机理想空载转速,e e T a T K K R n ?Φ=?2为电机转速降,故 直流电机的调速方法 改变电压调速,采用此方法的特性曲线如下图6所示: 图6 改变U 时的机械曲线特性 3.直流电动机的系统框图 (二)转速调节器与速度调节器—比例积分电路(PI 调节器) PI 调节器的电路原理图如图7所示:

直流电机双闭环控制系统分析报告与设计

基于MATLAB 的直流电机 双闭环调速系统的设计与仿真 设计任务书: 1. 设置该大作业的目的 在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。此外,通过完成本大作业题目,让学生体会反馈校正方法所具有的独特优点:改造受控对象的固有特性,使其满足更高的动态品质指标。 2. 大作业具体容 设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为: 额定功率200W ; 额定电压48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5s ; 电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ; 要求转速调节器和电流调节器的最大输入电压==* *im nm U U 10V ; 两调节器的输出限幅电压为10V ;

f10kHz; PWM功率变换器的开关频率= K 4.8。 放大倍数= s 试对该系统进行动态参数设计,设计指标: 稳态无静差; σ5%; 电流超调量≤ i 空载起动到额定转速时的转速超调量σ≤ 25%; t0.5 s。 过渡过程时间= s 3. 具体要求 (1) 计算电流和转速反馈系数; (2) 按工程设计法,详细写出电流环的动态校正过程和设计结果; (3) 编制Matlab程序,绘制经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线; (4) 编制Matlab程序,绘制未经过小参数环节合并近似处理的电流环开环频率特性曲线和单位阶跃响应曲线; (5) 按工程设计法,详细写出转速环的动态校正过程和设计结果; (6) 编制Matlab程序,绘制经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线; (7) 编制Matlab程序,绘制未经过小参数环节合并近似处理的转速环开环频率特性曲线和单位阶跃响应曲线; (8) 建立转速电流双闭环直流调速系统的Simulink仿真模型,对上述分析设计结果进行仿真; (9) 给出阶跃信号速度输入条件下的转速、电流、转速调节器输出、电流调节器输出过渡过程曲线,分析设计结果与要求指标的符合性;

双闭环直流电机控制完整版.

双闭环直流电机调速系统设计 摘要 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算然后最后采用MATLAB/SIMULINK对整个调速系统进行了仿真分析,最后画出了调速控制电路的电气原理图。 关键词:双闭环;转速调节器;电流调节器 目录 前言0 第1章绪论1 1.1直流调速系统的概述1 1.2研究课题的目的和意义1 1.3设计内容和要求1 1.3.1设计要求1 1.3.2设计内容1 第2章双闭环直流调速系统设计框图3 第3章系统电路的结构形式和双闭环调速系统的组成4

3.1主电路的选择与确定4 3.2 双闭环调速系统的组成6 3.3 稳态结构框图和动态数学模型7 3.3.1稳态结构框图7 3.3.2 动态数学模型9 第4章主电路各器件的选择和计算10 4.1变流变压器容量的计算和选择10 4.2 整流元件晶闸管的选型12 4.3 电抗器设计13 4.4 主电路保护电路设计15 4.4.1过电压保护设计15 4.4.2过电流保护设计17 第5章驱动电路的设计18 5.1晶闸管的触发电路18 5.2脉冲变压器的设计20 第6章双闭环调速系统调节器的动态设计22 6.1 电流调节器的设计23 6.2 转速调节器的设计24 第7章基于MATLAB/SIMULINK的调速系统的仿真28 小结31 致谢32 参考文献33 附表34 附图35

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

直流电机双闭环系统设计

直流电机双闭环系统设计 院系:机电工程学院 班级:电气自动化一班 姓名: 学号: 1 1 0 2 0 3 0 1 4 2 指导教师: 目录

1引言 2调速系统的性能指标 2.1调速系统的稳态指标 2.2调速系统的动态性能指标 2.3系统结构选择 3数字直流电机调速系统的数字PID控制3.1基于单片机控制的直流电机双闭环调速系统3.2 PID调节器的基本原理 4总结与展望 4.1工作总结 4.2研究展 参考文献 直流电机双闭环系统设计摘要

近年来,自动化控制系统在各行业中得到了广泛的应用和发展,而直流调速系统作为电力拖动系统的主要方式之一,在现代化生产中起着十分重要的作用。随着微电子技术的不断发展,计算机在调速系统中的应用使控制系统得到简化,体积减小,可靠性提高,而且各种经典和智能算法也都分别在调速系统中得到了灵活。 以单片机为控制核心的数字直流调速系统有着许多优点:由于速度给定和测速采用了数字化,能够在很宽的范围内高精度测速,所以扩大了调速的范围,提高了测速控制系统的精度;由于硬件的高度集成化,所以使得零部件数量大大减少;由于很多功能都是由软件实现的,使硬件得以简化,因此故障率小;单片机以数字信号工作,控制方法灵活便捷,抗干扰能力较强。 关键词:直流电动机;调速;双闭环 1引言 按照拖动的电动机的类型来划分,自动调速系统可以分为直流调速系统和交流调速系统两大类。由于直流电动机的电压、电流和磁通的耦合较弱,使直流电动机具有良好的运行性能和控制特性,能够在大范围内平滑调速,启动、制动性能良好,其在20世纪70年代以来一直在高精度,大调速范围的传动领域内占据主导地位。在要求高起、制动转矩,快速响应和较宽速度调节范围的电气传动领域中,采用直流电动机作为调速系统的执行电机。由于直流电动机具有良好的机械特性和调速特性,调速平滑,方便,易于在大范围内进行平滑调速,过载能力较大,能够承受频繁的冲击负载,可

双闭环直流电机调速的matlab仿真

双闭环直流电机调速系统的设计与MATLAB 仿真 双闭环调速系统的工作原理 转速控制的要求和调速指标 生产工艺对控制系统性能的要求经量化和折算后可以表达为稳态和动态性能指标。设计任务书中给出了本系统调速指标的要求。深刻理解这些指标的含义是必要的,也有助于我们构想后面的设计思路。在以下四项中,前两项属于稳态性能指标,后两项属于动态性能指标 调速范围D 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,即 m in m ax n n D = (1-1) 静差率s 当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落,与理想空载转速之比,称作静差率,即 %1000 ??= n n s nom (1-2) 静差率是用来衡量调速系统在负载变化下转速的稳定度的。 跟随性能指标 在给定信号R (t )的作用下,系统输出量C (t )的变化情况可用跟随性能指标来描述。具体的跟随性能指标有下列各项:上升时间r t ,超调量σ,调节时间s t . 抗扰性能指标 此项指标表明控制系统抵抗扰动的能力,它由以下两项组成:动态降落%max C ?,恢复时间v t . 调速系统的两个基本方面 在理解了本设计需满足的各项指标之后,我们会发现在权衡这些基本指标,即

1) 动态稳定性与静态准确性对系统放大倍数的要求; 2) 起动快速性与防止电流的冲击对电机电流的要求。 采用转速负反馈和PI 调节器的单闭环调速系统,在保证系统稳定的条件下,实现转速无静差,解决了第一个问题。但是,如果对系统的动态性能要求较高,例如要求快速启制动,突加负载动态速降小等等,则单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流和转矩。 在电机最大电流受限的条件下,希望充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳态后,又让电流立即降低下来,使转速马上与负载相平衡,从而转入稳态运行。在单闭环调速系统中,只有电流截止负反馈环节是专门用来控制电流的,但它只是在超过临界电流I dcr 值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图1-1a 所示。 a) b) 图1-1 调速系统启动过程的电流和转速波形 a) 带电流截止负反馈的单闭环调速系统的启动过程 b) 理想快速启动过程 当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖 I d t 0 I 0 t

直流电机双闭环调速系统设计说明

存档日期:存档编号: 本科生毕业设计(论文) 论文题目:直流电机双闭环调速系统设计 姓名:徐震杰 学院:电气工程及自动化 专业:自动化 班级、学号:10电51 10285038 指导教师:甘良志 师大学教务处印制

摘要 直流调速系统的控制一般都是由转速、电流反馈来完成的,它的静态性能和动态性能都是十分杰出的,正是由于它的这些优点使其使用围也很广泛。其主要通过晶闸管可控整流电源来调节电源的大小。根据题目的设计要求,调速系统一共有两个控制器,它们分别是转速控制器(ASR)和电流控制器(ACR)。速度控制系统的电源电路的设计是使用三相全控桥整流电路实现的。在设计中,首先对总体规划的设计图进行了确定。之后又对主电路的结构形式以及各个元器件进行了确定和设计。与此同时,对包括晶闸管、电抗器等元件的参数进行了计算。在本文的最后一个部分,主要围绕本设计最重要的部分,直流调速系统的转速环和电流环进行设计。为了使速度和电流两个负反馈可以发挥一定的作用,因此,应该使其嵌套连接在速度和电流负反馈之间。单纯的从布局上来看的话,电流环在转速环的部,因此电流环被叫做环,相应的转速环就被称为外环。这样设计之后,以电流负反馈、转速负反馈为核心的调速系统就这样形成了。在对所有部分设计都完成了之后,采用MATLAB对整个系统进行仿真实验,并对数据进行分析,得出结论。 关键词:直流电动机双闭环调速系统转速负反馈电流负反馈

Abstract The speed and current feedback control of dc speed control system has excellent static and dynamic performance and the most widely application scope. It through thyristor controlled rectifying power supply to adjust the size of the power supply mainly. According to the design requirements of the title, it uses ASR and ACR as the controller of speed control system in the control circuit. The power supply circuit of the speed control system of design uses the Sedan fully-controlled bridge rectifier circuit. Firstly, we need determine the overall plan and diagram of this design before the design. Secondly, we need identify and design the structure of main circuit and the various components. At the same time, including the parameters of thyristor, reactor, etc. Finally, focus on the design of the most important two parts which are speed loop and current loop dc speed control system in the design. In the system were introduced speed negative feedback and current feedback and the implementation of a nested connection can realize the speed and current two kind of negative feedback effect between the two respectively. On the layout of it simply, current loop is referred to as the inner ring, because it is in the inside. Speed ring is called the outer ring, because current loop is in the interior of the speed loop. Through this design, the core of the double closed loop speed regulation system: speed negative feedback and current feedback is formed. After all parts of the design is done, using MATLAB simulation to do the experiments to the whole system and analyze the data, we can safely draw the conclusion. Keywords: DC motor; double closed loop; speed ring; current loop

直流电动机双闭环控制系统的设计仿真设计

摘要 传统的直流电机一直在电机驱动系统中占据主导地位,但由于其本身固有的机械换向器和电刷导致电机容量有限、噪音大和可靠性不高,因而迫使人们探索低噪音、高效率并且大容量的驱动电机。随着电力电子技术和微控制技术的迅猛发展成熟起来的直流无刷电机具有体积小、重量轻、效率高、噪音低、容量大且可靠性高的特点,从而使其极有希望代替传统的直流电机成为电机驱动系统的主流。首先,从电机本体和控制角度出发,阐述了直流无刷电机在实际应用中需要解决的关键性问题:电磁转矩脉动。详细分析了电磁转矩脉动产生的各种原因,特别是分析了相电流换向所产生的纹波转矩脉动。其次,本文对无刷直流电动机的工作原理进行了详尽的分析,建立了三相无刷直流电动机的数学模型。并利用MATLAB/SIMULINK软件建立了三相无刷直流电动机的控制系统仿真模型。仿真模型采样的是电机控制系统中常用的双环系统(转速一电流双闭环控制)。为了提高系统的静动态特性,转速外环采用PI调节器,电流环采用PI调节器。转子位置通过直流无刷电机感应电势检溺,仿真结果表明了该仿真模型控制系统与理论分析完全吻合,从而证明了模型的有效性。然后,初步设计了伺服系统的原理图。以PID控制器作为整个控制电路的核心,一台40w的直流无刷电机作为被控对象,完成了伺服系统的转速控制。最后,对未来的工作给予了展望,并对全文的容进行了总结。 关键词:无刷直流电动机;转矩脉动;PID控制器

Abstract Conventional DC motor always takes up dominant position in driving system,butits inherent mechanical commutator and brush bring on limited capability,low reliability and big noise.These shortcoming necessitate US to develope lower noise,high efficiency and big capability driving motor.With the development of the power electronicsand micro—control technique,permanent—magnet brushless DC motor possesses small volume,light weight,high efficiency,low noise,big capability and reliability,so it is hopeful to become main motor in drive system.Fuzzy controller has the advantage of robust trait and strong anti-jamming merit.First,from the point of view of motor and control,the paper expounds all kinds of cause of brushless dc motor’s ripple toque.Especially,analyzes the cause of commutation ripple torque.

数字化直流电机双闭环调速系统

数字化直流电机双闭调速系统 摘要本文叙述了直流电动机的基本原理和调速原理,介绍了直流电动机开环和双闭环调速系统的组成及静、动态特性,并且根据直流电动机的基本方程建立了调速系统的数学模型,给出了动态结构框图,用工程设计方法设计了直流电动机双闭环调速系统。最后用 MATLAB 软件搭建了仿真模型,对调速系统进行了仿真研究。通过对直流电动机双闭环调速系统动态特性的研究与仿真,可以清楚地看到,直流电动机双闭环调速系统具有较好的动态特性,可以在给定调速范围内,实现无静差平滑调速,这为直流电动机调速系统的硬件实验提供了理论依据。 关键词:直流调速;双闭环调速;转速环;电流环;MATLAB 仿真 目录 第 1 章绪论 (1) 第 2 章课程设计的方案 (2) 2.1 概述 (2) 2.2 方案选择 (2) 2.3 系统组成总体结构 (4) 第 3 章硬件设计 (5) 3.1 单片机控制器 (5) 3.2 接口电路 (5) 3.3 D/A 转换电路 (6) 3.4 触发电路 (6) 3.5 三相整流电路 (7) 3.6 电流检测电路 (7) 3.7 A/D 转换电路 (8)

3.8 转速检测电路 (8) 3.9 键盘显示电路 (9) 第 4 章软件设计 (11) 4.1 设计要求 (11) 4.2 电流环的设计 (11) 4.3 转速环的设计 (12) 4.4 闭环动态结构框图设计 (12) 4.5 程序设计 (13) 第 5 章系统测试与分析/实验数据及分析 (15) 第 6 章课程设计总结 (17) 参考文献 (18) 第1章绪论 三十多年来,直流电机调速控制经历了重大的变革。传统的控制系统采用模拟元件,虽在一定程度上满足生产要求,但是因为元件容易老化,在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受器件性能、温度等因素的影响,故系统的运行可靠性及标准性得不到保证,甚至出现事故。而如今首先实现了整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进。大功率直流调速系统通常采用三相全控桥式整流电路对电动机进行供电,从而控制电动机的转速。同时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在轧钢机、矿井卷扬机、挖掘机、高层电梯等需要高性能可控电力拖动领域应用历史悠久。近年来,交流调速系统发展很快,然而直流拖动系统无论在理论上和实践上都比较成熟,并且从反馈闭环控制的角度来看,它又是交流拖动控制系统的基础,所以直流调速系统在生产生活中有着举足轻重的作用。双闭环不可逆调速系统在上世纪七十年代在国外一些发达国家兴起,经过数十年的发展已经成熟,在二十一世纪已经实现了数字化与智能化。我国在直流调速产品的研发上取得了一定的成就,但和国外相比仍有很大差距。我国自主的全数字化直流调速装置还没有全面商用,产品的功能上没有国外产品的功能强大。而国外进口设备价格昂贵,也给国产的全数字控制直流调速装置提供了发展空间。目前,发达国家应用的先进电气调速系统几乎完全实现了数字化,双闭环控制系统已经普遍的应用到了各类仪器仪表,机械重工业以及轻工业的生产过程中。随着全球科技日新月异的发展,双闭环控制

直流电机的转速电流双闭环控制

直流电机的转速电流双闭 环控制 The final edition was revised on December 14th, 2020.

直流电机的转速电流双闭环控制 摘要:本设计主要采用模拟电路实现直流电机控制的整流电源,转速调PI调节器,电流PI调节器的设计。来实现对电机转速的控制,包括快速起动、恒速运行、堵转截止三大目标。该设计的主要电路均采用模拟电路实现,电流环的PI 调节器用于保证快速起动,即保证电机起动时以最大负载电流起动,也即实现以最大加速度实现。而转速调节器则用于在运行时实现转速恒定,保证带负载的能力。两个PI调节器都采用集成运放实现。其主要优点是克服传统意义上单环控制只能满足一方面的要求的缺陷。 关键词:电流环;转速环;PI调节器 The Rotate Speed and Current Double Closed Loop Feedback Control for DC Motor Abstract: The major tasks of this design is utilizing simulating circuits to produce the rectifiering power source ,current PI regulator and rotate speed PI regulator for the DC major object of this desigen is making the DC motor started rapidly,rotating making the DC motor started rapidly with the largest load is the same to starting rapidly with the largest ,The rotate speed PI regulator make the DC mortor retated stably to any the change of the load .Both of the PI regulators use the integrated amplifier operator to accomplish the priority of this design are overcoming the defect of traditional single feedback loop. Key word: current feedback loop; rotate speed feedback loop;PI regulator

基于单片机控制双闭环直流电机

基于单片机控制双闭环直流电机 [摘要] 本文主要研究了利用MCS-51系列单片机进行双闭环直流电机调速的方法。设计中通过采集转速、电流信号进行A/D转换,并实现PI算法,将PI算法结果用于PWM占空比计算,通过软件方法产生PWM波,PWM波输出后,经光耦驱动电路放大后,用于IGBT的控制,从而实现双极式H型直流机、、电机的调速。 [关键词]: PWM信号; 直流调速; 双闭环; PI运算

Based on single-chip microcomputer control double closed loop dc motor Abtract This paper mainly discusses about using MCS - 51 series microcontroller to control DC motor rated speed by double closed-loop. After collecting rated speed and current signal ,using ADC0809 to achieve A/D conversion, and then realize the PI algorithm algorithms, using PI algorithm results to calculate the duty cycle of PWM through the software method to create PWM waves, PWM wave output by light-coupler after driving circuit for amplification, so as to realize the IGBT bipolar contral ,and achieve the type H DC motor speed adjusting. Keywords: PWM signal. Dc speed control. Double closed loop. PI operations

直流电机双闭环调速大作业

实验报告 实验名称直流电机双闭环调速系统 姓名与学号 指导教师 专业电气工程及其自动化

一、实验内容与要求 参照Chopper-Fed DC Motor Drive例,建立直流电机双闭环调速系统模型。 必做项: ?描述每个模块的功能; ?对仿真结果进行分析,包括转速改变、转矩改变下电机运行性能,并解释相应现象; ?仿真并分析转速PI调节器参数对电机运行性能的影响。 选做项: ?电流调节器改用PI调节器。 二、实验设备与仿真平台 PC、Word2013、Matlab2013a 三、研究背景与意义 在现代工业中,为了实现各种生产工艺过程的要求,需要采用各种各样的生产机械,这些生产机械大多采用电动机拖动。随着工艺技术的不断发展,各种生产机械根据其工艺特点,对生产机械和拖动的电动机也不断提出各种不同的要求,这些不同的工艺要求,都是靠电动机及其控制系统和机械传动装置实现的。可见各种拖动系统都是通过控制转速来实现的,因此,调速控制技术是最基本的电力拖动控制技术。 由于直流调速控制系统具有良好的起制动、正反转及调速等性能,目前在调速领域中仍占主要地位。按供电方式,它可分交流机组供电、水银整流供电和晶闸管供电三类。晶闸管供电的直流调速控制系统具有良好的技术经济指标。因此,在国内外已取代了其他两种供电方式。目前,我国的直流调速控制主要在以下几个方面进行着研究。 ①提高调速的单机容量。我国现有最大单机容量为7000kW,国外单机容量已达14500kW。 ②提高电力电子器件的生产水平,增加品种。20世纪50年代末出现的无自关断能力的半控型普通晶闸管是第一代电力电子器件。70年代以后,出现了能自关断的全控型器件,如电力晶体管(GTR)、门极可关断晶闸管(GTO)、绝缘栅双极型晶体管(IGBT)、电力场效应管(MOSFET)、静电感应晶体管(SIT)和静电感应晶闸管(SITH)等称之为第二代电力电子器件,使得变流器结构变得简单、紧凑。80年代后,出现了电力集成电路(PIC),属于第三代电力电子器件,在PIC中,不仅含有主电路的器件,而且把驱动电路以及过压、过电流保护、电流检测甚至温度自动控制等电路都集成在一起,形成一个整体。当今,电力电子器件正在向大功率化、高频化、模块化、智能化发展。 ③提高控制单元水平。目前国内使用较多的仍是小规模集成运放和组件构成的交直流调速控制系统,触发装置甚至仍是分立元件的,目前,国外的第四代产品以微处理机为基础,具有控制、监视、保护、诊断及自复原等多种功能。 目前,交流电机变频调速系统已经大面积代替直流电机调速系统。但是直流电机具有模型简单控制方便的优点,因此交流电机变频调速时总是将交流电机通过变换等效成直流电机后进行控制。研究典型的双闭环控制直流电机调速系统对

相关主题
文本预览
相关文档 最新文档