当前位置:文档之家› 电磁兼容实验报告

电磁兼容实验报告

电磁兼容实验报告
电磁兼容实验报告

学院:电子信息工程学院班级:信号1504

姓名:李子琦

学号:15212097

日期:2017/11/11

目录

实验一扼流变压器参数和特性测试 (1)

(一)扼流变压器牵引线圈阻抗测试实验 (1)

1.实验目的 (1)

2.实验电路 (1)

3.实验设备和仪表 (1)

4.实验步骤 (2)

5.实验记录和数据 (2)

6.结论分析 (3)

(二)扼流变压器线圈同名端测试实验 (4)

1.实验目的 (4)

2.实验电路 (4)

3.实验设备和仪表 (5)

4.实验步骤 (5)

5.实验记录 (6)

6.结论分析 (6)

(三)扼流变压器变比(匝数比)测试实验 (6)

1.实验目的 (6)

2.实验电路 (6)

4.实验步骤 (7)

5.实验记录和数据 (7)

6.结论分析 (8)

实验二扼流适配变压器参数测试 (8)

(一)适配器品质因数和谐振阻抗测试实验 (8)

1.实验目的 (8)

2.实验电路 (9)

3.实验设备和仪表 (9)

4.实验步骤 (9)

5.实验记录和数据 (10)

6.结论分析 (10)

实验三钢轨阻抗特性测试实验 (11)

1.实验目的 (11)

2.实验电路 (11)

3.实验设备和仪表 (12)

4.实验步骤 (12)

5.实验记录和数据 (12)

6.结论分析 (13)

实验四牵引电流干扰轨道电路实验 (14)

(一)牵引电流模拟系统特性实验 (14)

2.实验电路 (14)

3.实验器材 (15)

4.实验步骤 (15)

5.结论分析 (15)

(二)25Hz 相敏轨道电路系统测试实验 (15)

1.实验目的 (15)

2.实验电路 (16)

3.实验设备和仪表 (17)

4.实验步骤 (17)

5.结论分析 (17)

(三)不平衡牵引电流对轨道电路干扰测试实验 (17)

1.实验目的 (17)

2.实验原理 (18)

3.实验设备和仪表 (18)

4.实验步骤 (18)

5.结论分析 (19)

实验五浪涌抑制器件性能测试实验 (19)

1.实验背景 (19)

2.实验目的 (20)

3.实验原理 (20)

5.实验内容及步骤 (22)

6.实验结果 (24)

7.测试结果分析 (24)

实验六研究设计性实验 (25)

电源EMI滤波器的设计 (25)

1.实验目的 (25)

2.实验方案 (25)

3.电路设计仿真 (26)

4.滤波效果测试 (28)

5.电路优化 (30)

6.实验总结 (30)

实验一扼流变压器参数和特性测试(一)扼流变压器牵引线圈阻抗测试实验

1.实验目的

(1) 测试BE 600/25 扼流变压器牵引线圈阻抗值。

(2) 掌握扼流变压器阻抗特性和工作原理。

2.实验电路

扼流变压器牵引线圈25Hz 阻抗测试电路

图中,K-闸刀开关,TB-电压范围250V、3kVA 调压器(下同),V-交流电压表,A-交流电流表。

原理:阻抗值Z=R+jωL、|Z|==V/A,改变频率求出|Z|(25Hz)和|Z|(50Hz)。

3.实验设备和仪表

25Hz 变频器(一台),交流电压表(一个),交流电流表(一个),扼流变压器,导线。

4.实验步骤

(1)、闭合开关K,调整调压器TB 使V=0.5、1.0、1.5V,分别测电流表A 的值,并计算阻抗Z=V/A,得出三组|Z|(25Hz)然后求平均值得出|Z|(25Hz);

(2)、移去25Hz 变频器,闭合开关K,调整调整调压器TB 使V=0.5、1.0、1.5V,分别测电流表A 的值,并计算阻抗Z=V/A,得出三组|Z|(50Hz) 然后求平均值得出|Z|(25Hz)。

5.实验记录和数据

表1-1 25Hz频率下扼流变压器牵引线圈阻抗测试表

得到|Z|25Hz= 0.43

|Z|50Hz=0.76

6.结论分析

(1)整理实验数据,将实验结果与理论值进行分析、比较;分析误差值和误

差原因。

实验数据如上,通过得到三个不同电压值下电流表的值能求得变压器牵引圈的平均阻抗大小。在25Hz时约为0.43Ω;在50Hz时约为

0.76Ω。牵引圈阻抗特性为感性阻抗,理想状态下,其在频率增加两倍

后阻抗也应该增加两倍,但实际实验测得增加倍数为1.76倍,误差值

约为12%。分析其误差原因,可能是因为该变压器在实际情况下并不

能完全等效为一个纯电感,其上可能分布有电阻或电容,这样便会导致

频率与阻抗的非线性关系,产生误差。

(2) 分析两个频率下测得阻抗变化规律,分析扼流变压器阻抗特性。

以上两图为25Hz与50Hz时牵引圈阻抗随电压的变化情况。可以看到,当加在变压器两端的电压升高时,其阻抗会下降。原因经分析可能是因为当变压器两端的电压增加后,流经变压器的电流也会相应增加,此时变压器中磁感应强度也会增大,容易产生铁磁饱和现象,导致牵引圈的阻抗下降。

(二)扼流变压器线圈同名端测试实验

1.实验目的

(1)利用指针电压表(或交流法)测试BE 600/25 扼流变压器线圈同名端。

(2)掌握扼流变压器基本特性和工作原理。

2.实验电路

扼流变压器同名端测试电路图

原理:所谓变压器的同名端,就是在两个绕组中分别通以交流电(或者直流电产生静止磁场),当磁通方向迭加(同方向)时,两个绕组的电流流入端就是它们的同名端,两个绕组的电流流出端是它们的另一组同名端。如采用交流法,在电路图中用一根导线将1、4两端连接,测得2-6、4-6、1-2端电压,如满足关系V2-6 = V4-6 - V1-2,即可得2、6端为同名端。

3.实验设备和仪表

直流(或交流)电压源,扼流变压器,指针式万用表。

4.实验步骤

(1)给出1.0V 电压,合上开关K,万用表红表笔接4 端,黑表笔接6 端,查看4、6 间电压表的值,如果是正数则1、4 属于同名端,

如果是负数,则1、5 属于同名端。

(2)同理测试出7、8 和10、11 的同名端。

5.实验记录

表2-1 扼流变压器同名端测试表

6.结论分析

思考用直流电压表或交流测试扼流变压器同名端的原理。

变压器初级和次级的同名端相对于非同名端均为高电位或低电位,通过测试初级电压,再测试次级电压,判断其极性正负,便可分辨出哪一端为同名端。

(三)扼流变压器变比(匝数比)测试实验

1.实验目的

(1)利用仪器测试扼流变压器线圈的匝数比。

(2)深入理解扼流变压器基本作用和工作原理。

2.实验电路

扼流变压器线圈匝数比测试电路图

原理:理想变压器的原副线圈匝数比等于原副线圈两端的电压比。

3.实验设备和仪表

交流电压源(调压器),滑动变阻器,扼流变压器,数字万用表。

4.实验步骤

(1)电压源输出1~2V 电压,合上开关K,看万用表2 的数值,得出比值;

(2)调节电压源输出的电压值,再读出万用表2 的值,像这样多次测量,求出一组比值,最后求平均值即为要测的匝数比。

5.实验记录和数据

表3-1 扼流变压器变比测试表

6.结论分析

通过不同线圈之间匝数比与理想匝数比较,分析实验结果。

变压器参数如上,初级为16匝,次级为48匝,得到理想匝数比为1:3。

实测得到匝数比平均值与理想匝数比相近,均在1:3左右,调整初级电压大小,得到的结果也基本一致,则可知实验结果与实际情况吻合,仪器参数得到了验证

实验二扼流适配变压器参数测试(一)适配器品质因数和谐振阻抗测试实验

1.实验目的

(1)测试适配器的品质因数(Q)和谐振阻抗。

(2)掌握扼流适配变压器中适配器的特性和工作原理。

2.实验电路

原理:品质因数(Q)表示一个储能器件(如电感线圈、电容等)、谐振电路中所储能量同每周期损耗能量之比的一种质量指标。电抗元件的Q值等于其电抗与其等效串联电阻的比值;元件的Q值愈大,用该元件组成的电路或网络的选择性愈佳。

Q=无功功率/有功功率=1/ωCR=ωL/R=V1(或V2)/V3 (ω为谐振频率) LC串联电路阻抗Z=R+j(ωL-1/ωC),发生谐振的条件是Z的虚部为0,即ωL=1/ωC此时的Z=R=V3/I,ω为谐振角频率。

3.实验设备和仪表

可调交流电压源,电流表,电压表,滑动变阻器。

4.实验步骤

调整变压器T,使交流电流表A的值为0.5、1.0、2.0A,分别记下对应的V3、V1、V2的值,由下式可计算出Q值:

或(取较小的)

Q=

Q应取最小值,即得到适配器的品质因数。

5.实验记录和数据

Q=23.0

Z=(7.2+5.4+4.8)/3=5.8

6.结论分析

1)品质因数的定义和其他计算方法。

Q=wl/R

Q=

2)整理实验数据,简要分析如何提高Q值和减小谐振阻抗。

a)增大传输电流

b)根据工作频率选择绕制线圈的导线。低频段工作的电感线圈应采用

漆包线等带绝缘的导线绕制。

c)选用优质骨架,减少介质损耗。通常对于要求损耗小、工作频率高

的电感线圈,应选用高频陶瓷、聚四氟乙烯、聚苯乙烯等高频介质

材料做骨架。

d)选用带有磁芯的电感线圈。电感线圈中带有磁芯时,可使线圈圈数

及其电阻大大减少,有利于Q值的提高。

e)合理选择屏蔽罩的尺寸。线圈加屏蔽罩后,会增加线圈的损耗,降

低Q值。因此,屏蔽罩的尺寸不宜过大和过小。

实验三钢轨阻抗特性测试实验

1.实验目的

(1)测试在不同频率下钢轨的阻抗特性(包括电抗和电阻)。

(2)了解轨道电路的传输特性,理解传输补偿的作用。

2.实验电路

原理:阻抗值Z=R+jωL,|Z|==V/A,改变频率求出|Z|,通过示波器得到电压电流的相位关系,

进而求出R 和L。

3.实验设备和仪表

函数发生器,功率放大器,钢轨,电流表,电压表,限流电阻,电流传感器,示波器。

4.实验步骤

调整函数发生器和功率放大器,输出2000Hz 频率下,钢轨电流0.5A,1.0A,1.5A,分别

测电流表A 的值,并计算阻抗Z=V/A,得出三组|Z|,然后求均值得出|Z|。

5.实验记录和数据

表7-1 2000Hz 时钢轨阻抗测试数据记录表

6.结论分析

(1)

|Z|平均=(0.0076+0.0060+0.0058)/3=0.0065Ω,换算后为6.5Ω/KM,与标准的16.44Ω/KM相比较小,考虑到所测钢轨所处环境为实验室,较实际铁路环境而言可作为理想环境,没有温度、建设工艺等影响因素干扰,测出的阻抗

不会大于实际环境阻抗,可视为所得阻抗接近于标准,验证了钢轨阻抗特性标准的正确。

(2)随着频率的上升,钢轨的阻抗也会随之上升,因为钢轨可以等效为一个RL串联电路,即Z=R+jωL,在频率上升时钢轨的阻抗中的电感部分就会上升,使得整个钢轨对此高频信号的阻抗增加。

实验四牵引电流干扰轨道电路实验(一)牵引电流模拟系统特性实验

1.实验目的

(1)理解不平衡电流的产生原因、电流源特征及对轨道电路的影响。

(2)模拟50~100A 不平衡牵引电流的稳定状态、脉冲状态。

2.实验电路

原理:通过集中参数R 和L 模拟钢轨阻抗,相应产生不平衡电流。总电流和不平衡电流的大小可以调节控制。I 代表总电流,I1 和I2 分别为钢轨1、2 中电流。EUT 指被测设备(如轨道电路发送和接收器)。

3.实验器材

电压源,可调变压器,扼流变压器,电阻,电感,钳式电流表,导线。

4.实验步骤

调节L 和R 模拟约600m 钢轨,打开电源,调节电压,使两根钢轨上的电流差达到100A。

5.结论分析

简要分析如何利用其他电路来控制交流接触器通断,以调节脉冲状态的周期。

可以加一个单片机来控制交流接触器的通断

(二)25Hz 相敏轨道电路系统测试实验

1.实验目的

现代交换技术实验报告

实验一C&C08 交换机系统介绍 一.实验目的 通过本实验,让学生了解程控交换机单元所具备的最基本的功能。 二.实验器材 程控交换机一套。 三.实验内容 通过现场实物讲解,让学生了解CC08 交换机的构造。 四.实验步骤 CC08 交换机是采用全数字三级控制方式。无阻塞全时分交换系统。语音信 号在整个过程中在实现全数字化。同时为满足实验方对模拟信号认识的要求,也 可以根据用户需要配置模拟中继板。 实验维护终端通过局域网(LAN)方式和交换机BAM后管理服务器通信,完 成对程控交换机的设置、数据修改、监视等来达到用户管理的目的。 1.实验平台数字程控交换系统总体配置如图 1 所示: 图1 2.C&C08 的硬件层次结构 C&C08在硬件上具有模块化的层次结构, 整个硬件系统可分为以下 4 个等级: (1) 单板 单板是 C&C08数字程控交换系统的硬件基础,是实现交换系统功能的基本组 成单元。 (2) 功能机框 当安装有特定母板的机框插入多种功能单板时就构成了功能机框,如SM中的主控框、用户框、中继框等。 (3) 模块 单个功能机框或多个功能机框的组合就构成了不同类别的模块,如交换模块SM由主控框、用户框(或中继框)等构成。 (4) 交换系统 不同的模块按需要组合在一起就构成了具有丰富功能和接口的交换系统。

交换系统 交换系统 USM/TSM/UTM+AM/CM C&C08 模块模块模块 用户框+主控框USM 功能机框功能机框功能机框 ASL+DRV+TSS+PWX+ 母板SLB 用户框单板单板单板 C&C08的硬件结构示意图 这种模块化的层次结构具有以下优点: (1)便于系统的安装、扩容和新设备的增加。 (2)通过更换或增加功能单板,可灵活适应不同信令系统的要求,处理多种 网上协议。 (3)通过增加功能机框或功能模块,可方便地引入新功能、新技术,扩展系 统的应用领域。 3.程控交换实验平台配置,外形结构如图2 所示: 中继框------ 时钟框--- --- 用户框 主控框--- BAM后管理服务器 --- 图2 五.实验报告要求 1.画出CC08交换机硬件结构示意图 答:CC08交换机硬件结构示意图如图3 所示:

《现代交换技术》实验三

实验报告 实验目的: 加深对交换机系统功能结构的理解,熟悉掌握B独立局配置数据、字冠、用户数据的设置。通过配置交换机数据,要求实现本局用户基本呼叫。通过数据配置,掌握现代程控交换机的硬件结构和组成。熟悉本局各单板的工作机制。 实验要求: (一)呼叫源的概念:呼叫源是指发起呼叫的用户或中继群,一般具有相同主叫属性的用户或中继群归属于同一个呼叫源。呼叫源的划分是以主叫用户的属性来区分的,这些属性包括:预收号位数、号首集、路由选择源码、失败源码、是否号码准备及呼叫权限等。 (二)号首集的概念:号首集是号首(或字冠)的集合。号首集在实际应用中也称网号。号首是呼叫源发出呼叫的号码的前缀,所以号首集与呼叫源有一定的对应关系。 号首是决定与该次呼叫有关的各种业务的关键因素,在公网和专网混合的网中,号首对不同的用户和中继群而言,往往是重叠的,但意义可能不同。 (三)呼叫源与号首集的关系:一个呼叫源只能对应一个号首集,一个号首集可以为多个呼叫源共用。呼叫源和号首集的关系可以这样描述:一个电话网(公网或专网)内所有的普通用户能够拨打的字冠(号首)的集合就是号首集,而这些用户可能因为某些呼叫属性如对字冠的预收号位数不同划分为不同的用户组,每一个组是一个呼叫源。所以号首集含盖的范围大于等于呼叫源含盖的范围。对于一个呼叫源,需设定一个号首集,对于非号首集内的号首,当用户拨打该号首时,系统会提示号码有误。引入号首集这一概念是因为即使是同一号首,但对不同的主叫方(呼叫源),也可有不同的含义,交换机对其处理也不同。如:9对公网为无线呼叫,对专网即为普通呼叫。222对一个网的(如号首集0)呼叫源0可能是本局呼叫,对另一个网(如号首集1)的呼叫源1则是出局呼叫。两个呼叫源可以对应相同的号首集,当同一个网(如号首集0)内不同呼叫源的用户拨打相同的号首时,交换机做相同的处理。当然,不同号首集中同一号首也可能含义相同,如:7字头都代表出局。号首集侧重对被叫(字冠)理解与分析的不同进行分类,而呼叫源是侧重对主叫的属性进行分类。也就是说号首集定义呼叫字冠,呼叫源对主叫用户分类。某呼叫源呼叫非本号首集(另外一个网)字冠时,则需要作号首集变换(网变换)。 (四)配置字冠数据,首先要配置呼叫源,再配置被叫号码分析表(增加呼叫字冠),然后根据具体要求配置其他字冠数据。例如对某些字冠有特殊要求,则需要配置号码变换和号首特殊处理或主叫号码变换;某些字冠要进行特殊号码变换,则要配置特殊号码变换;有号码鉴权要求时,则配置限呼数据;对有的呼叫失败原因需要处理,则需要增加相应的失败处理;对有的局向需要主动发主叫号码时,要增加补充信令。 (五)本局电话互通主叫摘机上报路径:A32---DRV32---NOD---MPU。 (六)通过MPU, SIG, NET, A32板向主叫送拨号音,MPU完成主叫号码分析。MPU同时也完成被叫号码分析,在数据库里按照:号段表-用户数据索引表-ST用户数据表-ST用户设备表顺序进行查找和接续。 (七)本局电话互通的语音通话流程:A32---DRV32---BNET---DRV32---A32。 (八)加深了解各个单板在呼叫过程的作用及相互之间的配合,加深对硬件的了解。 (九)了解反极性特性:反极性用户一般用于公用电话等需要实时计费的地方。通过挂机信号的极性反转送计费信号而实现实时计费。一般32路用户是中间16、17路有反极性。 (十)来电显示问题:CC08交换机采用的来电显示制式是FSK制式,不支持DTMF制式。本设备中来电显示提供单板为BNET板。 (十一)预收号位数的含义:预收号位数表示启动号码分析至少要准备的号码位数。该数字的长短会影响到程控交换机话务高峰时的负荷。 (十二)本机查号命令:通过下面的命令可以实现拨打“###”查询话机号码。ADD CNACLD: PFX=K'ccc, CSTP=TEST, CSA=LDN, MIDL=3, MADL=3; 实验方法(步骤及结果):

电磁兼容实验报告

实验四电感耦合对电路性能的影响电力系统中,在电网容量增大、输电电压增高的同时,以计算机和微处理器为基础的继电保护、电网控制、通信设备得到广泛采用。因此,电力系统电磁兼容问题也变得十分突出。例如,集继电保护、通信、SCADA功能于一体的变电站综合自动化设备,通常安装在变电站高压设备的附近,该设备能正常工作的先决条件就是它能够承受变电站中在正常操作或事故情况下产生的极强的电磁干扰。 此外,由于现代的高压开关常常与电子控制和保护设备集成于一体,因此,对这种强电与弱电设备组合的设备不仅需要进行高电压、大电流的试验,同时还要通过电磁兼容的试验。GIS的隔离开关操作时,可以产生频率高达数兆赫的快速暂态电压。这种快速暂态过电压不仅会危及变压器等设备的绝缘,而且会通过接地网向外传播,干扰变电站继电保护、控制设备的正常工作。随着电力系统自动化水平的提高,电磁兼容技术的重要性日益显现出来。 一、实验目的 通过运用Multisim仿真软件,了解此软件使用方法,熟悉电路中因电感耦合造成的电磁兼容性能影响。 二、实验环境:Multisim仿真软件 三、实验原理: 1.耦合 (1)耦合元件:除二端元件外,电路中还有一种元件,它们有不止一条支路,其中一条支路的带压或电流与另一条支路的电压或电流相关联,该类元件称为偶合元件。 (2)磁耦合:如果两个线圈的磁场村相互作用,就称这两个线圈具有磁耦合。(3)耦合线圈:具有磁耦合的两个或两个以上的线圈,称为耦合线圈。 (4)耦合电感:如果假定各线圈的位置是固定的,并且忽略线圈本身所具有的电阻和匝间分布电容,得到的耦合线圈的理想模型就称为耦合电感。

自感磁链:11ψ=1N 11Φ 22ψ=2N 22Φ 互感磁链:21ψ=2N 21Φ 12ψ=1N 12Φ 2.伏安关系 耦合线圈中的总磁链:1ψ=11ψ±12ψ=1L 1i ±M 2i 2ψ=22ψ±21ψ=2L 2i ±M 1i 根据法拉第电磁感定律及楞次定律:电路变化将在线圈的两端产生自感,电压U L1,U L2和互感电压U M21,U M12。 于是有: dt di L dt d L U 11111== ψ dt di L dt d L U 2 2 222 == ψ dt di M dt d M U 1 2121== ψ dt di M dt d M U 21212==ψ 两线圈的总电压U1和U2应是自感电压和互感电压的代数和。即: dt di M dt di L M U L U U 211 1211±±=±±= dt di M dt di L M U L U U 1 22 2122±±=±±= 仿真图: 图中,信号源选择sources 中的AC power ,互感线圈选择Basic Virtual 中的TS Virtual 元件 图 10-1 耦合电感 M + _ + _ * * i 1 1L 2L i 2 u 1 u 2 图 10-2 同名端

电磁兼容实验室简介

电磁兼容实验室简介 本实验室包括电磁场、电磁兼容理论、现代电磁检测基础实验室。 电磁场课程是“电气工程及其自动化专业”“电子信息专业”“通信工程专业”“电子科学技术专业”“生物医学工程专业”的专业基础课,内容含电磁场和电磁波两部分。现代电气装备的发展,一方面与计算机控制技术、电子器件变流技术紧密结合,已经发展为电子电机、电子电器等一体化、智能化电气装备,但同时高速开断的器件形成了严重的电磁干扰;另一方面,电机、电器的设计趋向空间紧凑化、能量高密度化,使部件之间电磁影响严重,无论装置内部以及对外部电力系统及其他设备电磁影响加剧。90年代以来国际上形成了电气装备电磁兼容性研究热点,在国内外电气领域开设电磁兼容性课程。 随着学校办学规模的不断扩大,国家产业政策的调整,专业课程内容、结构调整的需求,为了满足《现代检测技术基础》、《检测与转换》、《电机测试技术基础》、《电器测试技术基础》等课程对实验条件的要求,新建了现代电磁检测基础实验室。其宗旨是:面向本校全体本科生,以满足上述课程的实验要求;兼顾硕士研究生进行课题研究的需求。本实验室主要针对电磁、位移、速度、力及力矩等物理量,特别是快速变化量、微弱信号以及高精度检测而建立的。 本实验室设置以下实验: ●电场模拟 ●无损耗传输线的研究 ●时变电磁场演示实验 ●电磁波的基本性质和简单的测量方法 ●电器放电噪声测试 ●变流装置及开关器件谐波干扰测试 ●屏蔽与接地效应检测 ●辐射EMC测试

●传导性干扰测定 ●力及力矩测量、变速度检测 ●电气设备输入及输出测量 ●多通道磁测量 ●基本电量准确测量 ●弱信号检测 ●震动频谱分析 面向的课程为:电磁场理论、电磁兼容技术基础、现代检测技术基础、工程电磁场基础、电量与非电量测量等。

现代交换技术试验报告

北京科技大学 《现代交换技术》实验报告 学院:计算机与通信工程学院 班级:通信1401 学号:41414051 姓名:郑浩 同组成员:孙浩 实验成绩:________________________ 2017年6月4日

实验十七程控交换原理综合实验 一、实验目的 1.熟悉程控数字交换原理。 2.加深对交换过程的理解。 3.了解用户管理和话费管理。 4.了解程控交换软件控制。 二、实验设备 电话四部,RC-CK-III型实验箱一台,PC机,串口线,20M示波器一台。 三、实验内容 运用实验箱模拟实际程控交换过程,应用PC机进行用户管理,话费管理。 四、实验原理 图1程控交换系统框图

图2主板实物结构图 主板的组成结构图如图一二所示,共有12个组成模块,分别介绍如下: a)用户接口模块(1~4) 用户接口模块共有4个,分别是用户一、用户二、用户三、用户四,完成BORSHT 功能; b)PCM编译码模块(1~4) PCM编译码模块共有4个,分别是用户一、用户二、用户三、用户四,完成语音信号的PCM编译码功能。 c)外线接口模块 外线接口模块完成与本系统与电信线路的接口,其中包含的功能有:振铃检测,混合,PCM编译码,摘机控制等。 d)液晶显示模块 本液晶模块为240X128点大屏幕显示屏,用来显示当前系统状态以及所有人机接口的状态显示,如菜单,系统帮助,参数状态设置等。 e)键盘 键盘为6键薄膜按键,完成人机接口的各种操作,如菜单选择,参数设置等。 f)数字中继接口 数字中继接口为两台实验箱之间的连接口,传输E1信号,介质为双绞线。 g)状态指示模块

现代交换技术试验报告

实验一 C&C08交换机系统介绍 一.实验目的 通过本实验,让学生了解程控交换机单元所具备的最基本的功能。 二.实验器材 程控交换机一套。 三.实验内容 通过现场实物讲解,让学生了解CC08交换机的构造。 四.实验步骤 CC08交换机是采用全数字三级控制方式。无阻塞全时分交换系统。语音信号在整个过程中在实现全数字化。同时为满足实验方对模拟信号认识的要求,也可以根据用户需要配置模拟中继板。 实验维护终端通过局域网(LAN)方式和交换机BAM后管理服务器通信,完成对程控交换机的设置、数据修改、监视等来达到用户管理的目的。 1.实验平台数字程控交换系统总体配置如图1所示: 1 图 的硬件层次结构 2.C&C08 个等级:整个硬件系统可分为以下4C&C08在硬件

上具有模块化的层次结构, 单板(1)是实现交换系统功能的基本组C&C08数字程控交换系统的硬件基础,单板是成单元。功能机框(2)中SM当安装有特定母板的机框插入多种功能单板时就构成了功能机框,如的主控框、用户框、中继框等。 (3)模块如交换模块单个功能机框或多个功能机框的组合就构成了不同类别的模块,由主控框、用户框(或中继框)等构成。SM (4)交换系统不同的模块按需要组合在一起就构成了具有丰富功能和接口的交换系统。 交换系统交换系统USM/TSM/UTM+AM/CM C&C08模块模块模块USM 主控框用户框+功能机框功能机框功能机框用户框ASL+DRV+TSS+PWX+母板SLB 单板单板单板 C&C08的硬件结构示意图 这种模块化的层次结构具有以下优点: (1)便于系统的安装、扩容和新设备的增加。 (2)通过更换或增加功能单板,可灵活适应不同信令系统的要求,处理多种网上协议。 (3)通过增加功能机框或功能模块,可方便地引入新功能、新技术,扩展系统的应用领域。 3.程控交换实验平台配置,外形结构如图2所示: 中继框------ 时钟框--- ---用户框 主控框--- BAM后管理服务器---

全桥实验报告

《EDA技术应用》大作 业 --全桥开关电源设计与测试 学院:信息与电子工程学院 班级:13应用电子技术2班 指导老师:严添明 姓名:王浩 学号:1305220147 日期:2015-01-10

目录 全桥电源开关电源的设计与测试 (1) 1.1作业内容 (1) 1.2芯片工作原理 (1) 1.2.1VIPER22A芯片管脚功能 (1) 1.2.2VIPER22A芯片内部构图 (1) 1.2.3TOP246Y芯片管脚功能 (2) 1.2.4TOP246Y芯片内部构图 (2) 1.2.5TL494芯片管脚功能 (3) 1.2.6TL494芯片内部构图 (4) 1.3电路工作原理 (5) 1.3.1高频开关电源的电磁兼容 (5) 1.3.2软开关技术 (5) 1.3.3功率因数校正技术(PFC) (5) 1.3.4低电压大电流技术 (5) 1.3.5整理滤波 (5) 1.3.6填谷式功率因数校正 (5) 1.3.7辅助电源模块设计 (6) 1.3.8PWM脉冲产生模块设计 (7) 1.3.9驱动模块设计 (8) 1.4原理图 (1) 1.5印制板 (3)

1.6元件清单 (3) 1.7调试过程 (5) 1.7.1前级辅助电源调试 (5) 1.7.2TL494 PWM产生调试 (5) 1.7.3死区电压比较电路 (6) 1.7.4输出控制电路 (7) 1.7.5驱动电路和功率变换调试 (8) 1.8总结 (10)

全桥电源开关电源的设计与测试 1.1作业内容 (1)使用DXP2004软件,画出TOP246Y PCB板及元件封装。 (2)熟悉掌握制作PCB板的流程,成功制作出TOP246Y PCB板。 (3)调试TOP246Y电路板。 (4)了解TOP246Y电路的工作原理。 1.2芯片工作原理 1.2.1VIPER22A芯片管脚功能 图1.1 VIPER22A芯片管脚图 1.2.2VIPER22A芯片内部构图 图1.2 VIPER22A 芯片内部构图

数电课程设计-温度计实验报告(提交版)

一、设计项目名称 温度采集显示系统硬件与软件设计 二、设计内容及要求 1,根据设计要求,完成对单路温度进行测量,并用数码管显示当前温度值系统硬件设计,并用电子CAD软件绘制出原理图,编辑、绘制出PCB印制版。 要求: (1)原理图中元件电气图形符号符合国家标准; (2)整体布局合理,注标规范、明确、美观,不产生歧义。 (3)列出完整的元件清单(标号、型号及大小、封装形式、数量) (4) 图纸幅面为A4。 (4)布局、布线规范合理,满足电磁兼容性要求。 (5)在元件面的丝印层上,给出标号、型号或大小。所有注释信息(包括标号、型号及说明性文字)要规范、明确,不产生歧义。 2.编写并调试驱动程序。 功能要求: (1)温度范围0-100℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 3.撰写设计报告。 提示:可借助“单片机实验电路板”实现或验证软件、硬件系统的可靠性。

温度传感器 摘要:温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器 实现对温度的测试与控制得到更快的开发,随着时代的进步和发展,单 片机技术已经普及到我们生活,工作,科研,各个领域。一种数字式温 度计以数字温度传感器DS18B20作感温元件,它以单总线的连接方式, 使电路大大的简化。传统的温度检测大多以热敏电阻为传感器,这类传 感器可靠性差,测量温度准确率低且电路复杂。因此,本温度计摆脱了 传统的温度测量方法,利用单片机STC89C52对传感器进行控制。这样 易于智能化控制。 关键词:数字测温;温度传感器DS18B20;单片机STC89C52; 一.概述 传感器从功能上可分为雷达传感器、电阻式传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、温度传感器、光敏传感器、湿度传感器、生物传感器、位移传感器、压力传感器、超声波测距离传感器等,本文所研究的是温度传感器。 温度传感器是最早开发,应用最广泛的一类传感器。温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有半导体。温度传感器是温度测量仪表的核心部分,品种繁多。 随着科学技术的发展,测温系统已经被广泛应用于社会生产、生活的各个领域,在工业、环境监测、医疗、家庭多方面均有应用。从而使得现代温度传感器的发展。微型化、集成化、数字化正成为发展的一个重要方向。

电磁兼容性测试报告

泉海科技电磁兼容性(EMC)测试报告(电源电压:24V)机 型QH7101H2图 号 DZ93189781020状 态正常生产 失效模式等级的定义(依据ISO 7637-3附页A): A等级:在干扰照射期间和照射后,器件或系统所有功能符合设计要求。 B等级:在干扰照射期间,器件或系统所有功能符合设计要求,但部分指标超差,在照射移开后,超差的指标能自动恢复正常,记忆功能应保持A级。 C等级:在照射期间,器件或系统有一个功能不符合设计要求,但在照射移开后,能自动恢复正常操作。 D等级:在照射期间,器件或系统有一个功能不符合设计要求,在照射移开后,不能自动恢复正常操作,需通过简单的操作,器件或系统才能复位。 E等级:在照射期间和照射后,器件或系统有多个功能不能符合设计要求,需要修理或替换器件或系统才能恢复正常。 测试项目测试条件等级要求 测试结果备注 脉冲1Ua: 27 V Us: -600 V t1: 5 s t2: 200 ms t3: ≤100 μs td: 2ms tr: ≤(3+0/1.5)μs Ri: 50 Ω 脉冲数量: 5000 。 B级 符合要求B级 本报告由泉海公司实验室提供 脉冲2a Ua:27 V Us: +50 V t1: 5 s t2: 200 ms td: 0.05ms tr: ≤(3+0/1.5)μs Ri: 2 Ω 脉冲数量:5000个 B级 符合要求B级 脉冲2b Ua:27 V Us: +20 V td:0.2~2s tr: 1ms ±0.5ms Ri: 0.05Ω t12: 1ms ±0.5ms t6: 1ms ±0.5ms 脉冲数量:10个 B级符合要求B级 脉冲3a Ua:27 V Us: -200 V t1: 100 μs t4: 10 ms t5: 100 ms td: 0.1μs tr:≤5 ns±1.5ns Ri: 50 Ω 测试时间:1h。 A级 符合要求A级 脉冲3b Ua: 27 V Us:+200 V t1: 100 μs t4: 10 ms t5: 100 ms td: 0.1μs tr:≤5 ns±1.5ns Ri: 50 Ω 测试时间:1h A级 符合要求A级 脉冲4Ub: 27 V Us: -16V Ua: -5~12V V t7: 100 ms t8: ≤50 ms t9: 20s t10:10ms t11: 100 ms Ri: 0.02 Ω 脉冲数量:9000个(其中t8=100ms, 3000个t8=1s,3000个,t8=5s,3000个) B级符合要求B级 脉冲5a Ua: 27 V Us: +174 V td: 350 ms tr: 10 ms Ri: 2 Ω 周期:1min 脉冲数量:10个B级符合要求B级 测试员:何秀英 测试日期:2013.1.12 报告编号:qh-js-1201003

现代交换原理实验报告(钟联坪)概要

课程名称:现代交换原理实验 学院信息工程学院 专业班级通信工程6班 学号 3113003072 姓名钟联坪 2015 年11 月30 日

实验一:交换系统组成与结构 一.实验目的: 全面了解交换系统组成与结构及实验操作方法 二.实验要求: 1.从总体上初步熟悉两部电话单机用空分交换方式进行 通话。 2.初步建立程控交换实验系统及电话交换,中继通信的概 念。 三:实验仪器设备和材料清单: 程控交换实验箱,双踪示波器。 四:实验方法与步骤: 1.打开交流电源开关,电源输出电路加电,电源发光指 示二极管亮。 2.按一下薄膜输入开关“复位”键,进行显示菜单状态。 3.熟悉菜单主要工作状态,分“人工交换”,“空分交换”, “数字时分交换”三种工作方式。 4.以“”方式为例,对“”与“”正常呼叫,熟悉信令 程控交换与语音信号通信交换全过程。 5.呼叫时,甲方一路电话号码设置为48,乙方一路设置 为68,甲方二路设置为49,乙方二路设置为69. 五:实验报告要求: 总结交换系统基本工作原理。

程控交换机实质上是采用计算机进行“存储程序控制”的交换机,它将各种控制功能与方法编成程序,存入存储器,利用对外部状态的扫描数据和存储程序来控制,管理整个交换系统的工作。六:思考题: 程控交换系统由哪些部分组成? 1)数字交换网络。 2)接口。 3)信令设备。 4)控制系统。 实验二:用户接口模块实验 一:实验目的: 1.全面了解用户线接口电路功能(BORST)的作用及其实 现方法。 2.通过对用户模块电路PBL 387 10电路的学习与实验, 进一步加深对BORST功能的理解。 二:实验要求: 1.了解用户模块PBL 387 10的主要性能与特点。 2.熟悉用PBL 387 10组成的用户线接口电路。 三:实验仪器设备和材料清单: 程控交换实验箱,双综示波器。 四:实验方法与步骤:

电磁兼容实验报告3-4

电磁兼容实验报告 学院:信息科学与工程学院 班级: 姓名: 学号:

实验三电感耦合对电路性能的影响电力系统中,在电网容量增大、输电电压增高的同时,以计算机和微处理器为基础的继电保护、电网控制、通信设备得到广泛采用。因此,电力系统电磁兼容问题也变得十分突出。例如,集继电保护、通信、SCADA功能于一体的变电站综合自动化设备,通常安装在变电站高压设备的附近,该设备能正常工作的先决条件就是它能够承受变电站中在正常操作或事故情况下产生的极强的电磁干扰。 此外,由于现代的高压开关常常与电子控制和保护设备集成于一体,因此,对这种强电与弱电设备组合的设备不仅需要进行高电压、大电流的试验,同时还要通过电磁兼容的试验。GIS的隔离开关操作时,可以产生频率高达数兆赫的快速暂态电压。这种快速暂态过电压不仅会危及变压器等设备的绝缘,而且会通过接地网向外传播,干扰变电站继电保护、控制设备的正常工作。随着电力系统自动化水平的提高,电磁兼容技术的重要性日益显现出来。 一、实验目的 通过运用Multisim仿真软件,了解此软件使用方法,熟悉电路中因电感耦合造成的电磁兼容性能影响。 二、实验环境:Multisim仿真软件 三、实验原理: 1.耦合 (1)耦合元件:除二端元件外,电路中还有一种元件,它们有不止一条支路,其中一条支路的带压或电流与另一条支路的电压或电流相关联,该类元件称为偶合元件。 (2)磁耦合:如果两个线圈的磁场村相互作用,就称这两个线圈具有磁耦合。(3)耦合线圈:具有磁耦合的两个或两个以上的线圈,称为耦合线圈。 (4)耦合电感:如果假定各线圈的位置是固定的,并且忽略线圈本身所具有的电阻和匝间分布电容,得到的耦合线圈的理想模型就称为耦合电感。

现代交换技术实验一

实验报告 实验目的: 通过本实验,让学生了解程控交换机单元所具备的最基本的功能。 实验要求: (一)程控交换机的发展历史:磁石交换机-步进制交换机-纵横式交换机-程控交换机。 (二)程控交换机的特点: 1、体积小,重量轻,功耗低,它一般只有纵横制交换机体积的1/8-1/4,大大压缩了机房占用面积,节省了费用。 2、能灵活的向用户提供众多的新业务服务功能。由于采用SPC技术,因而可以通过软件方便的增加或修改交换机功能,向用户提供新型服务,如缩位拨号、呼叫等待、呼叫传递、呼叫转移、遇忙回叫、热线电话、会议电话,给用户带来了很大的方便。 3、工作稳定可靠、维护方便,由于程控交换机一般采用大规模集成电路(LSI)电路或专用集成电路(ASIC),因而有很高的可靠性。它通常采用冗余技术或故障自动诊断措施,以进一步提高系统的可靠性。此外,程控交换机借助故障诊断程序对故障自动进行检测和定位,以及时地发现与排除故障,从而大大减少了维护工作量。系统还可方便地提供自动计费,话务量记录,服务质量自动监视,超负荷控制等功能,给维护管理工作带来了方便。 4、便于采用新型共路信号方式(CCS,Common Channel Signalling) 。由于程控数字交换机与数字传输设备可以直接进行数字连接,提供高速公共信号信道,适于采用先进的CCITT 7号信令方式,从而使得信令传送速度快、容量大、效率高,并能适应未来新业务与交换网控制的特点,为实现综合业务网(ISDN,Integrated Services Digital Network)创造必要的条件。 5、易于与数字终端,数字传输系统联接,实现数字终端,传输与交换的综合与统一。可以扩大通信容量,改善通话质量,降低通信系统投资,并为发展综合数字网(IDN)和综合业务数字网(ISDN)奠定基础。 (三)华为cc&08程控交换机发展历程: A型机-C型机-B型机(万门机)-128模交换机,目前实验室使用的是B型机的一个独立模块,即B独立局。 (四)B型机的总体结构为:模块-机柜(可以包含多个机柜)-功能机框-功能单板。实验方法(步骤及结果): CC08交换机是采用全数字三级控制方式。无阻塞全时分交换系统。语音信号在整个过程中在实现全数字化。同时为满足实验方对模拟信号认识的要求,也可以根据用户需要配置模拟中继板。 实验维护终端通过局域网(LAN)方式和交换机BAM后管理服务器通信,完成对程控交换机的设置、数据修改、监视等来达到用户管理的目的。 (一)实验平台数字程控交换系统总体配置图 (二)C&C08的硬件层次结构 C&C08在硬件上具有模块化的层次结构。整个硬件系统可分为以下4个等级: 1、单板 单板是C&C08数字程控交换系统的硬件基础,是实现交换系统功能的基本组成单元。

电子常识-GB-T17626-电磁兼容试验简介

标准-GB/T 17626 电磁兼容试验全标准 电磁兼容性测试(简称EMC,是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电 磁干扰的能力。EMC设计与EMC测试是相辅相成的。EMC设计的好坏是要通过EMC测试来衡量的。只有在产品的EMC设计和研制的全过程中,进行EMC的相容性预测和评估,才能及早发 现可能存在的电磁干扰,并采取必要的抑制和防护措施,从而确保系统的电磁兼容性。 GB/T 17626 电磁兼容试验和测量技术系列标准包括以下部分:GB/T 17626.1-2006 电磁兼容试验和测量技术抗扰度试 验总论 GB/T 17626.2-2006 电磁兼容试验和测量技术静电放电 抗干扰度试验 GB/T 17626.3-2006 电磁兼容试验和测量技术射频电磁 场辐射抗干扰度试验 GB/T 17626.4-2008 电磁兼容试验和测量技术电快速瞬 变脉冲群抗扰度试验 GB/T 17626.5-2008 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验

应的传导骚扰抗扰度 GB/T 17626.7-2008 电磁兼容试验和测量技术供电系统 及所连设备谐波、谐间波的测量和测量仪器导则 GB/T 17626.8-2006 电磁兼容试验和测量技术工频磁场 抗扰度试验 GB/T 17626.9-1998 电磁兼容试验和测量技术脉冲磁场 抗扰度试验 GB/T 17626.10-1998 电磁兼容试验和测量技术阻尼振荡 磁场抗扰度试验 GB/T 17626.11-2008 电磁兼容试验和测量技术电压暂降、短时中断和电压变化的抗扰度试验 GB/T 17626.12-1998 电磁兼容试验和测量技术振荡波抗 扰度试验 GB/T 17626.13-2006 电磁兼容试验和测量技术交流电源 端口谐波、谐间波及电网信号的的低频抗扰度试验 GB/T 17626.14-2005 电磁兼容试验和测量技术电压波动 抗扰度试验 GB/T 17626.17-2005 电磁兼容试验和测量技术直流电源 输入端口纹波抗扰度试验 GB/T 17626.27-2006 电磁兼容试验和测量技术三相电压 不平衡抗扰度试验

电磁兼容实验室简介

电磁兼容实验室简介 在我们的生活空间里各种干扰信号无处不在,它们时时刻刻都在产生干扰,影响着电子设备的正常运行。由于安防产品现场工作环境的复杂性,就更容易受到来自线路和来自空间各种形式的干扰。为了验证产品的抗扰度适应性,本实验室依据GB/T17626系列电磁兼容标准建立了电快速瞬变脉冲群、周波跌落、雷击浪涌、静电放电、射频辐射、射频传导等抗扰度试验项目,用以验证电子电气产品的抗干扰能力。 1.电快速瞬变脉冲群试验:本实验目的是验证电气和电子设备对来 自切换瞬态过程(切断感性负载、继电器触点弹跳等)的各种类型瞬态骚扰的抗扰度,是将一种由许多快速瞬变脉冲组成的脉冲群耦合到电气和电子设备的电源端口、信号和控制端口的实验。 实践中,这类脉冲成群出现、重复频率较高、脉冲上升时间短暂,它们使设备产生误动作的,死机等情况经常可见。本试验装置符合GB/T 17626.4-1998《电快速瞬变脉冲群抗扰度试验》 2.周波跌落试验:本试验是模拟由电网、变电设施的故障或负荷突 然出现大的变化所引起的供电电压短时跌落、中断及电压变化。 试验目的是评估电气和电子设备在经受电压暂降、短时中断和电压变化时的抗干扰能力。本试验装置符合GB/T 17626.11-1999《电压暂降、短时中断和电压变化抗扰度试验》 3.雷击浪涌试验:实验目的是评价产品在规定的工作状态下工作时, 对由开关或雷电作用产生的有一定危害电平的浪涌(冲击)电压

的抵抗能力。本试验符合GB/T17626.5-1999《浪涌(冲击)抗扰度试验》。 4.静电放电试验:试验目的是评估电气和电子设备遭受静电放电时 的性能以及人体到靠近关键设备的物体之间可能发生的静电放电。本试验符合GB/T17626.2-2006《静电放电抗扰度试验》。5.射频辐射试验:试验目的是为评价电气和电子设备的抗射频辐射 电子磁场干扰的能力建立一个共同的依据。本测试系统主要由标准信号源、功率放大器、场强监视器、计算机及操控软件和GTEM 室体组成,系统在80MHZ~1GHZ频率范围内产生的试验场强可达30V/m,可满足GB/T17626.3-2006《射频电磁场辐射抗扰度试验》中规定的全部试验等级。 6.射频传导试验:试验目的是评价电气和电子设备对由射频场感应 所引起的传导骚扰的抗扰度。测试系统主要由标准信号源、功率放大器、定向耦合器、功率计、单相电源CDN、电磁钳组成,系统在150KHZ~230MHZ频段产生10Vemf的试验电平,通过CDN 或电磁钳耦合至被试样品,以确定产品的抗干扰能力。本试验符合GB/T17626.6-1998《射频电磁场辐射抗扰度试验》。

《现代交换技术》实验报告3——本局用户数据业务实现讲解

学生实验报告 华北理工大学 信息工程学院通信工程系 程控交换实验 实验名称:本局用户数据业务实现班级:12通信1班 学号: 姓名: 指导老师:

学生实验报告 实验名称:学生姓名:班级:学号: 指导老师:同组人:成绩: 实验报告 实验目的: 加深对交换机系统功能结构的理解,熟悉掌握B独立局配置数据、字冠、用户数据的设置。通过配置交换机数据,要求实现本局用户基本呼叫。通过数据配置,掌握现代程控交换机的硬件结构和组成。熟悉本局各单板的工作机制。 实验要求: 配置与本局用户通话有关的数据,实现本局基本呼叫即可。 交换机独立局模块板位如下图所示: (程控交换机—B 独)

学生实验报告 实验方法(步骤及结果): (一)实验操作 假设的数据如下: 本局信令点(按实验终端编号进行区分,每台终端设定的局数据不同):AAAA01~AAAA24。 本局号段为5550001~5550032 , 对应物理端口号是:1~32,电话号码为5550001~5550032。 1、运行e-bridge通信实验平台客户端软件,出现服务信息设置界面,服务器地址为:129.9.0.10然后点击“确定”。 2、选中“程控:CC08-1”图标,在点击“业务操作终端”,弹出登陆窗口:

学生实验报告

学生实验报告 3、点击“业务操作终端”-》“CC08交换机业务维护”,弹出登陆窗口,输入用户名:cc08,密码:cc08,局名选LOCAL (IP地址:127.0.0.1),点击“确定”。

学生实验报告 4、在维护输出窗口会显示登陆成功的相关信息,并自动执行几条系统查询命令。 5、点击“系统”-》“执行批命令”,或按CTRL+R。

电磁兼容天线仿真实验报告

电磁场与电磁兼容 实验报告 学号: 姓名: 院系: 专业: 教师: 05月20日

半波对称振子天线阵最大辐射方向控制 实验工具 ?Expert MININEC Classic电磁场数值仿真软件 实验目的 根据要求的参数,利用仿真软件设计和分析自由空间或地面上的细、直线天线的电磁场数值,并完成以下要求: ?改变每幅天线馈电电流的相位控制最大增益的方向:要求的最大增益方向是:1. 00 ;2. 400;3. 800 (选择与自己学号后2位数最近的度数) ?根据运行结果指出: 1.增益方向性图; 2.最大增益; 3.最大增益方向。 实验参数 ?频率 f = 300MHz,波长λ = 1m ?四分之一波长单极子天线L=0.25λ,四个半波长对称振子排列在一条直线上,相邻两幅天线的间隔是四分之一波长 实验过程 ?建立几何模型:点—> 线,尺寸,环境,坐标等 半波对称振子放在 YOZ 平面内,相邻振子的间距是四分之一波长 0.25m。

图1 问题描述图2 –图4 几何模型 图3 图4 ?定义电特性:频率,电压,当前节点 ZENITH(DEG) 对应球坐标系中的θ, AZIMUTH (DEG) 对应球坐标系中的φ 图5 电特性—频率图6 馈电电流相位设置

图7 球坐标参数θ、ψ以及间隔设置 ?选择模式:辐射模式 ?求解项:近场 ?调试、运行 表格中出现“No detected violations ”表明设置正确 图8 选择运行平面图9 调试结果 ?显示结果 3D display 显示所设计天线的图形 天线增益方向性图中给出了最大增益值和最大增益方向、以及半功率增益带宽的计算结果。

《现代交换技术》实验报告2——交换机硬件配置

华北理工大学 信息工程学院通信工程系 程控交换实验 实验名称:交换机硬件配置班级:12通信1班 学号: 姓名: 指导老师:

实验名称:学生姓名:班级:学号: 指导老师:同组人:成绩: 实验报告 实验目的: 了解程控交换机的硬件结构。掌握程控交换机的硬件配置步骤。理解程控交换机硬件结构中各部分单板的作用。通过命令行掌握交换机的硬件配置流程。深入理解交换机内部的各种通信方式。 实验要求: (一)组网情况:板位图说明 本C&C08交换机为程控交换机,一共分为: BAM框(内置或者外置)、主控框、时钟框(选配)、用户框和中继框。每个模块的框号从0开始编,本次实验介绍B独立局模块硬件配置。 (二)机框编号从下往上0-5。 (三)进行数据配置实现实验室中的程控交换机在软件中的显示状态一致。 实验方法(步骤及结果): (一)实验操作 1、在桌面上双击“”图标,进入以下界面: 2、输入实际的服务器地址,单击【确定】,进入以下界面:

3、双击【程控:cc08-1】进入以下界面: 4、点击“业务操作终端”-》“CC08交换机业务维护”,弹出登陆窗口:

用户名:cc08,密码:cc08,局名选LOCAL (IP地址:127.0.0.1),点击“确定”。 5、在维护输出窗口会显示登陆成功的相关信息,并自动执行几条系统查询命令。 6、点击“系统”-》“执行批命令”,或按CTRL+R。

7、将已经调试好的命令文件脚本“交换机硬件配置脚本”,在“系统”-》“执行批命令”,或按CTRL+R,点击“打开”。系统会自动执行并在【维护输出】窗口同样会显示执行结果:

如何顺利通过电磁兼容试验

如何顺利通过电磁兼容试验 接地设计:一旦发生了静电放电,应该让其尽快旁路人地,不要直接侵入内部电路。例如内部电路如用金属机箱屏蔽,则机箱应良好接地,接地电阻要尽量小,这样放电电流可以由机箱外层流入大地,同时也可以将对周围物体放电时形成的骚扰导入大地,不会影响内部电路。对金属机箱,通常机箱内的电路会通过I/O电缆、电源线等接地,当机箱上发生静电放电时,机箱的电位上升,而内部电路由于接地,电位保持在地电位附近。这时,机箱与电路之间存在着很大的电位差。这会在机箱与电路之间引起二次电弧。使电路造成损坏。通过增加电路与外壳之间的距离可以避免二次电弧的发生。当电路与外壳之间的距离不能增加时,可以在外壳与电路之间加一层接地的金属挡板,挡住电弧。如果电路与机箱连在一起,则只应通过一点连接。防止电流流过电路。线路板与机箱连接的点应在电缆入口处。对塑料机箱,则不存在机箱接地的问题。 ?电缆设计: ?一个正确设计的电缆保护系统可能是提高系统ESD非易感性的关键。作为大多数系统中的最大的“天线”— I/O电缆特别易于被ESD干扰感应出大的电压或电流。从另一方面,电缆也对ESD干扰提供低阻抗通道,如果电缆屏蔽同机壳地连接的话。通过该通道ESD干扰能量可从系统接地回路中释放,因而可间接地避免传导耦合。为减少ESD干扰辐射耦合到电缆,线长和回路面积要减小,应抑制共模耦合并且使用金属屏蔽。对于输入/输出电缆可采用使用屏蔽电缆、共模扼流圈、过压箝位电路及电缆旁路滤波器措施。在电缆的两端,电缆屏蔽必须与壳体屏蔽连接。在互联电缆上安装一个共模扼流圈可以使静电放电造成的共模电压降在扼流圈上,而不是另一端的电路上。两个

现代交换原理实验报告

课程名称:现代交换原理实验

实验一:交换系统组成与结构 一.实验目的: 全面了解交换系统组成与结构及实验操作方法二.实验要求: 1.从总体上初步熟悉两部单机用空分交换方式进行通话。 2.初步建立程控交换实验系统及交换,中继通信的概念。三:实验仪器设备和材料清单: 程控交换实验箱,双踪示波器。 四:实验方法与步骤: 1.打开交流电源开关,电源输出电路加电,电源发光指 示二极管亮。 2.按一下薄膜输入开关“复位”键,进行显示菜单状态。 3.熟悉菜单主要工作状态,分“人工交换”,“空分交换”, “数字时分交换”三种工作方式。 4.以“”方式为例,对“”与“”正常呼叫,熟悉信令 程控交换与语音信号通信交换全过程。 5.呼叫时,甲方一路设置为48,乙方一路设置为68,甲 方二路设置为49,乙方二路设置为69. 五:实验报告要求: 总结交换系统基本工作原理。 程控交换机实质上是采用计算机进行“存储程序控制”的交换机,它将各种控制功能与方法编成程序,存入存储器,利用对外部状

态的扫描数据和存储程序来控制,管理整个交换系统的工作。六:思考题: 程控交换系统由哪些部分组成? 1)数字交换网络。 2)接口。 3)信令设备。 4)控制系统。 实验二:用户接口模块实验 一:实验目的: 1.全面了解用户线接口电路功能(BORST)的作用及其 实现方法。 2.通过对用户模块电路PBL 387 10电路的学习与实验, 进一步加深对BORST功能的理解。 二:实验要求: 1.了解用户模块PBL 387 10的主要性能与特点。 2.熟悉用PBL 387 10组成的用户线接口电路。三:实验仪器设备和材料清单: 程控交换实验箱,双综示波器。 四:实验方法与步骤: 用示波器分别观测TP301,TP302,TP303在摘挂机时的工作电平,给出在各种状态下的工作波形。

《电磁兼容实验》指导书

《电磁兼容实验》指导书 华北电力大学电磁场与电磁兼容实验室 2006年12月

目录 实验一静电放电抗扰度试验 (3) 实验二射频电磁场辐射抗扰度实验 (5) 实验三电快速瞬变脉冲群抗扰度试验 (9) 实验四浪涌抗扰度试验 (11) 实验五振荡波抗扰度试验 (12) 实验六屏蔽电缆耦合试验任务书 (14) 实验七电磁场屏蔽试验任务书 (15)

实验一静电放电抗扰度试验 概述 引用标准:GB/T17626.2(IEC61000-4-2) 标准的依据:人体放电 试验等级:空气放电、接触放电四级。 一、实验目的 1.掌握静放电试验的步骤和要求。 2.掌握静电放电试验的试验室配置。 3.了解静电放电枪功能及使用方法。 二、实验设备: 静电放电枪、接地系统、试验台、水平和垂直耦合板、绝缘垫、耦合板放电线 三、实验容: 1.介绍试验的标准配置要求。 接地系统、设备要求(位置、接地、线缆)、耦合板?台式设备: ?落地式设备: 2.介绍静电放电枪的功能及使用。 ?结构及附件:接地线、放电头、主机 ?功能及使用联接 3.试验的实施 ?试验应根据试验计划进行。试验计划容包括:

——受试设备的典型工作条件; ——受试设备是按台式还是按落地式设备进行试验; ——确定施加放电点; ——在每个点上,是采用接触放电还是空气放电; ——所使用的试验等级 ——符合性试验中在每个点施加放电的次数(至少施加十次单次放电(以最敏感的极性),连续单次放电的时间间隔至少1秒。 ——是否还进行安装后的试验 ?直接放电试验:空气放电、接触放电 I.选择放电试验点、面 II.选择放电方式及要求: 选择空气放电或接触放电。 空气放电和接触放电的放电要求。 ?间接放电试验:水平耦合、垂直耦合。放电位置及要求。 四、报告要求: 根据以上试验及试验标准归纳、总结出试验程序及要求。

相关主题
文本预览
相关文档 最新文档