当前位置:文档之家› 传质与分离过程概述

传质与分离过程概述

传质分离过程

传质分离过程 1.分离过程可以定义为借助于物理、化学、电学推动力实现从混合物中选择性的分离某 些成分的过程。 2.分离过程可分为机械分离和传质分离两大类。机械分离的对象是两相以上的混合物。 传质分离过程用于各种均相混合物的分离。特点是有能量传递现象发生。 3.传质分离过程分为平衡分离过程和速率分离过程。 4.相平衡的准则为各相的温度、压力相同,各组分的逸度也相等。 5.相平衡的表示方法有相图、相平衡常数、分离因子。 6.维里方程用来计算气相逸度系数。 7.闪蒸是连续单级蒸馏过程。 8.指定浓度的组分成为关键组分,其中易挥发的成为轻关键组分,难挥发的成为重关键 组分。 9.若溜出液中除了重关键组分外没有其他重组分,而釜液重除了轻关键组分外没有其他 轻组分,这种情况称为清晰分割。 10.多组分精馏与二组分精馏在浓度分布上的区别可以归纳为:在多组分精馏中,关键组 分的浓度分布有极大值;非关键组分通常是非分配的,即重组分通常仅出现在釜液中,轻组分仅出现在溜出液中;重、轻非关键组分分别在进料板下、上形成接近恒浓的区域;全部组分均存在于进料板上,但进料板浓度不等于进料浓度。塔内各组分的浓度分布曲线在进料板处是不连续的。 11.最小回流比是在无穷多塔板数的条件下达到关键组分预期分离所需要的回流比。 12.特殊精馏分为萃取精馏(加入的组分称为溶剂)、共沸精馏、加盐精馏。 13.气体吸收是气体混合物一种或多种溶质组分从气相转移到液相的过程。解吸为吸收的 逆过程,即溶质从液相中分离出来转移到气相的过程。 14.吸收过程按溶质数可以分为单组分吸收和多组分吸收;按溶质与液体之间的作用性质 可以分为物理吸收和化学吸收;按吸收温度状况可以分为等温吸收和非等温吸收。 15.吸收的推动力是气相中溶质的实际分压与溶液中溶质的平衡蒸气压力之差。 16.难溶组分即轻组分一般只在靠近塔顶的几级被吸收,而在其余级上变化很小。易溶组 分即重组分主要在塔底附近的若干级上被吸收,而关键组分才在全塔范围内被吸收。 17.吸收塔的操作压力、操作温度和液气比是影响吸收过程的主要参数。操作压力越大吸 收率越大,操作温度越低吸收率越大。液气比越大吸收率越大。 18.超临界流体萃取是一种以超临界流体作为萃取剂,从固体或液体中提取出待分离的高 沸点或热敏性物质的新型萃取技术。超临界流体是状态处于高于临界温度、压力条件下的流体,它具有低粘度、高密度、扩散系数大、超强的溶解能力等特性。与传统的溶液萃取的优势:超临界流体具有极强的溶解能力,能实现从固体中提取有效成分; 可通过温度、压力的调节改变超临界流体的溶解能力的大小,因而超临界流体萃取具有较好的选择性;超临界流体传质系数大,可大大缩短分离时间;萃取剂的分离回收容易。 19.二氧化碳是最理想的超临界流体。 20.超临界流体的典型萃取流程:等温法、等压法、吸附法。 21.反胶团萃取有效的解决了溶剂萃取过程中蛋白质不溶于有机溶剂和易变性、失活的问 题。 22.吸附是指流体与固体多孔物质接触时,流体中的一种或多种组分传递并附着在固体 内、外表面形成单分子层或多分子层的过程。

传质分离课后习题

第一章 绪论 1. 列出5种使用ESA 和5种使用MSA 的分离操作。 答:属于ESA 分离操作的有精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏。 属于MSA 分离操作的有萃取精馏、液-液萃取、液-液萃取(双溶剂)、吸收、吸附。 2. 比较使用ESA 与MSA 分离方法的优缺点。 答:当被分离组分间相对挥发度很小,必须采用具有大量塔板数的精馏塔才能分离时,就要考虑采用萃取精馏(MSA ),但萃取精馏需要加入大量萃取剂,萃取剂的分离比较困难,需要消耗较多能量,因此,分离混合物优先选择能量媒介(ESA)方法。 3. 气体分离与渗透蒸发这两种膜分离过程有何区别? 答:气体分离与渗透蒸发式两种正在开发应用中的膜技术。气体分离更成熟些,渗透蒸发是有相变的膜分离过程,利用混合液体中不同组分在膜中溶解与扩散性能的差别而实现分离。 4. 海水的渗透压由下式近似计算:π=RTC/M ,式中C 为溶解盐的浓度,g/cm 3;M 为离子状态的各种溶剂的平均分子量。若从含盐0.035 g/cm 3的海水中制取纯水,M=31.5,操作温度为298K 。问反渗透膜两侧的最小压差应为多少kPa? 答:渗透压π=RTC/M =8.314×298×0.035/31.5=2.753kPa 。 所以反渗透膜两侧的最小压差应为2.753kPa 。 5. 假定有一绝热平衡闪蒸过程,所有变量表示在所附简图中。求: (1) 总变更量数Nv; (2) 有关变更量的独立方程数Nc ; (3) 设计变量数Ni; (4) 固定和可调设计变量数Nx , Na ; (5) 对典型的绝热闪蒸过程,你 将推荐规定哪些变量? 思路1: 3股物流均视为单相物流, 总变量数Nv=3(C+2)=3c+6 独立方程数Nc 物料衡算式 C 个 热量衡算式1个 ;相平衡组成关 系式C 个;1个平衡温度等式;1个平衡压力等式 共2C+3个;故设计变量 F zi T F P F V , yi ,Tv , Pv L , x i , T L , P L 习题5附图

《化工分离工程》试卷及答案教学内容

《化工分离工程》试 卷及答案

收集于网络,如有侵权请联系管理员删除 一、填空(每空2分,共20分) 1. 如果设计中给定数值的物理量的数目等于 设计变量 ,设计才有结果。 2. 在最小回流比条件下,若只有重组分是非分配组分,轻组分为分配组分,存在着两个恒浓 区,出现在 精镏段和进料板 位置。 3. 在萃取精镏中,当原溶液非理想性不大时,加入溶剂后,溶剂与组分1形成具有较强 正 偏差的非理想溶液,与组分2形成 负偏差或理想 溶液 ,可提高组分1对2的相对挥发度。 4. 化学吸收中用增强因子表示化学反应对传质速率的增强程度,增强因子E 的定义是 化学吸收的液相分传质系数(k L )/无化学吸收的液相分传质系数(k 0L ) 。 5. 对普通的N 级逆流装置进行变量分析,若组分数为C 个,建立的MESH 方程在全塔有 NC+NC+2N+N=N(2C+3) 个。 6. 热力学效率定义为=η ; 实际的分离过程是不可逆的,所以热力学效率 必定 于1。 7. 反渗透是利用反渗透膜选择性的只透过 溶剂 的性质,对溶液施加压力,克服 溶剂的渗透 压 ,是一种用来浓缩溶液的膜分离过程。 二、推导(20分) 1. 由物料衡算,相平衡关系式推导图1单级分离基本关系式。 1(1) 0(1) 1c i i i i z K K ψ=-=-+∑ 式中: K i ——相平衡常数; ψ ——气相分率(气体量/进料量)。 2. 精馏塔第j 级进出物料如图1,建立MESH 方程。

三、简答(每题5分,共25分) 1.什么叫相平衡?相平衡常数的定义是什么? 由混合物或溶液形成若干相,这些相保持物理平衡而共存状态。热力学上看物系的自由焓最小;动力学上看相间表观传递速率为零。 K i=y i/x i。 2.关键组分的定义是什么;在精馏操作中,一般关键组分与非关键组分在顶、釜的分配 情况如何? 由设计者指定浓度或提出回收率的组分。 LK绝大多数在塔顶出现,在釜中量严格控制; HK绝大多数在塔釜出现,在顶中量严格控制; LNK全部或接近全部在塔顶出现; HNK全部或接近全部在塔釜出现。 3.在吸收过程中,塔中每级汽、液流量为什么不能视为恒摩尔流? 吸收为单相传质过程,吸收剂吸收了气体中的溶质而流量在下降过程中不断增加,气体的流量相应的减少,因此气液相流量在塔内都不能视为恒定。 4.在精馏塔中设中间换热器为什么会提高热力学效率? 在中间再沸器所加入的热量其温度低于塔底加入热量的温度,在中间冷凝器所引出的热量其温度高于塔顶引出热量的温度,相对于无中间换热器的精馏塔传热温差小,热力学效率高。 5.反应精馏的主要优点有那些? (1)产物一旦生成立即移出反应区;(2)反应区反应物浓度高,生产能力大;(3)反应热可由精馏过程利用;(4)节省设备投资费用;(5)对于难分离物系通过反应分离成较纯产品。 四、计算(1、2题10分,3题15分,共35分) 1. 将含苯0.6(mol分数)的苯(1)—甲苯(2)混合物在101.3kPa下绝热闪蒸,若闪蒸温度为94℃,用计算结果说明该温度能否满足闪蒸要求? 已知:94℃时P10=152.56kPa P20=61.59kPa 2. 已知甲醇(1)和醋酸甲酯(2)在常压、54℃下形成共沸物,共沸组成X2=0.65(mol分率), 在此条件下:kPa P kPa p98 . 65 , 24 . 9002 1 = =求该系统的活度系数。 3. 气体混合物含乙烷0.50、丙烷0.4、丁烷0.1(均为摩尔分数),用不挥发的烃类进行吸收,已知吸收后丙烷的吸收率为81%,取丙烷在全塔的平均吸收因子A=1.26,求所需理论板数;若其它条件不变,提高平均液汽比到原来的2倍,此时丙烷的吸收率可达到多少。 收集于网络,如有侵权请联系管理员删除

化工分离工程考试答案

2013化工分离过程期中考试试题答案 一、填空题(每空1分,共20分) 1. 传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 2. 分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 3. 汽液相平衡是处理(传质分离)过程的基础,相平衡的条件是(各相温度压力相等,各组分在每一相中的化学位相等)。 4. 当混合物在一定的温度、压力下,进料组成z i 和相平衡常数K i 满足 ( 1,1>>∑∑i i i i K z z K )条件即处于两相区,可通过(物料平衡和相平衡)计算求出其平衡汽液相组成。 5. 精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 6. 多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 7. 最低恒沸物,压力降低使恒沸组成中汽化潜热(小)的组分增加。 8. 萃取精馏中塔顶产品不合格时,经常采取(增加萃取剂用量)或(减小进料量)的措 施使产品达到分离要求。 9. 吸收有(1个)关键组分,这是因为(单向传质)的缘故。 10.吸收剂的再生常采用的是(用蒸汽或惰性气体的蒸出塔)、(用再沸器的蒸出塔)和(用 蒸馏塔)。 二、单项选择题(每小题1分,共10分) 1. 吸收属于(A ) A.平衡分离;B.速率分离;C.机械分离;D.膜分离。 2. 计算溶液泡点时,若∑=>-C i i i X K 101,则说明(C ) A. 温度偏低; B. 正好泡点; C. 温度偏高。 3. 如果体系的汽相为理想气体,液相为非理想溶液;则相平衡常数可以简化表示为( D ) A. L i i V i K φφ= B. s i i P K P = C. $$L i i V i K φφ= D. s i i i P K P γ= 4. 汽液相平衡K 值越大,说明该组分越(A ) A.易挥发; B.难挥发; C.沸点高; D.蒸汽压小。 5. 如果塔顶采用全凝器,计算塔顶第一级的温度可以利用方程( B ) A.泡点方程; B.露点方程; C. 闪蒸方程; D.相平衡方程。 6. 计算在一定温度下与已知液相组成成平衡的汽相组成和压力的问题是计算( B ) A.泡点温度; B.泡点压力; C.等温闪蒸; D.露点压力。 7. 精馏中用HNK 表示( C ) A. 轻关键组分; B. 重关键组分; C. 重非关键组分; D. 轻非关键组分。 8. 以下描述中,不属于萃取精馏中溶剂的作用的是( D ) A.稀释作用; B.对组分相互作用不同; C.与某组分形成正偏差溶液; D.与某组分形成共沸物。

07传质与分离工程期末考试题(含答案)

,考试作弊将带来严重后果! 华南理工大学期末考试 2007《传质与分离工程英文》试卷A (含答案) 1. 考前请将密封线内填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:开(闭)卷; S in the air is absorbed by NaOH solution is ( A ). 2 B. liquid film “controls”; C. two film “controls”. AB=1. When C ). >x A; B. y At d; B. t>t w=t d; C. t=t w>t d; D. t=t w=t d w o C, ( C ) of reading is o C B. 77 o C C. 77.01 o C; D. 77.010 o C B ). When the water content of some material is close to its equilibrium water content X*, its drying rate will ___ C _. B. decrease; C. be close to zero; D. be uncertain For the desorption (stripping) process, when ( B ) increases and ( A ) A ) increases, it is good for the operation. D ) decreases, it is good for the operation.

传质分离过程ASPEN模拟全过程

传质分离过程ASPEN模拟全过程 姓名:王超班级:化工1301 学号:201309010114 【题目2-8】组成为60%苯,25%甲苯和15%对二甲苯(均为摩尔分数)的液体混合物100kmol,在101.3kPa和100℃下闪蒸。试计算液体和气体产物的数量和组成。假设该物系为理想溶液。用安托尼方程计算蒸汽压。 启动Aspen Plus选择模块General with Metric Units,文件保存为Example2.8。 建立如图所示的流程图,其中FLASH选用模块库中的Separators丨Flash丨V-DRUM1模块。

点击N→,出现FlowsheetComp;ete对话框,点击确定,进入Setup 丨Specifications丨Global页面,在名称(Title)框中输入2-8。

在左窗口选择Units-Sets,点击New,出现Create new ID对话框,选择默认的US-1,点击OK。 然后进行如图的单位设置。

在左窗口选择Report Options,进入Steam页面,勾选Fraction basis 栏目下的Mole。 点击N→,进入Components丨Specifications丨Selection页面,输入组分甲苯(C6H6)、甲苯(C7H8)、对二甲苯(C8H10-3)。

点击N→,进入Properties丨Specifications丨Global页面,选择物性方法PENG-ROB。然后点击N→,在点击OK,如图所示 进入Streams丨FEED丨Input丨Specifications页面,输入进料(FEED)温度25℃,压力101.3kPa,流量100kmol,以及苯、甲苯、对二甲苯的摩尔分数分别为0.6、0.25、0.15。

贾绍义《化工传质与分离过程》(第2版)配套题库-模拟试题【圣才出品】

第三部分模拟试题 贾绍义《化工传质与分离过程》(第2版)配套模拟试题及详解(一) 一、选择题(每题3分,共15分) 1.利用气体混合物各组分在液体中溶解度的差异而使气体中不同组分分离的操作称为()。 A.蒸馏 B.萃取 C.吸收 D.解吸 【答案】C 2.操作中的精馏塔,若维持及进料位置不变,而减小,则有()。 A.D增大,R减小 B.D不变,R增加 C.D减小,R增加 D.D减小,R不变 【答案】C 【解析】精馏段板数不变,所以当x F减小时,为维持x D不变,必须加大回流比,以提高精馏段塔板的分离能力。 又因不变,q、F不变,故随着R增加,D必减小。

3.若萃取相和萃余相在脱除溶剂后均与原料液的组成相同,则所用萃取剂的选择性系数()。 A.小于1 B.大于1 C.不确定 D.等于1 【答案】D 4.在恒定干燥条件下,将含水20%的湿物料进行干燥,开始时干燥速率恒定,当干燥至含水量为5%时,干燥速率开始下降,再继续干燥至物料恒重,并测得此时物料含水量为0.05%,则物料的临界含水量为()。 A.5% B.20% C.0.05% D.4.55% 【答案】A 5.间歇干燥过程将某湿物料由含水量0.25kg水/kg绝干物料降至0.05kg水/kg绝于物料,测出物料的平衡含水量为0.007kg水/kg绝于物料,物料的平衡分压保持 的最小含水量X=0.2kg水/kg绝干物料,干燥过程的临界含水量为kg水/kg 绝干物料,则降速阶段除去的结合水量为()。

A.0.2kg水/kg绝干物料 B.0.15kg水/kg绝干物料 C.0.16kg水/kg绝干物料 D.0.01kg水/kg绝干物料 【答案】B 二、填空题(每题4分,共20分) 1.在吸收操作过程中,保持气、液相流量、气相进口组成不变,若液相进口浓度降低,则塔内平均传质推动力将______,气相出口浓度将______。 【答案】增大;减小 2.在低浓度难溶气体的逆流吸收塔中,若其他条件不变而入塔液体量增加,则此塔的 液相传质单元数N OL将______,而气相总传质单元数N OG将______,气体出口浓度将______。 【答案】减少;不变;降低 3.对填料塔气膜控制的逆流吸收过程,如其他操作条件不变,将气液流量同比例减小,则气体出塔组成y2将______,液体出塔组成x1将______。 【答案】不变;不变 4.设计连续精馏塔时,欲保持馏出液组成x D和易挥发组分的回收率不变,试定性判断

化工分离过程课后答案刘家祺

分离工程习题 第一章 1. 列出5种使用ESA 和5种使用MSA 的分离操作。 答:属于ESA 分离操作的有精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏。 属于MSA 分离操作的有萃取精馏、液-液萃取、液-液萃取(双溶剂)、吸收、吸附。 5.海水的渗透压由下式近似计算:π=RTC/M,式中C 为溶解盐的浓度,g/cm 3;M 为离子状态的各种溶剂的平均分子量。若从含盐 g/cm 3的海水中制取纯水,M=,操作温度为298K 。问反渗透膜两侧的最小压差应为多少kPa 答:渗透压π=RTC/M=×298×=。 所以反渗透膜两侧的最小压差应为。 9.假定有一绝热平衡闪蒸过程,所有变量表示在所附简图中。求: (1) 总变更量数Nv; (2) 有关变更量的独立方程数Nc ; (3) 设计变量数Ni; (4) 固定和可调设计变量数Nx , Na ; (5) 对典型的绝热闪蒸过程,你 将推荐 规定哪些变量 思路1: 3股物流均视为单相物流, 总变量数Nv=3(C+2)=3c+6 独立方程数Nc 物料衡算式 C 个 热量衡算式1个 相平衡组成关系式C 个 1个平衡温度等式 1个平衡压力等式 共2C+3个 故设计变量Ni =Nv-Ni=3C+6-(2C+3)=C+3 固定设计变量Nx =C+2,加上节流后的压力,共C+3个 可调设计变量Na =0 解: (1) Nv = 3 ( c+2 ) (2) Nc 物 c F z i T F P F V , y i ,T v , P v L , x i , T L , P L 习题5附图

能 1 相 c 内在(P ,T) 2 Nc = 2c+3 (3) Ni = Nv – Nc = c+3 (4) Nxu = ( c+2 )+1 = c+3 (5) Nau = c+3 – ( c+3 ) = 0 思路2: 输出的两股物流看成是相平衡物流,所以总变量数Nv=2(C+2) 独立方程数Nc :物料衡算式 C 个 ,热量衡算式1个 ,共 C+1个 设计变量数 Ni=Nv-Ni=2C+4-(C+1)=C+3 固定设计变量Nx:有 C+2个加上节流后的压力共C+3个 可调设计变量Na :有0 11.满足下列要求而设计再沸汽提塔见附图,求: (1) 设计变更量数是多少 (2) 如果有,请指出哪些附加变 量需 要规定 解: N x u 进料 c+2 压力 9 c+11=7+11=18 N a u 串级单元 1 传热 1 合计 2 N V U = N x u +N a u = 20 附加变量:总理论板数。 16.采用单个精馏塔分离一个三组分混合物为三个产品(见附图),试问图中所注设计变量能否使问题有唯一解如果不,你认为还应规定哪个(些)设计变量 解: N X U 进料 c+2 压力 40+1+1 c+44 = 47 N a u 3+1+1+2 = 7 N v u = 54 设计变量:回流比,馏出液流率。 第二章 进料,顶产物 底产物 习题6附图

传质分离过程习题答案

第二章习题 1. 计算在和下苯(1)-甲苯(2)-对二甲苯(3)三元系,当x 1 = 、x 2 =、x 3 =时的K 值。汽相为理想气体,液相为非理想溶液。并与完全理想系的 K 值比较。已知三个二元系的wilson 方程参数(单位: J/mol ): λ12-λ11=-; λ12-λ22= λ23-λ22=; λ23-λ33=- λ13-λ11=; λ13-λ33=- 在T = K 时液相摩尔体积(m 3 /kmol )为: =×10 -3 ; =×10 -3 ; =×10 -3 安托尼公式为(p s :Pa ; T :K ): 苯:1n =(); 甲苯:1n =(); 对 -二甲苯:1n = (); 解: 由Wilson 方程得: Λ12=l l V V 12exp[-(λ12-λ11)/RT] =3 3 1091.1001055.177??×exp[-/×]= Λ21= Λ13= Λ31= Λ23= Λ32= ln γ1=1-ln (Λ12X 2+Λ13X 3)-[ 3 32231131323322112 2131321211X X X X X X X X X X X X +Λ+ΛΛ+Λ++ΛA +Λ+Λ+] = γ1= 同理,γ2=; γ3= lnP 1S = P 1S = lnP 2S = P 2S =

lnP 3S = P 3S = 作为理想气体实际溶液, K 1= P P S 11γ=, K 2=, K 3= 若完全为理想系, K 1=P P S 1= K 2= K 3= 2. 在361K 和下,甲烷和正丁烷二元系呈汽液平衡,汽相含甲烷%( mol ),与其平衡的液相含甲烷%。用 R -K 方程计算 和Ki 值。 解:a 11= 1 1 5 .2 242748.0c c p T R ?= ? dm 6 ? ? mol -2 a 22= 2 2 5 .2 242748.0c c p T R ?= MPa ?dm 6 ??mol -2 b 1= 1 1 208664.0c c p T R ?= dm 3mol -1 b 2= 2 2 5 .2 242748.0c c p T R ?= dm 3mol -1 其中T c1=, P c1= T c2=, P c2= 均为查表所得。 a 12=√a 11?a 22=?dm 6 ??mol -2 液相: a =a 11x 12+2a 12x 1x 2+a 22x 22 =×+2×××+× = b= b 1x 1+b 2x 2=×+×= 由R -K 方程: P=RT/(V-b)-a/[(V+b)] =0740.03610083145.0-?l m V - )0740.0(3611711 .245.0+l m l m V V

传质分离过程课后习题答案

传质分离过程课后习题答 案 Modified by JEEP on December 26th, 2020.

第一章 绪论 略 第二章习题 1. 计算在和下苯(1)-甲苯(2)-对二甲苯(3)三元系,当x 1 = 、x 2 =、x 3 =时的K 值。汽相为理想气体,液相为非理想溶液。并与完全理想系的 K 值比较。已知三个二元系的wilson 方程参数(单位: J/mol ): λ12-λ11=-; λ12-λ22= λ23-λ22=; λ23-λ33=- λ13-λ11=; λ13-λ33=- 在T = K 时液相摩尔体积(m 3/kmol )为: =×10 -3 ; =×10 -3 ; =×10 -3 安托尼公式为(p s :Pa ; T :K ): 苯:1n =(); 甲苯:1n =(); 对 -二甲苯:1n = (); 解: 由Wilson 方程得: Λ12=l l V V 12exp[-(λ12-λ11)/RT] =3 3 1091.1001055.177??×exp[-/×]= Λ21= Λ13= Λ31= Λ23= Λ32=

ln γ1=1-ln(Λ12X 2+Λ13X 3)-[ 3 32231131323322112 2131321211X X X X X X X X X X X X +Λ+ΛΛ+Λ++ΛA +Λ+Λ+] = γ1= 同理,γ2=; γ3= lnP 1S = lnP 2S = lnP 3S = 作为理想气体实际溶液, K 1=P P S 11γ=, K 2=, K 3= 若完全为理想系, K 1=P P S 1= K 2= K 3= 2. 在361K 和下,甲烷和正丁烷二元系呈汽液平衡,汽相含甲烷%( mol ),与其平衡的液相含甲烷%。用R -K 方程计算 和Ki 值。 解:a 11=1 1 5 .2 242748.0c c p T R ?= dm 6 mol -2 a 22=2 2 5 .2 242748.0c c p T R ?=MPadm 6mol -2 b 1=1 1 208664.0c c p T R ?=dm 3mol -1 b 2= 2 2 5 .2 242748.0c c p T R ?=dm 3mol -1 其中T c1=, P c1=

第 四 章 传 质 过 程

长沙学院教案(课时备课) 授课日期2007年10月10日第15次课 2 学时

第四章传质过程 §1传质分离过程概述 传质过程 在含有两个或两个以上组分的混合体系中,由于存在浓度差,某一或某些组分由高浓度区向低浓度区的传递过程,称为传质过程。 传质过程可以在一相中进行,也可以在两相间进行,两相间的传质是分离过程的基础。 1-1分离操作在化工生产中的作用 1.作用:分离设备费用和分离操作费用占总生产费的比例很大。 2.分类: ①机械分离:过滤、沉降 ②传质分离: 两相间:利用混合物中各组分在两相中的溶解度或挥发性等物理性质的差异,使某一或某些组分在相间转移(如吸收、精馏、萃取)。 一相中:热扩散、膜分离。 1-2化工生产中常见的传质操作 1.蒸馏:分离液体混合物,利用各组分挥发性的差异 2.吸收与解吸:分离气体混合物,利用气体溶解度的差异 3.液-液萃取:分离液体混合物,利用各组分溶解度的差异 4.吸附:分离气体或液体混合物,利用各组分在固体上吸附程度的差异5.干燥:固、气分离 6.膜分离:分离气体或液体混合物 7.热扩散:由于温度梯度而引起的物质扩散。

§2 传 质 过 程 机 理 传质过程: ①扩散物质从一相主体向界面传递 ②扩散物质在界面上从一相进入另一相 ③扩散物质从界面向另一相传递 2-1单相中的传质 一.分子扩散与菲克定律 1.分子扩散 在一相内有浓度差异存在时,由于分子的热运动,而造成的物质传递现象。 分子扩散速率(通量)A,0N :单位时间内通过单位截面积而扩散的物质量。 2.费克(Fick )定律(只适用于双组分混合物) =-A A,0AB dc N D dl (因A dc dl 为负值,加“-”使A,0N 为正) A,0N ——组分A 的分子扩散速率,)/(2 s m kmol ?; A dc dl ——组分A 在扩散方向的浓度梯度,4/m kmol ; AB D ——组分A 在组分B 中的分子扩散系数,s m /2。 AB D 的值由试验测定,可通过手册查取,见教材P183表5-2,5-3。 对理想气体混合物,由于RT p c A A = ,故有=- AB A A,0D dp N RT dl 。

第三章传质分离过程

第三章 传质分离过程
3.1 传质过程概述 3.2 液体的精馏 3.3 吸收
3.1 传质过程概述
3.1.1 3.1.2 3.1.3 3.1.4 3.1.5
传质过程定义 浓度表示法及其换算 分子扩散与费克定律 对流扩散 两相间传质的双膜模型
3.1.1 传质过程定义
物质以扩散的方式,从一处转移 到另一处的过程,称为物质的传递过 程,简称传质过程。
例:? ? ? ?
冰糖溶解于水 樟脑丸挥发到空气中 用水吸收焦炉气中的氨 酒精的增浓与提纯 (精馏)
传质过程还有
萃取:利用混合物各组分对某溶剂具有不 同的溶解度,从而使混合物各组分得到分 离和提纯的操作过程。 干燥:利用热能使湿物料的湿份汽化,从 而获得固体产品的操作。
结晶、吸附等。
传质过程,主要从三个方面进行研究:
(1)相平衡关系,(2)物料衡算,(3)传质速率方程
3.1.2 浓度表示法及其换算
以A、B双组分体系为例
(1) 摩尔浓度 c : kmol ? m ?3 质量浓度 ρ : kg ? m ?3 ρ =c?M
M : 千摩尔质量,kg ? kmol ?1
(2)
摩尔分率 xA =
A的摩尔数 B的摩尔数 + A的摩尔数
质量分率
?
?
m kg ?
?
A? ?
? ?
w = m +m kg A
?
?
?
?
A
B? ?
? ?
xA= wA
wA MA M A + (1? wA)
MB
wA
=
xAM
xAM A A + (1? x A)M
B
1

化工分离过程-课后答案-刘家祺

化工分离过程-课后答案-刘家祺

分离工程习题 第一章 1. 列出5种使用ESA 和5种使用MSA 的分离操作。 答:属于ESA 分离操作的有精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏。 属于MSA 分离操作的有萃取精馏、液-液萃取、液-液萃取(双溶剂)、吸收、吸附。 5.海水的渗透压由下式近似计算:π=RTC/M ,式中C 为溶解盐的浓度,g/cm 3;M 为离子状态的各种溶剂的平均分子量。若从含盐0.035 g/cm 3的海水中制取纯水,M=31.5,操作温度为298K 。问反渗透膜两侧的最小压差应为多少kPa? 答:渗透压π=RTC/M =8.314×298×0.035/31.5=2.753kPa 。 所以反渗透膜两侧的最小压差应为2.753kPa 。 9.假定有一绝热平衡闪蒸过程,所有变量表示在所附简图中。求: (1) 总变更量数Nv; (2) 有关变更量的独立方程数Nc ; (3) 设计变量数Ni; (4) 固定和可调设计变量数Nx , Na ; (5) 对典型的绝热闪蒸过程,你 将推荐规定哪些变量? 思路1: 3股物流均视为单相物流, 总变量数Nv=3(C+2)=3c+6 独立方程数Nc 物料衡算式 C 个 热量衡算式1个 相平衡组成关系式C 个 1个平衡温度等式 1个平衡压力等式 共2C+3个 故设计变量Ni =Nv-Ni=3C+6-(2C+3)=C+3 固定设计变量Nx =C+2,加上节流后的压力,共C+3个 可调设计变量Na =0 解: V -2 F z i T F P F V , y i ,T v , P v L , x i , T L , P L 习题5附图

传质分离过程课后习题答案

传质分离过程课后习题 答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

第一章 绪论 略 第二章习题 1. 计算在和下苯(1)-甲苯(2)-对二甲苯(3)三元系,当x 1 = 、x 2 =、x 3 =时的K 值。汽相为理想气体,液相为非理想溶液。并与完全理想系的 K 值比较。已知三个二元系的wilson 方程参数(单位: J/mol ): λ12-λ11=-; λ12-λ22= λ23-λ22=; λ23-λ33=- λ13-λ11=; λ13-λ33=- 在T = K 时液相摩尔体积(m 3/kmol )为: =×10 -3 ; =×10 -3 ; =×10 -3 安托尼公式为(p s :Pa ; T :K ): 苯:1n =(); 甲苯:1n =(); 对 -二甲苯:1n = (); 解: 由Wilson 方程得: Λ12=l l V V 12exp[-(λ12-λ11)/RT] =3 3 1091.1001055.177??×exp[-/×]= Λ21= Λ13= Λ31= Λ23= Λ32=

ln γ1=1-ln(Λ12X 2+Λ13X 3)-[ 3 32231131323322112 2131321211X X X X X X X X X X X X +Λ+ΛΛ+Λ++ΛA +Λ+Λ+] = γ1= 同理,γ2=; γ3= lnP 1S = lnP 2S = lnP 3S = 作为理想气体实际溶液, K 1=P P S 11γ=, K 2=, K 3= 若完全为理想系, K 1=P P S 1= K 2= K 3= 2. 在361K 和下,甲烷和正丁烷二元系呈汽液平衡,汽相含甲烷%( mol ),与其平衡的液相含甲烷%。用R -K 方程计算 和Ki 值。 解:a 11=1 1 5 .2 242748.0c c p T R ?= dm 6 mol -2 a 22=2 2 5 .2 242748.0c c p T R ?=MPadm 6mol -2 b 1=1 1 208664.0c c p T R ?=dm 3mol -1 b 2= 2 2 5 .2 242748.0c c p T R ?=dm 3mol -1 其中T c1=, P c1=

化工分离过程 教学大纲

教学大纲 课程名称:化工分离过程 英文名称:Separation Processes 学分:3.5 学时:48 教学对象:化学工程与工艺专业四年级本科生 预修课程:物理化学、化工原理、化工热力学、传递过程。 授课教材:刘家祺主编. 《传质分离过程》,高等教育出版社,2005年. 参考教材:陈洪纺,刘家祺编. 《化工分离过程》,化学工业出版社,1995年. J D Seader, E J Henley. Separation Process Principles, John Wiley and Sons, Inc., 2011年. 教学目的:利用已学的物理化学、化工原理、化工热力学、传递过程等课程中有关系相平衡热力学、动力学、分子及共聚状态的微观机理,传热、传质和动量传递理论来研究化工生产实际中复杂物系的分离和提纯技术。着重基本概论的理解,为分离过程的选择、特性分析和计算奠定基础。从分离过程的共性出发,讨论各种分离方法的特征。强调将工程和工艺相结合的观点,进行设计和分析能力的训练;强调理论联系实际,提高解决问题的能力。 总体要求:通过本课程学习,使学生掌握各种常用传质分离过程的基本原理,操作特点,简捷和严格计算方法,强化改进操作的途径,了解一些新分离技术。对于给定的混合物体系和产物分离要求,能够选择和设计适宜的分离过程。 教学内容: 第一章绪论本章包括3节,共3 学时 第1节课程概述 本节为1 学时的课堂教学 第2节传质分离过程的分类 本节为1 学时的课堂教学 第3节分离过程的研究开发现状与发展趋势 本节为1 学时的课堂教学

基本要求:了解分离过程在化工生产中的重要性;分类过程的分类;常用的化工分离操作过程;分离过程研究和技术开发的现状和未来。 重点:平衡分离过程和速率分离过程 难点:工业上常用的基于平衡分离过程的分离单元操作及其基本原理;分离媒介;典型应用实例。 第二章传质分离过程的热力学基础本章包括6 节,共9 学时 第1节相平衡基础 本节为3 学时的课堂教学 2.1.1汽液平衡 2.1.2液液平衡 第2节多组分物系的泡点和露点计算 本节为2 学时的课堂教学 2.2.1 泡点温度和压力的计算 2.2.2 露点温度和压力的计算 第3节闪蒸过程的计算 本节为2 学时的课堂教学 2.3.1 等温闪蒸和部分冷凝过程 2.3.2 绝热闪蒸过程 第4节液液平衡过程的计算 本节为0.5 学时的课堂教学 第5节多元相平衡过程 本节为0.5 学时的自主学习 第6节共沸系统和剩余曲线 本节为1 学时的课堂教学 基本要求:在“化工热力学”课程有关相平衡理论的基础上,较为全面的了解化工过程中经常遇到的多组分外系的气液平衡,即各种单级平衡过程的计算问题。熟练掌握多组分非理想体系平衡常数计算方法;泡点和露点计算;等温闪蒸和部分冷凝过程的计算,了解绝热闪蒸过程的计算。 重点:多组分物系的相平衡条件;平衡常数;分离因子。多组分物系的泡点方程、露点方程;计算方法。等温闪蒸过程和部分冷凝过程。闪蒸方程;闪蒸过程的计算。 难点:多组分非理想体系平衡常数计算。多组分物系的泡点温度和泡点压力、露点温度和露点压力的计算。等温闪蒸过程和部分冷凝过程的计算。 第三章气液传质分离过程本章包括 5 节,共15 学时 第1节设计变量 本节为2 学时的课堂教学

化工分离过程试题库

化工分离过程试题库(复习重点) 第一部分填空题 1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 2、固有分离因子是根据(气液相平衡)来计算的。它与实际分离因子的差别用(板效率)来表示。 3、汽液相平衡是处理(气液传质分离)过程的基础。相平衡的条件是(所有相中的温度压力相等、每一组分的逸度也相等)。 4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 6、在塔顶和塔釜同时出现的组分为(分配组分)。 7、吸收有( 1个)关键组分,这是因为(单向传质)的缘故。 8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。 9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。

10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。 11、为表示塔传质效率的大小,可用(级效率)表示。 12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。 13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。 14、新型的节能分离过程有(膜分离)、(吸附分离)。 15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 16、分离剂可以是(能量)和(物质)。 17、Lewis 提出了等价于化学位的物理量(逸度)。 18、设计变量与独立量之间的关系可用下式来表示( Ni=N v-Nc ) 19、设计变量分为(固定设计变量)与(可调设计变量)。 20、温度越高对吸收越(不利) 21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。 22、用于吸收过程的相平衡关系可表示为(L = AV)。 23、精馏有(2)个关键组分,这是由于(双向传质)的缘故。

传质分离工程 202夏期末考试复习题

试卷A/ B 一、填空题:(共计25) 1.按所依据的物理化学原理,传质分离过程可以分为平衡分离过程和速率分离过程,常见的平衡分离过程有精馏、吸收、闪蒸。(5分) 2.多组分精馏的FUG简捷计算法中,F代表 Fenske 方程,用于计算N m ,U代表Underwood 公式,用于计算R m ,G代表 Gilliland 关联,用于确定实际理论板数 N 。(6分) 2.在多组分精馏的FUG简捷计算法中,用Fenske 方程计算N m,用Underwood 公式计算R m,用Gilliland 关联确定N 。(6分) 3.The driving force for gas absorption is 气相中溶质的实际分压与溶液中溶质的平衡蒸气压力之差。(2分) 4.泡点计算是分离过程设计中最基本的汽液平衡计算。泡点计算可分两种:泡点温度计算和泡点压力计算。(2分) 4.露点计算是分离过程设计中最基本的汽液平衡计算。露点计算可分两种:露点温度计算和露点压力计算。(2分) 5.多组分吸收简捷计算中所用到的Horton-Franklin方程关联了吸收因子、吸收率、和理论板数。(3分) 6.多组分多级分离过程严格计算中围绕平衡级所建立的MESH方程分别是指:物料衡算方程,相平衡关系,组分摩尔分率加和方程和热量衡算方程(4分) 7共沸精馏是:原溶液加新组分后形成最低共沸物,塔顶采出。(3分) 7萃取精馏是:原溶液加新组分后不形成共沸物且新组分沸点最高,从塔釜采出。(3分)

二、单项或多项选择题(共计10) 1.晰分割法的基本假定是:馏出液中除了 A 外没有其他 C 。(2分) A. heavy key component; B. light key component; C. heavy non-key components; D. light non-key components. 1.晰分割法的基本假定是:釜液中除了 B 外没有其他 D 。(2分) A. heavy key component; B. light key component; C. heavy non-key components; D. light non-key components. 2.多组分精馏过程最多只能有b) 个关键组分;多组分吸收过程最多只能有a) 个关键组分(2分)。 a) 1 b) 2 c) 3 d) 4 3.The extent of separation achieved between or among the product phases for each of the chemical species present in the feed depends on the exploitation of differences in molecular分子性质、thermodynamic热力学性质 and transport传递性质 properties of the species in the different phases present.(4分) A. molecular; B. thermodynamic; C. transport; D. dielectric; E. diffusive; F. pH value. 4.有效能定义为: B= . (2分) A. H-T0S; B. H-TS

化工传质与分离过程

化工传质与分离过程

尽量逆流流动(最大的传质推动力): 气体在压差下由下而上,液体在重力下由上而下; 错流塔板:总体上逆流流动,板上错流流动 ?:?板式塔的设计意图(理想流动状态): 气液充分接触,总体上逆流流动,板上错流流动 ?板式塔上两相接触状态: 鼓泡接触状态:U 低,清液层,气泡为传质表面,液相为连续相; 泡沫接触状态:U 增加,清液层降低,不断更新的液膜为传质表面, 喷射接 触状态:U 较大,不断更新的液滴为传质表面曲线,气相为连续相。 第三章塔设备>>3.1板式塔(1) 功能^ 气液接触(传质系数大、接触面积大) 液相为连续相;

液膜夹带 气泡夹带 A 不均匀流动 气体不均匀流动(液面落差和水力学梯度) 液体不均匀流动 随气速增大,使塔板阻力增大,上层塔板上液层增厚,塔板液 流不畅,液层迅速积累,以致充满整个空间,即液泛。由此原 因诱发的液泛为液沫夹带液泛。开始发生液泛时的气速称之为 液泛气速 当塔内气、液两相流量较大,导致降液管内阻力及塔板阻力 增大时,均会引起降液管液层升高,。当降液管内液层髙度 难以维持塔板上液相畅通时,降液管内液层迅速上升,以致 达到上一层塔板,逐渐充满塔板空间,即发生液泛 三章塔设备〉>3」板式塔(2) ?板式塔上非理想流动一降低传质推动力 ?三种不正常现象 A 夹带液泛

第三章塔设备>>3.1板式塔(3)?:?板式塔的塔板基本结构 1、降液管的受液区 2、进口安定区 3、鼓泡区 4、出口安定区(破沫区) 5、降液管的溢流区 6、无效区 液体流动方向

第三章塔设备〉>3?1板式塔(4) ?接触状态的选择 泡沫接触状态:液膜足够稳定,不易形成大气泡,有利传质 喷射接触状态:液滴不断更新,小液滴(要求液滴不稳定)

相关主题
文本预览
相关文档 最新文档