当前位置:文档之家› 缩氨基硫脲类化合物的合成及生物活性研究_李清寒

缩氨基硫脲类化合物的合成及生物活性研究_李清寒

缩氨基硫脲类化合物的合成及生物活性研究_李清寒
缩氨基硫脲类化合物的合成及生物活性研究_李清寒

2氨基硫脲的合成

化学通报990311
Page 1 of 4
化学通报
CHEMISTRY 1999年 第3期 No.3 1999
1,3-二氨基硫脲的合成研究
孙晓红 关键词 二氨基硫脲 合成 催化 刘源发
1,3-二氨基硫脲(简称TCH)是一种重要的有机合成中间体,在一些杂环类医药、 农药的合成中有广泛的用途,同时它的一些金属衍生物也具有较大的应用价值。关于 其合成方法文献已有报道[1],且一直受到研究工作者的重视。在几种不同的合成方 法中,通常采用的是以二硫化碳和水合肼为原料,经两步反应制得TCH,以反应式表示 如下:
从原料来源及工艺条件来看,这是一条合理的工艺路线,二硫化碳与水合肼在较 低温度下反应,先生成二硫代肼基甲酸钅 井(简称HDTC),后者经加热分解,放出硫 化氢,冷却后过滤,即可得到TCH。但此种方法早期文献报道收率一般低于70%[2,3], 如加热温度控制不当,反应剧烈,难以控制,TCH的收率会更低,且不安全,目前国内 有关生产厂家仍采用此工艺路线。后有一些文献报道了有关此方法的改进研究,发现 过量的水合肼存在可提高收率[4],加入水及一些低烷基醇有利于反应进行,但并不 增加反应收率;一些胺或强碱如四亚甲基二胺、氢氧化钠存在下可增加TCH的收率 [5];在巯基乙醇存在下,二硫化碳与过量水合肼反应不仅可提高收率,同时可减少 副产物生成,可使水合肼循环套用次数增加,TCH的平均收率~90%[6]。但是以上方 法存在反应时间过长,一般需20h左右及催化剂巯基乙醇价格贵,来源困难的问题。 我们在文献[6]的基础上,对此方法进行了改进研究,研究成功以氯乙醇等卤代 醇代替巯基乙醇,并适当提高脱硫化氢的反应温度,使反应时间大为缩短,在10h以内 即可完成反应,过量的水合肼可循环套用的工艺条件,TCH的收率一般均在90%以上。
1 实验部分
1.1 主要原料及规格 二硫化碳,化学纯; 80%水合肼,化学纯; 2-氯乙醇,分析纯; 1,3-氯-2丙醇,自制; 巯基乙醇,化学纯。 1.2 实验步骤 1.2.1 操作方法 在装有搅拌器、温度计、滴液漏斗及冷凝器(上口连有尾气导出管) 的四口烧瓶中加入80%水合肼3mol及适量水,2-氯乙醇12g,冰水浴冷却至15℃左右, 搅拌下滴加二硫化碳1mol,约1h加完,然后在室温下搅拌30min,此时有黄色结晶HDTC 析出。加入6g氢氧化钠,加热升温并控制反应温度在75~85℃之间反应10h,所放出的 硫化氢气体经导气管用稀氢氧化钠吸收。冷却至室温,过滤析出的白色颗粒状TCH。用 150mL甲醇洗涤,干燥,得产物重97.5g,收率92%。 将过滤所得母液及甲醇洗涤液合并,加入反应瓶,搅拌下于15℃左右,30min之 内,滴加0.52mol二硫化碳,继续在此温度下反应1h。冷却至0℃,30min后,过滤析出 https://www.doczj.com/doc/977809333.html,/web/chemistry/2000/https://www.doczj.com/doc/977809333.html,/col/1999/hxtb/hxtb9903/... 2011-10-27

黄酮类化合物药理作用的分析

黄酮类化合物药理作用的分析 黄酮类化合物的基本结构构成为C-C-C方式,广泛存在于包括众多植物中,属于植物次级代谢产物。黄酮类化合物具有来源广、生物活性多、毒副作用小等特点,目前广泛应用于临床,古味伍绛木樨茶对其药理作用进行分析如下。 1 心血管系统作用 1.1 抗心律失常作用 动物实验表明,黄酮对心肌缺血再灌注损伤组织,可以有效地减少其心律失常发作次数,减轻发作频率,能对抗乌头碱、哇巴因和氯仿诱发的心律失常,其可能的机制为总黄酮可降低心室肌动作电位幅值(APA),延长动作电位时程(APD)。 1.2 抗动脉粥样硬化 动脉粥样硬化(AS)疾病进程的一个主要原因为,低密度脂蛋白(LDL)的氧化修饰,黄酮类化合物具有抑制LDL氧化作用,抗平滑肌增殖,清除自由基,从而有效地对抗动脉粥样硬化的损伤。 1.3 扩血管作用总黄酮具有血管紧张素转化酶抑制剂(ACEI)的作用,抑制血管内皮素(ET)的生成,扩张冠脉血管,改善心肌的血氧供应,对心血管系统起到改善作用,从而 起到血管扩张的作用。 1.4 抗凝血作用总黄酮体外给药可抑制花生四烯酸和胶原纤维引起的血小板聚集作用,改善血液流变性,延长凝血酶原时间。动物试验表明,大鼠皮下注射大剂量肾上腺素和冰水浸泡法,造出急性血瘀证大鼠模型,即血流变性呈轴稠状态的实验动物,通过饲喂山楂叶总黄酮(HLF),可显著降低红细胞(RBC)聚集指数、血浆比轴度,从而改善血瘀状态。银杏黄酮单独应用其抗凝作用不如蚓激酶,两者合用后抗凝效果加强,但溶栓作用并没有改善。 1.5 抗血脂作用维生素D3加脂肪乳剂造成大鼠高脂血症模型,在给予了麦胚总黄酮类后,可显著提高大鼠高密度脂蛋白胆固醇含量,降低实验性血清总胆固醇和三酚甘油含量。 2 抗炎调节免疫作用 黄酮类化合物具有显著的抗炎作用。作用机理为作用于细胞正常的有丝分裂过程,调节细胞间相互作用的分泌过程,抑制肥大细胞和嗜碱性细胞释放慢反应致炎物质,如中性粒细胞溶酶体酶、白三烯、组胺、前列腺素等,调节巨嗜细胞的吞噬功能,从而直到抗炎和免疫调节的作用。穿卜草中分离得到黄酮提取物可显著清除炎性因子,鸡蛋清致大鼠足肿胀、醋酸所致的小鼠腹腔毛细血管通透性增加、二甲苯所致的小鼠耳肿胀等急性炎症反应,都有明显的抑制作用。 3 抗菌抗病毒作用 3.1 抗菌作用甘草黄酮提取物在体外,可有效抑制白色念珠菌、黑根霉、灰葡萄抱、意大利青霉等真菌。同时对金黄色葡萄球菌、大肠杆菌、新型隐球菌、枯草杆菌、绿脓杆菌、烟曲霉菌、白色念珠菌等均有抑制作用,亦能明显抑制的生长。 3.2 抗病毒活性黄酮类化合物对多种病毒具有抑制作用,芦丁能抑制流感病毒、脊髓灰质炎病毒。黄芪总黄酮对人疤疹病毒(HSV21)感染的豚鼠皮肤,具有较好的抗病毒治疗效果。异黄芪282甲醚能显著抑制流感病毒。总之黄酮类对于流感病毒、呼吸道合胞病毒、脊髓灰质炎病毒、疤疹病毒、登革热病毒、腺病毒、肝炎病毒、柯萨奇病毒、冠状病毒等都具有一定的抑制作用。 3.3 抗HIV活性许多黄酮类化合物均有抗匀陨灾活性,其作用的靶点均分别为作用于HIV逆转录酶、HIV 蛋白酶、HIV整合酶,作用于HIV启动子,没有明确作用点的黄酮类化合物等。其中黄芩素可对抗中逆转录酶。 4 抗肿瘤抗癌作用 黄酮类化合物对于肿瘤细胞的增长繁殖具有显著地抑制作用。其作用机理为促进抑癌基因表达、诱导肿瘤细胞凋亡、干预肿瘤细胞信号转导、促进抗肿瘤细胞增殖等。黄酮类化合物抗癌抗肿瘤作用的效果,主要体现为具有显著的抗氧化抗自由基作用,且二者之前具有显著相关性,抗自由基及氧化应激的能力强,则

1,3,4-噻二唑类化合物的合成解析

本科毕业论文 学 院 化学化工学院 专 业 化 学 年 级 2009 级 姓 名 罗红辰 论文(设计)题目 1,3,4-噻二唑类化合物的合成 指导教师 张玉霞 职称 教授 2013 年 5月 16日 学号:

信阳师范学院本科学生毕业论文(设计)开题报告

信阳师范学院本科学生毕业论文(设计)中期检查表

目录 摘要 (1) Abstract (1) 前言 (3) 1试验部分 (3) 1.1 主要仪器和实验试剂 (3) 1.2 1,3,4-噻二唑类化合物的合成 (3) 1.3 产物的结构与性能分析 (4) 2结果和讨论 (4) 2.1溶解性及熔点 (4) 2.2红外光谱 (5) 2.3 紫外光谱 (7) 2.4荧光光谱 (9) 3结语 (10) 参考文献 (11)

1,3,4-噻二唑类化合物的合成 学生姓名:罗红辰学号:20095051109 化学化工学院化学专业 指导教师:张玉霞职称:教授 摘要:乙酸在浓盐酸的催化下与氨基硫脲反应生成脂肪族类2,5-二取代-1,3,4-噻二唑,取代苯甲醛与氨基硫脲在六水合氯化铁的催化下关环生成芳香族类2,5-二取代-1,3,4-噻二唑类化合物,并对其进行了结构表征和荧光分析。 关键词:噻二唑;取代苯甲醛;氨基硫脲;合成 Abstract:Under the catalysis of concentrated hydrochloric, acetic acid react with thiosemicarbazide and generate an aliphatic 2,5 - disubstituted -1,3,4 – thiadiazole.under the catalysis of ferric chloride hexahydrate,the product of substituted benzaldehyde reacting with thiosemicarbazide synthesize Aromatic 2,5- disubstituted-1,3,4- thiadiazole compounds.And,Their structural characterization and fluorescence analysis were done after synthesis. Keywords:thiadiazole;substituted benzaldehyde;thiosemicarbazide;synthesize 前言 20世纪末以来,化学工作者发现l,3,4-噻二唑在许多领域都有重要应用。在工业方面,1,3,4-噻二唑类化合物主要被用作润滑油脂抗磨极压剂,也用作钼、石墨等矿石的浮选剂[2]。在农业方面,1,3,4-噻二唑类化合物主要用作除莠剂、灭草剂、杀菌、抑菌剂、植物生长调节剂等,用来防治水稻百叶枯病、柑橘溃疡病、蕃茄青枯病等[3]。在医药方面,l,3,4-噻二唑是一类具有较高生物活性的杂环化合物,常作为药物中间体主要用来合成具有抗菌,抗焦虑,抗癌活性的药物[4-12]。噻二唑化合物的“碳氮硫”结构作为活性中心已引起广泛关[13-17],含有3个杂原子的1,3,4-噻二唑衍生物是一类重要的杂环化合物,因该类化合物具N-C-S毒性基而具有广谱生物活性,其应用广泛,发展前景广阔。 以下是脂肪族1,3,4-噻二唑类化合物和芳香族1,3,4-噻二唑类化合物的合成路线:化合物(Ⅰ)的合成路线:

类黄酮的生理活性功能及应用

类黄酮 类黄酮(Flavonoids)是植物重要的是一类次生代谢产物,它以结合态(黄酮苷)或自由态(黄酮苷元)形式存在于水果、蔬菜、豆类和茶叶等许多食源性植物中。槲皮素(Quercetin)是最典型的类黄酮,其在C3位羟基上结合糖分子即形成植物中普遍的成分—芸香苷(芦丁)。柑橘属的多种水果均含有大量的黄酮化合物,如橘红素(Tangeretin)和川陈皮素(Nobiletin)。大豆中含有一种异黄酮化合物—大豆异黄酮,茶叶中的茶多酚是由没食子酸和类黄酮—儿茶酚组成。 在Ames检验中发现,槲皮素具有致诱变性,但没有代谢活性,但在反应系统中加入肝提取物可明显增加其诱变活性。长期的动物饲喂研究表明:槲皮素不仅不是致癌物质,而且具有一定的抗癌活性。事实上,在已发现61种黄酮化合物中,有11种具有抗突变作用,,其中有多种对致癌物诱导的动物模型恶性肿瘤有抑制作用,如橘红素和川陈皮素等。 类黄酮又称生物类黄酮,为人类饮食中含量最丰富的一类多酚化合物,广泛存于水果、蔬菜、谷物、根茎、树皮、花卉、茶叶和红葡萄酒中。目前为止,已经确认有四千多种不同的类黄酮。类黄酮可进一步分为: 黄酮醇类:最常见的类黄酮物质,如:槲皮素、芸香素。槲皮素广泛存在于蔬菜、水果中,以红洋葱的含量最高。 黄酮类或黄碱素类:如木犀草素、芹菜素,分别含于甜椒和芹菜。 黄烷酮类:主要见于柑橘类水果,如橙皮苷、柚皮苷。 黄烷醇类:主要为儿茶素,绿茶中含量最丰,红茶的儿茶素含量约减少一半。 花青素类:主要为植物中的色素,不同植物含量不一。 原花青素类:葡萄、花生皮、松树皮中都含有丰富的原花青素。 异黄酮类:主要分布于豆类食品,目前已证明具有抗乳癌和骨质疏松的作用。 3、生物类黄酮的生理功能及其应用 3.1清除自由基 黄酮类化合物属于酚类物质,可熬合金属离子,其分子物质基础是黄酮类分子中的3

糖和苷名词解释1苷类化合物2端基碳3Molish反应4

第二章糖和苷 一、名词解释: 1. 苷类化合物 2. 端基碳 3. Molish反应 4. 两相水解法 二、问答题 1.苷键具有什么性质,常用哪些方法裂解? 2.苷类的酸催化水解与哪些因素有关?水解难易有什么规律? 三、填空题 1. 苷类根据是生物体内原存的,还是次生的分为_____和_____;根据连接单糖基的个数分为______、_____等;根据苷键原子的不同分为______、______、______和______,其中__________为最常见。 2. 利用1HNMR谱中糖的端基质子的_____判断苷键的构型是目前常因用方法。对于葡萄糖苷来说,J=6~9Hz,应为_____构型,J=2~3Hz,为_____。 3. ___________和__________类化合物对Molish试剂呈正反应。 4. 苦杏仁酶只能水解_______葡萄糖苷,纤维素酶只能水解________葡萄糖苷;麦芽糖酶只能水解__________葡萄糖苷。 5. 苷化位移使糖的端基碳向____________移动。 四、选择题 1. 糖类的纸层析常用展开剂: A. n-BuOH-HOAc-H2O (4:1:5;上层) B. CHCl3-MeOH(9:1) C. EtOAc-EtOH(6:4) D. 苯-MeOH(9:1) 2. 酸催化水解时,较难水解的苷键是: A. 氨基糖苷键 B. 羟基糖苷键 C. 6-去氧糖苷键 D. 2,6-去氧糖苷键 3. Molish试剂的组成是: A. α-萘酚-浓硫酸 B. β-萘酚-浓流酸 C. 氧化铜-氢氧化钠 D. 硝酸银-氨水 4. 提取苷类成分时,为抑制或破坏酶常加入一定量的() A. 硫酸 B. 酒石酸 C. 碳酸钙 D. 氢氧化钠 E. 碳酸钠 5.下列几种糖苷中,最易被酸水解的是()

缩氨基硫脲吡咯羧基溶解性毕业论文

摘要 现代生活中,癌症对人类生命和健康的威胁与日俱增,研发有效的抗癌药物一直备受各界关注。吡咯以各种形式的衍生物广泛地存在于自然界, 在生物体的发育、生长、能量储存和转换,生物体的各种信息传递等生命过程中起着重要的作用。氨基硫脲作为一种含硫酰肼,是合成抗结核药氨硫脲和磺胺药物的原料,是一个重要的有机合成中间体。因此,本论文以2,4-二甲基-5-甲酰基-吡咯-3-甲酸和硫代氨基脲、4-甲基氨基硫脲、4-乙基氨基硫脲、4-异丙基氨基硫脲、4-苯基氨基硫脲为原料,合成了一系列含羧酸的吡咯缩氨基硫脲化合物。此外,我们对目标产物进行溶解性的测试,并通过红外光谱、核磁共振等光谱手段对产物进行了表征,希望能从中筛选治疗癌症的候选药物。 关键词:缩氨基硫脲、吡咯、羧基、溶解性

Abstract In our modern society, the threat of cancer disease to human life and health grows with time elapsing. More attentions have been paid to develop effective anti-cancer drugs. Various forms of pyrrole derivatives are widely existed in nature and play an important role in an organism's development, growth, energy storage and conversion and biometric information transmission of various life processes. Thiosemicarbazide, a sulfur-containing hydrazide, is the raw material of synthesized anti-TB thiourea and sulfa drugs and an important intermediate for organic synthesis. Therefore, in this paper, the series of pyrrole thiosemicarbazones compounds containing Carboxyl group were successfully synthesized by reacting 2,4-dimethyl-5-formyl-pyrrole-3 -carboxylic acid with thiosemicarbazide, 4-methyl thiosemicarbazide, 4-ethyl thiosemicarbazide, 4-iso propyl thiosemicarbazide, 4-phenyl thiosemicarbazide. Solubility of the target product was tested and then confirmed by IR and 1H NMR spectroscopy, we hope to search drug candidates for cancer treatment. Key word: thiosemicarbazone, pyrrole, carboxyl, solubility

黄酮类化合物生物活性的研究进展_王慧

黄酮类化合物生物活性的研究进展 王 慧 (山东博士伦福瑞达制药有限公司,山东 济南 250101) 摘 要:黄酮类化合物是广泛存在于自然界的一类多酚化合物,有许多潜在的药用价值。现就黄酮类化合物抗肿瘤、抗心血管疾病、抗氧化抗衰老、抗菌抗病毒、免疫调节等作用的研究进展作一综述,以期为开发利用该类药物提供参考。关键词:黄酮类化合物;生物活性;综述文献 中图分类号:R282.71 文献标识码:A 文章编号:1672-979X (2010)09-0347-04 收稿日期:2010-05-31 作者简介: 王慧(1974-),女,山东临沭人,主管药师,从事质量控制工作 E-mail : wanghui0602@https://www.doczj.com/doc/977809333.html, Progress in Bioactivity of Flavonoids WANG Hui (Shandong Bausch & Lomb Freda Phar. Co., Ltd., Jinan 250101, China ) Abstract: Flavonoids are polyphenols widely found in nature and they have many potential medicinal values. This paper reviews the progress in anti-tumor, anti-cardiovascular disease, anti-oxidation and anti-aging, antibacterial and antivirus, immunological regulation of flavonoids, which can provide the references for the development and utilization of flavonoids. Key Words: flavonoids; bioactivity; review 黄酮类化合物是一类低分子植物成分,具有C6-C3-C6 基本构型,为植物体多酚类代谢物。主要分为黄酮及黄酮醇类、二氢黄酮及二氢黄酮醇类、黄烷醇类、异黄酮及二氢异黄酮类、双黄酮类,以及查尔酮、花色苷等[1]。黄酮类化合物独特的化学结构使其对哺乳动物和其它类型的细胞有重要的生物活性。黄酮类化合物有高度的化学反应性,例如清除生物体内的自由基;又有抑制酶活性、抗肿瘤、抗菌、抗病毒、抗炎症、抗过敏、抗衰老、抗心血管疾病糖尿病并发症等药理作用,且无毒无害。黄酮类化合物还是茶及黄芩、银杏、沙棘等众多中草药的活性成分。因此受到广泛关注,研究进展很快。1 黄酮类化合物的理化性质 黄酮类化合物多为晶体且有颜色,少数如黄酮苷类为无定形粉末,除二氢黄酮、二氢黄酮醇、黄烷及黄烷醇有旋光性外,余者则无。黄酮类化合物的溶解度因结构及存在状态(苷或苷元、单糖苷、双糖苷或三糖苷)不同而有差异,一般游离态苷元难溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂。其中,黄酮、黄酮醇、查儿酮等平面型分子因堆砌较紧密,分子间引力较大,故更难溶于水;而二氢黄酮及二氢黄酮醇等系非平面型分子,排列不紧密,分子间引力较小,有利于水分子进入,水溶解度稍大[2]。 2 黄酮类化合物的生物活性2.1 抗肿瘤活性 黄酮类对多种肿瘤细胞有明显的抑制作用,主要表现在抑制细胞增殖、诱导细胞凋亡、干预信号转导、影响细胞 [11] Denyer S P, Baird R M. Guide to microbiological control in pharmaceuticals and medical devices[M].2nd ed. Boca Raton: CRC Press, 2006: 325-326. [12] Mao k, Masafumi U, Takeshi K, et al Evaluation of acute corneal barrier change induced by topically applied preservatives using corneal transepithelial electric resistance in vivo [J].Cornea , 2010, 29(1): 80-85. [13] Noecker R. Effects of common ophthalmic preservatives on ocular health[J]. Adv Ther , 2001, 18: 205-215. [14] Kostenbauder H B. Physical factors influencing the activity of antimicrobial agents// Block S S. Disinfection, Sterilization and Preservation[M]. 3rd ed. PhiladelpHia: Lea and Febiger, 1983: 811-828. [15] Berry H, Michaels I. The evaluation of the bactericidal activity of ethylene glycol and some of its monoalkyl ethers against Bacterium coli [J]. J Pharm Pharmacol , 1950, 2: 243-249.

黄酮类化合物药理活性研究进度

黄酮类化合物药理活性研究进度 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 黄酮类化合物( flavonoids) 为存在于自然界中的一类结构中有 2 - 苯基色原酮( flavone) 的特殊化合物。黄酮分子中有一个酮式羰基,第一位上的氧原子具碱·性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。黄酮类化合物多与糖结合成苷类后,存在于植物体中。小部分黄酮类化合物则以游离苷元的形式存在。黄酮类化合物在大部分植物的体内都有发现,它在植物生长发育的各个时期,和植物抵抗病虫害等方面起着重要的作用。黄酮类化合物包括,黄酮和黄酮醇; 黄烷酮和黄烷酮醇; 异黄酮; 异黄烷酮;查耳酮; 二氢查耳酮; 橙酮( 又称澳咔) ; 黄烷和黄烷醇; 黄烷二醇等。黄酮类化合物中很多成分都具有一定的药理活性而有药用价值,近年来对黄酮类化合物药理活性研究主要包括以下几个方面: 1 对心脏及血液系统的影响 刘启功等发现黄酮类化合物葛根素对犬缺血心肌侧枝循环的开放和形成有一定的促进作用,对犬缺血心肌有保护作用。常志文等发现葛根素能阻滞β - 肾

上腺素受体,可降低心脏张力指数和心室内压上升速率,减慢心率,减少心肌耗氧量。王继光等研究发现,苦参总黄酮能预防室颤、缓解心律失常,对哇巴因诱发的心律失常亦有治疗作用。徐继辉等观察到,广枣总黄酮对心律失常具有抑制作用,可降低心脏停搏和心律失常发生率。有学者发现,银杏黄酮、黄蜀葵花黄酮、杜鹃花总黄酮等对缺血、缺氧的心脏肌肉具有一定的保护作用。大豆异黄酮能改善心肌舒张与收缩功能,对糖尿病心肌有治疗作用,沙棘总黄酮对心肌肥大有治疗作用。潘苏华、方秀桐等发现异银杏双黄酮能降低大鼠体内外血栓的形成比例; 可扩张血管、抑制小动脉收缩、增加血流量; 银杏双黄酮能引起实验动物心脏血管的扩张,可扩张实验动物血管,增加血流量。Horng - Huey Ko 等人的研究显示,桑树中的多种黄酮类成分如桑色烯( morusin ) 和桑素( kuwanon C) 等能够抑制家兔血小板的聚集,另外,环桑色烯( Cyclomorusin) 也可抑制血小板凝聚因子导致的血小板聚集。有实验证明甘草根及甘草叶总黄酮能延长凝血时间,山茶花总黄酮、罗汉果黄酮具有一定的抗血小板聚集作用,血竭总黄酮可防止血栓形成,改善血流,山楂叶黄酮能使血脂降低从而对动脉粥样硬化具有防治功能,大豆黄酮可以预防、治疗冠

苯乙醇苷类化合物的研究进展

Journal of Organic Chemistry Research 有机化学研究, 2017, 5(2), 114-119 Published Online June 2017 in Hans. https://www.doczj.com/doc/977809333.html,/journal/jocr https://https://www.doczj.com/doc/977809333.html,/10.12677/jocr.2017.52015 Progress of Phenylethanol Glycosides in Plants Gang Xue, Chenghong Ma, Yujuan Chen* School of Life Science and Technology, Changchun University of Science and Technology, Changchun Jilin Received: May 21st, 2017; accepted: Jun. 18th, 2017; published: Jun. 21st, 2017 Abstract Phenylethanol glycoside compounds have a strong biological activity and significant pharmaco-logical activity characteristics. They are widely distributed in plants, mainly distributed in Scrophulariaceae, Rosaceae, Orobanchaceae, Plantaginaceae, Verbenaceae and so on. These com-pounds have significant activity, which are Potential drugs. There are many researches about their activity and medical structures. In this paper, the recent studies on phenylethanol glycoside com-pounds are reviewed. The main sources, extraction, separation and synthesis methods, chemical structures, physical and chemical properties of phenylethanoid glycosides are studied in this pa-per. Pharmacological mechanism of the mechanism are descript in detail. It is useful to study phenylethanol glycosides in the further. Keywords Phenylethanoid Glycoside, Activity, Structure, Content Determination, Research Progress 苯乙醇苷类化合物的研究进展 薛刚,马成红,陈玉娟* 长春理工大学生命科学技术学院,吉林长春 收稿日期:2017年5月21日;录用日期:2017年6月18日;发布日期:2017年6月21日 摘要 苯乙醇苷化合物具有较强的生物活性且具有显著的药理活性特性。广泛的存在于植物中,主要分布于玄*通讯作者。 文章引用: 薛刚, 马成红, 陈玉娟. 苯乙醇苷类化合物的研究进展[J]. 有机化学研究,2017, 5(2): 114-119.

年产300吨含量40%甲基肼水溶液可行性研究报告

1总论 1.1项目建设的意义 近年来随着新生抗生素的广泛应用,头孢类抗生素的品种日益增多,需求也以每年20%的速度增长,目前仅临床应用的头孢类抗生素就有30多种,而头孢曲松用量列头孢类抗生素第一位。头孢曲松属第三代抗生素,它具有疗效高、抗菌谱广、抗菌性强、副作用小的优越疗效而被广泛应用于临床。该品种已被列为国家基本药物和基本保险用药。 生产头孢曲松的重要原料为三嗪酸,甲基肼是一种重要的医药中间体,广泛用于新生抗生素头孢曲松原料三嗪酸的合成。国内三嗪酸生产厂家均从青海购运低含量甲基肼合成甲基氨基硫脲来生产三嗪酸,由于运费较高,致使三嗪酸的生产成本居高不下。因此,石家庄市美斯特化工有限责任公司决定在赞皇县建设年产300吨甲基肼生产项目,来支持我国抗生素的发展,从而为头孢曲松的生产降低成本打下基础。 随着城乡医疗应用普及,头孢曲松的市场需求越来越大。随着头孢曲松药物生产的发展,甲基肼作为头孢曲松药物生产的源头原料也将出现旺盛市场。根据市场调查,国内外三嗪酸生产厂家均大量需求甲基肼,并且石家庄市美斯特化工有限责任公司已经和抚顺美强化工有限公司、河北金通医药化工有限责任公司两大三嗪酸生产厂达成协议,为这两家公司提供甲基肼。因此,该项目建成后,产品市场前景非常看好。 1.2编制依据 (1)《中华人民共和国环境影响评价法》,2003.9.1; (2) 《中华人民共和国水污染防治法》,1984.5.11; (3)《中华人民共和国大气污染防治法》,2000.4.29; (4)《中华人民共和国环境噪声污染防治法》,1996.10.29; (5)《中华人民共和国固体废物污染环境防治法》,1995.10.30; (6)《中华人民共和国清洁生产促进法》, 2002.6.9; (7)中华人民共和国国务院令第253号《建设项目环境保护管理条例》,1998.11.29; (8)河北省第八届人民代表大会常务委员会公告第80号《河北省建设项目环境保护管理条例》,1996.12.17; (9)中华人民共和国国务院国发(1996)31号《国务院关于环境保护若干问题的决

黄酮类化合物的生理功能

黄酮类化合物的生理功能 黄酮类化合物广泛存在于植物中,实际上存在于植物的所有部分,包括根、心材、树皮、叶、果实和花中,光全作用中约有2%的碳源被转化成类黄酮。早在30年代人们就发现了黄酮类化合物具有维生素C样的活性,曾一度被视为是维生素P。至今法国与俄罗斯仍继续称黄酮类化合物为维生素P。Pratt等人研究了黄酮类化合物的抗氧化性质,认为黄酮是作为一级抗氧化剂而起作用的,它们具有显著的抗氧化性能。黄酮抗油脂过氧化的作用早在60年代就已经被证实了。80年代以来,对黄酮类化合物的研究逐渐转向其清除自由基的能力、抗衰老及对老年病的防治功效上。 黄酮类化合物中含有消炎、抑制异常的毛细血管通透性增加及阻力下降、扩张冠状动脉、增加冠脉流量、影响血压、改变体内酶活性、改善微循环、解痉、抑菌、抗肝炎病毒、抗肿瘤具有重要生物活性的化合物,有很高的药用价值。中草药含黄酮类化合物的很多,已经证明类黄酮是许多中草药的有效成份。例如满山红中的杜鹃素、小叶枇杷中的小叶枇杷素、矮地茶中的槲皮苷、铁包金中的芦丁、白毛夏枯草和青兰中的木犀草素、红管药中的槲皮素、葛根中的黄豆苷与葛根素、毛冬青与银杏叶中的黄酮醇苷、黄芩中的抗菌成分黄芩素和解热有效成分黄芩苷等。此外,还有很多中草药富含黄酮类成分,如槐米、陈皮、射干、红花、甘草、蒲黄、枳实、芫花、金银花、菊花、山楂、淫羊藿、桎木和地锦等。除了药用价值外,其中的部分黄酮类化合物(特别是来源自药食两用的中草药)显然可应用在功能性食品。 黄酮和黄酮醇是植物界分布最广的黄酮类化合物,广泛存在于食用蔬菜及水果中,在沙棘、山楂、洋葱等中含量较高,茶叶、蜂蜜、果汁、葡萄酒中含量丰富。椐估计人体每天从食物中摄入这类物质可达1g,产生有益的生理作用。黄酮类化合物无显著毒性,大鼠对槲皮素的经口LD50为10~50g/kg ,小鼠一次口服15g/kg,观察7d无一死亡。临床病人摄取芦丁2.25g持续7d或60mg/d连续5年,均无任何副反应。在其他一系列大剂量、长时间的动物试验中,均未发现有致癌性。显性致死试验、细胞姐妹染色体试验、微核试验证明槲皮素类衍生物无致突变作用。 黄酮类化合物的生理功能可概括为: ⑴调节毛细血管的脆性与渗透性。 ⑵是一种有效的自由基清除剂,其作用仅次于维生素E。 ⑶具有金属螯合的能力,可影响酶与膜的活性。 ⑷对维生素C有增效作用,似乎有稳定人体组织内维生素C的作用。 ⑸具有抑制细菌和抗生素的作用,这种作用使普通食物抵抗传染病的能力相当高。 ⑹在两方面表现有抗癌作用,一方面是对恶性细胞的抑制(即停止或抑制细胞的增长),另一方面是从生化方面保护细胞免受致癌物的损害。 尽管对黄酮类化合物的看法尚有矛盾的方面,但它目前仍被应用来防治下列一些疾病: ⑴毛细血管的脆性和出血。 ⑵牙龈出血。 ⑶眼的视网膜内出血。

黄酮类化合物

黄酮类化合物 黄酮类化合物是自然界存在的最大类别的酚类化合物之一,它广泛存在于植物的各个部位,尤其是花叶部位,主要存在于芸香科、唇形科、豆科、伞形科、银杏科、与菊科等。有文献记载约有20%药中含有黄酮类化合物,可见其资源之丰富。许多研究已表明黄酮类化合物具有多种生物活性,除利用其抗菌、消炎、抗突变、降压、清热解毒、镇静、利尿等f乍佣外,在抗氧化、抗癌、防癌、抑制脂肪氧化酶等方面也有显著效果。他是大多数氧自由基的清除剂,因而能提高SOD(过氧化物歧化酶)的活力,减少MDA(脂质过氧化物丙二醛)及OX —LDL(氧化低密度脂蛋白)的生成。他可以增加冠脉流量:对实验性心肌梗塞有对抗作用,对急性心肌缺血有保护作用,对治疗冠心病、心绞痛、高血压等有显著效果,对降低舒张压,防治心律失常、心血管病和活血化瘀也起重要作用。由于黄酮类化合物的这些生物活性使他的研究进入了—个新的阶段,掀起了黄酮类化合物研究、开发;f0用热潮,促使其在化妆品、医药、食品等工业中有广泛的应用。目前发现的黄酮类化合物已达5000多种,但研究亦发现,在这众多的黄酮类化合物中却因其结构的不同,有的表现出生物活性,有的却没有生物活性,而且生物活性亦因其结构的差异而不同。所以提取分离出具有较高生物活性的黄酮类化合物对医药及食品工业是十分重要的。 一、国内外研究现状 邢秀芳研究了纤维素酶在葛根总黄酮提取中的应用,结果显示在纤维素的作用下,葛根总黄酮的收率提高了130/0。廖亮研究了银杏叶中总黄酮提取方法结果表明乙醇提取较好。方桂珍正交实验研究仙鹤草中总黄酮的提取工艺,考察浸提液浓度、浸提温度、浸提时间、浸提次数、液科比等5个因素对f山鹤草总黄酮含量的影响,确立了仙鹤草总黄酮最佳提取条件为:浸提液体积分数40%,液料比10:1,浸提温度7d℃,回流提取3次,每次0.5h。 高红宁采用紫外分光光度法测定苦参中总黄酮的含量,研究大孔树脂AB一8对苦参总黄酮的吸附性能及原液浓度、pH、流速、洗脱剂的种类对树脂吸附性的影响,结果表明原液浓度为0285mg/ml,pH值为4,流速为3BVm洗脱剂用50%乙醇时,AB一8树脂,吸效果较好。康纯研究了微乳薄层色谱对黄酮类层分分离鉴定,以6种SDS一正丁醇一正庚烷一水徽乳液作为展开剂,通过聚酰胺薄层层析,分离和检测14种中药材、饮片及中成

药物综述——黄酮类化合物

药物综述——黄酮类化合物 关键词:黄酮类;来源;发展史;药理作用;不足之处 摘要:黄酮类化合物分布广泛,具有多种生物活性,但目前,黄酮类药物仍有些不足之处。 正文: 1.发展史:黄酮类化合物的发现历史十分悠久。早在二十世30年代初,欧洲一 位药物化学家在研究柠檬皮的乙醇提取物时无意中得到一种白色结晶,将其命名为“维生素P”。动物试验证实:维生素P的抗坏血作用胜过维生素C10倍。2年后,这位科学家进一步发现:维生素 P实际上是一种由黄酮组成的混合物而非单一物质,故后来有人形象化地将维生素P更名为柠檬素。黄酮类化合物作为保健产品首次引起国际医药界的注意是在二十世纪八十年代末。法国一家保健食品厂商率先推出具有市场引导作用的黄酮类保健新品“碧萝芷”。它是从法国地中海沿岸地区生长的一种主要树种“滨海松”树皮中提取的一种黄酮混合物。由于碧萝芷能预防和治疗西方国家极为常见的冠心病与心肌梗塞等心血管疾病,故上市后销售情况极为红火。在上市10年以后,临床医学研究人员不断发现碧萝芷有不少令人感兴趣的新用途,其中包括抗哮喘、防止长期抽烟引起的脑动脉硬化与脑血栓形成以及降血压作用等。据科学家研究,法国生产的碧萝芷含有极其复杂的黄酮成分,其中包括:儿茶素、表倍儿茶素、紫杉素、原花青素及其单体、2倍体、3倍体与多倍体混合物。正是这些复杂的黄酮构成碧萝芷多样化药理作用的基础。 2.来源:天然黄酮类化合物是植物体多酚类的内信号分子及中间体或代谢物, 包括黄酮、异黄酮、黄酮醇、异黄酮醇、黄烷酮、异黄烷酮、查耳酮等,最集中分布于被子植物中。如黄酮类以唇形科、爵麻科、苦苣苔科、玄参科、菊科等植物中存在较多;黄酮醇类较广泛分布于双子叶植物;二氢黄酮类特别在蔷薇科、芸香科、豆科、杜鹃花科、菊科、姜科中分布较多;二氢黄酮醇类较普遍地存在于豆科植物中;异黄酮类以豆科蝶形花亚科和鸢尾科。 植物中存在较多。在裸子植物中也有存在,如双黄酮类多存在松柏纲、银杏纲和凤尾纲等植物中。黄酮类化合物具有能够改变机体对变能反应原、病毒及致癌物反应的能力,并保护机体组织不受氧化性侵袭的伤害,因此具有"天然生物反应调节剂"的美称。黄酮类化合物一般存在于蔬菜和水果的可食性果肉中。当把它们从中分离出来后,其味道有些发苦,如桔子、柠檬、葡萄和柚等这些柑桔类植物是黄酮类化合物特别丰富的来源。许多植物如樱桃、葡萄、蔷薇果、青椒、花茎甘蓝、洋葱和番茄等,以及许多草药如越桔、银杏、乳蓟等都含有高质量的黄酮类化合物。此外,多种植物的叶、干和根部也发现了一些黄酮类化合物,如山茶花报春黄甙(干燥后用来生产绿茶和黑茶)的叶子,松树皮和成熟和葡萄籽是各种黄酮类化合物的最好来源。 3.药理活性: a.心血管系统活性。不少治疗冠心病有效的中成药均含黄酮类化合物。研究发现黄酮类化合物不仅有明显的扩冠作用,对缺血性脑损伤有保护作用,对心肌缺血性损伤有保护作用,对心肌缺氧性损伤有明显保护作用,还有有抗心率失常作用。

糖和苷类化合物

第三章糖和苷类化合物 一、名词解释: 1.配糖体 2.苷原 3.苷键、苷原子 4.氧苷 二、填空题: 1.多糖是一类由()以上的单糖键聚合而成的化合物。 2.苷类是()与另一非糖物质通过()连接而成的一类化合物,苷中的非糖部分称为()。 3.苷中的苷元与糖之间的化学键称为(),苷元上形成苷键以连接糖的原子,称为()。 4.苷元通过氧原子和糖相连接而成的苷称为(),根据形成苷键的苷元羟基类型不同,又分为()、()、()和()等。 5.苷类的溶解性与苷元和糖的结构均有关系。一般而言,苷元是()物质而糖是()物质,所以,苷类分子的极性、亲水性随糖基数目的增加而()。 6.由于一般的苷键属缩醛结构,对稀碱较稳定,不易被碱催化水解。但()、()、()和()的苷类易为碱催化水解。 7.麦芽糖酶只能使()水解;苦杏仁酶主要水解()。 8.确定苷键构型的方法主要有三种:()、()和()。 三、单选题: 1.能用碱催化水解的苷是() A.醇苷 B.碳苷 C.酚苷 D.氮苷 2.用酸水解时,最难水解的苷是() A.芦荟苷 B.水杨苷 C.苦杏仁苷 D.藏红花苦苷 3.下列有关苷类理化性质的叙述中,正确的是() A. 多具还原性 B.多无旋光性 C. 有一定亲水性 D.具有挥发性 4.对水溶解度小,且难于断裂的苷键是()

A.氧苷 B.硫苷 C.氮苷 D.碳苷 5.能确定苷键构型的是() A.酶解 B.乙酰解 C.碱解 D.酸解 四、简答题: 1.Smith裂解反应的反应式。 2.苷键具有什么性质,常用哪些方法裂解?苷类的酸催化水解与哪些因素有关?水解难易有什么规律? 3.苷键的酶催化水解有什么特点? 4.如何用斐林试剂反应鉴定多糖或苷? 答案: 一、名词解释: 1.苷类是糖或糖的衍生物与另一非糖物质通过糖的端基碳原子连接而成的一类化合物,又称为配糖体。 2. 苷中的非糖部分称为苷元(genin)或配基(aglycone)。 3. 苷中的苷元与糖之间的化学键称为苷键。苷元上形成苷键以连接糖的原子,称为苷键原子,也称为苷原子。 4. 苷元通过氧原子和糖相连接而成的苷称为氧苷。 二、填空题: 1. 2或2个以上。 2.糖,苷键,苷元。 3.苷键,苷原子。 4.氧苷,醇苷、酚苷、酯苷、氰苷。 5.亲脂性,亲水性,增强。 6.酯苷、酚苷、烯醇苷、β位吸电子基团。 7.α-葡萄糖苷;β-葡萄糖苷。 8.利用酶水解进行测定,利用Klyne经验公式进行计算,利用NMR确定苷键构型。

苷类化合物

第三章苷类化合物 课次:8、9 课题:第三章苷类 一、目的要求: 1.说出苷的含义和结构特点、结构分类。 2.简述苷类的一般理化性状。 3.详述苷的水解作用及其水解前后结构、性质的变化规律。 4.简述苷和苷元的提取原理和提取方法。 5.详述氰苷结构、水解产物的结构特点及与药效、毒性的关系。 6.了解氰苷、硫苷、吲哚苷类中药的研究情况。 二、内容摘要: 1.苷的含义、结构和分类。 2.苷的理化性质:一般形态、溶解性、旋光性、水解性、苷的非特征检识等。3.苷类的一般提取方法。 4.氰苷、硫苷、吲哚苷的结构、性质和检识方法。 5.苦杏仁苷。 三、重点: 1.苷的含义、结构和分类。 2.苷的水解作用及其水解前后结构、性质的变化规律。 3.苷类的一般提取方法。 四、难点:

1.苷的水解作用及水解前后物质结构、溶液性质的变化规律。 2.氰苷、硫苷、吲哚苷的结构性质。 五、育人目标: 通过典型氰苷-苦杏仁苷的结构、性质的学习,进一步认识毒性和药性的辩证关系及其在中药炮制和临床应用中的意义。 六、教学内容分析及教法设计: (一)教学过程: 组织教学:检查学生出勤,填写教学日志,随机应变,组织好课堂纪律。 课程引入:以甜叶菊苷为例,说明苷在植物体中的广泛存在,再以苦杏仁为例,说明苷的水解与药物炮制的关系。引出学习苷类的重要性。 展示目标:略 进行新课: 第三章苷类 苷类,又称配糖体。是糖或糖的衍生物如氨基糖、糖醛酸等与另一类非糖物质通过糖的端基碳原子连接而成的化合物。其中非糖部分称为苷元或配基,其连接的键则称为苷键。1.单糖苷: 由于单糖有α及β两种端基异构体。因此形成的苷也有α-苷和β-苷之分。在天然的苷类中,由D型糖衍生而成的苷;多为β-苷(例如β-D-葡萄糖苷),而由L型糖衍生的苷,多为α-苷(例如α-L-鼠李糖苷),但必须注意β-D-糖苷与a-L-糖苷的端基碳原子的绝对构型是相同的,例如:β-D-葡萄糖苷α-L-鼠李糖苷苷中与苷元连接的单糖最常见的有D一葡萄糖,此外,还有D-芹糖、L-阿拉伯糖、D-木糖、D-核糖、D-鸡纳糖、L-鼠李糖、D-夫糖、D-甘露糖、D-半乳糖、D-果糖、D-葡萄糖醛酸及D-半乳糖醛酸。

相关主题
文本预览
相关文档 最新文档