当前位置:文档之家› 2017考研数学:高数证明题必考的6大题型

2017考研数学:高数证明题必考的6大题型

2017考研数学:高数证明题必考的6大题型

中公教育东莞分校

2017考研数学:高数证明题必考的6大题型

一、数列极限的证明

数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

二、微分中值定理的相关证明

微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:

1. 零点定理和介质定理;

2. 微分中值定理;

包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3. 微分中值定理

积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

三、方程根的问题

包括方程根唯一和方程根的个数的讨论。

四、不等式的证明

五、定积分等式和不等式的证明

主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。

六、积分与路径无关的五个等价条件

这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

1

2020考研数学复习:高数常见题型分析

2020考研数学复习:高数常见题型分析 2020考研数学复习:高数常见题型分析 1、求极限 无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。 区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时 需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性 的研究等也需要使用极限手段达到目的,须引起注意! 2、利用中值定理证明等式或不等式 利用中值定理证明等式或不等式,利用函数单调性证明不等式证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。 等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中 值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的一个难点,但考查的概率不大。 3、求导 一元函数求导数,多元函数求偏导数求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。 一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基 本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能 是隐函数(包括方程组确定的隐函数)。另外,二元函数的极值与条

件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。 4、级数 级数问题常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形 式出现。 函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考 查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在 一点的幂级数展开在考试中常占有较高的分值。 4、积分的计算 积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面 积分的计算。 这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的 灵活处理,例如定积分几何意义的使用,重心、形心公式的使用, 对称性的使用等。 6、微分方程解常微分方程 微分方程解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住 常用形式,注意运算准确性,在考场上正确运算都没有问题。 但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。 这需要大家对方程与其通解、特解之间的关系熟练掌握。

高等数学证明方法

(3)反证法 这种证法是从反面考虑问题。先假设在已知条件成立的情况下,要证的结论不成立,而后从已知条件出发,运用基本概念和基本定理,通过逻辑推理导出矛盾(或与已知条件矛盾;或与某一已知概念、公式、公理、定理等矛盾;或自相矛盾等),这样则否定假设,从而肯定原结论正确。 例如,证明不是的多项式. 事实上,利用反证法,设是的多项式,不妨记此多项式为次多项式,即,则有 于是次多项式有无穷多个不同实根,这与次多项式最多只有个不同实根相矛盾,由此证明了不是的多项式. 又如,证明不存在(为自然数). 事实上,利用反证法,假设存在且设,则有 又因为 所以有 故 这与产生矛盾,因此不存在. (2)分析法 这种方法基本思路是逆着想。先假设结论正确,运用已有的定义、定理、公式、性质,从后向前一步一步地分析,直至推出已知条件,即由结论找需知,再找需知,……,直至已知。这种“执果溯因”的方法,叫做分析法。 分析法是探求证题途径的重要方法之一。它的优点在于思考过程比较自然,目的明确,较为容易找到证明的思路,但缺点是分析的过程叙述起来往往比较繁琐,因而过程多在草稿纸上进行,不正式写出。在实际解题时,特别对于一些较难的问题,常常先用分析法寻找解题的途径,然后再用综合法叙述解题过程,这种方法也可叫做分析综合法。 例如,设在时连续,且;而在时有单调递增导数,试证在时是单调递增的。 事实上,欲证为单调递增,只需证明就行了,而由于 因此就归结为证明. 利用拉格朗日中值定理及已知条件,有 单调递增 因此在时是单调递增的. 又如,用极限定义证明一数列或函数有已知极限时,多采用分析综合法证明。比如证明,其方法如下: ,欲使不等式成立, 由 所以只需,即成立. 取,于是当时,就有,从而保证了希望的不等式成立. 综合以上分析,就有 ,当时,,根据极限定义,有

跨考教育考研数学高数第一章常考题型分析七

考研数学高数第一章常考题型七:函数的连续性 69.【01—3 3分】设函数()()0 x g x f u du =?, 其中()()()211,01211,123x x f x x x ?+≤≤??=??-≤≤??,则()g x 在区间()0,2内( ) ()A 无界 ()B 递减 ()C 不连续 ()D 连续 70.【06—2 4分】设函数23 01sin 0(),0x t dt x f x x a x ?≠?=??=?? 在0x =处连续,则a = 71.【08—3 4分】设函数21,()2,x x c f x x c x ?+≤?=?>?? 在(,)-∞+∞内连续,则c = . 72. 【03—3 4分】 设,0,0, 0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在0x =处连续,则λ的取值范围是________。 73.【04—2 4分】设2(1)()lim 1 n n x f x nx →∞-=+, 则()f x 的间断点为x = 74.【03—3 10分】设).1,2 1[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义(1)f 使得()f x 在]1,21[上连续. 【小结】: 考查函数的连续性本质上也就是考查求极限。函数()f x 在x a =处连续当且仅当li m ()()x a f x f a →=;由于lim ()x a f x →存在当且仅当(0),(0)f a f a -+存在且相等,因此该等式又可以等价地表述为(0)(0)()f a f a f a -=+=。 参考答案 69.【01—3 3分】()D

研究考研数学典型例题

研究考研数学典型例题 数学科目重视做题和理论应用,尤其是典型的题型,大家要研究好,且要灵活的运用,下面查字典数学网小编分享关于研究和用好典型例题的事儿,请小伙伴们注意啦。 一、面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。 做题的过程中,必须考虑为什么要用这几个原理,而不用那几个原理,为什么要这样对这个式子进行化简,而不那样化简。做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法……就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。 二、学习数学,重在做题,熟能生巧。 对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。此外,还要初步进行解答综合题的训练。数学考研题的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。这也有利于进一步理解并彻底

弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。 三、同时要善于思考,归纳解题思路与方法。 一个题目有条件,有结论,当你看见条件和结论想起了什么?这就是思路。思路有些许偏差,解题过程便千差万别。考研数学复习光靠做题也是不够的,更重要的是应该通过做题,归纳总结出一些解题的方法和技巧。考生要在做题时巩固基础,在更高层次上把握和运用知识点。对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。 基础的重要性已不言而喻,但是只注重基础,也是不行的。太注重基础,就会拘泥于书本,难以适应考研试题。打好基础的目的就是为了提高。但太重提高就会基础不牢,导致头重脚轻,力不从心。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,在一个时期的某一个阶段以基础为主,基础扎实了,再行提高。然后又进入了另一个阶段,同样还要先扎实基础再提高水平,如此反复循环。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再 有所进步,甚至感到越学越退步,碰到这种情况,考生千万

考研数学常规题型和陌生题型解答方法

考研数学常规题型和陌生题型解答方法 考研数学不仅要熟练掌握常规题型,面对陌生题型也要沉着应对,使用一些小技巧和方法化解。小编为大家精心准备了考研数学常规题型及陌生题型解答秘诀,欢迎大家前来阅读。 考研数学常规题型及陌生题型解答技巧 一、考研数学常规题型 ?1.选择题 对于选择题来说,大家还是有很多方法可选的,常用的方法有:代入法、排除法、图示法、逆推法、反例法等。如果考试的时候大家发现哪种方法都不奏效的话,大家还可以选择猜测法,至少有25%的正确性。选择题属于客观题,答案是 唯一的,并且考研数学考试中的多选题也是以单选的形式出现的,最终的答案只有一个,评分是不偏不倚的。 选择题的难度一般都是适中的,均为中等难度,没有特别难的,也没有一眼就能看出选项的题目。选择题主要考查的是考生对基本的数学概念、性质的理解,要求考生能进行简单的推理、判断、计算和比较即可。所以选择题对于考生来说,要么依靠扎实的知识得分,要么靠自身的运气得分,这32分

要想稳拿需要考生在复习的时候深入思考,不能主观臆想,要思考与动手相结合才行。 ?2.填空题 填空题的答案也是唯一的,做题的时候给出最后的结果就行,不需要推导过程,同样也是答对得满分,答错或者不答得0分,不倒扣分。这一部分的题目一般是需要一定技巧的计算,但不会有太复杂的计算题。题目的难度与选择题不相上下,也是适中。填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三基本:基本概念、基本原理、基本方法以及一些基本的性质。做这24分的题目时 需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。 ?3.解答题 解答题的分值较多,占总分的60%多,类型也较复杂,有计算题、证明题、实际应用题等,并且一般情况下每道大题都会有多种解题方法或者证明思路,有的甚至有初等解法,得分率不容易控制,所以考试在做解答题是尽量用与《考试大纲》中规定的考试内容和考试目标相一致的解题方法和证明方法,每一步的表述要清楚,每题的分值与完成该题所花费的时间以及考核目标是有关系的。综合性较强、推理过程较多、或者应用性的题目,分值较高;基本的计算题、常规性试题和简单的 应用题分值较低。

高等数学练习题(附答案)

《高等数学》 专业 年级 学号 姓名 一、判断题. 将√或×填入相应的括号内.(每题2分,共20分) ( )1. 收敛的数列必有界. ( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数. ( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导. ( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线. ( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微. ( )9. 微分方程的含有任意常数的解是该微分方程的通解. ( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则 )0(f 为)(x f 的一个极小值. 二、填空题.(每题2分,共20分) 1. 设2 )1(x x f =-,则=+)1(x f . 2. 若1 212)(11+-= x x x f ,则=+→0 lim x . 3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则 =')3(g . 4. 设y x xy u + =, 则=du .

5. 曲线3 26y y x -=在)2,2(-点切线的斜率为 . 6. 设)(x f 为可导函数,)()1()(,1)1(2 x f x f x F f +==',则=')1(F . 7. 若 ),1(2)(0 2x x dt t x f +=? 则=)2(f . 8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分 =-+∞? dx e x 20 . 10. 设D 为圆形区域=+≤+??dxdy x y y x D 5 2 2 1, 1 . 三、计算题(每题5分,共40分) 1. 计算)) 2(1 )1(11(lim 222n n n n ++++∞→Λ. 2. 求10 3 2 )10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数. 3. 求不定积分 dx x x ? -) 1(1. 4. 计算定积分 dx x x ? -π 53sin sin . 5. 求函数2 2 3 24),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y == ,围成,计算dxdy y y D ?? sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积. 8. 求微分方程y x y y 2- ='的通解. 四、证明题(每题10分,共20分) 1. 证明:tan arc x = )(+∞<<-∞x .

考研题型经典总结高数部分

2011考研必备:超经典的考研数学考点与题型归类分析总结 1高数部分 1.1 高数第一章《函数、极限、连续》 1.2 求极限题最常用的解题方向:1.利用等价无穷小; 2.利用洛必达法则,对于 00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞ 1型的题目则是先转化为 00型或∞ ∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim 0=→x x x 、e x x x =+→1 )1(lim 、 e x x x =+∞ →)1(1lim ;4.夹逼定理。 1.3 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》 第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积 分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。 对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分 ?+=C x F dx x f )()(中的积分常数C 容易 被忽略,而考试时如果在答案中少写这个C 会失一分。所以可以这样建立起二者之间的联系以加深印象:定积分?dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就 是 ?+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。 第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于 ? -a a dx x f )(型定积分,若 f(x)是奇函数则有 ? -a a dx x f )(=0;若f(x)为偶函数则有?-a a dx x f )(=2?a dx x f 0)(;对于?2 )(πdx x f 型 积分,f(x)一般含三角函数,此时用x t -= 2 π 的代换是常用方法。所以解这一部分题的 思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量

高等数学证明题

1. 证明:函数)4)(3)(2()(---=x x x x f 在区间)4,2(内至少存在一点ξ,使0)(=''ξf 。 证明: )(x f 在]3,2[上连续,在)3,2(内可导,且0)3()2(==f f ,由罗尔定理,至少存在一 点)3,2(1∈ξ,使0)(1='ξf ,同理,至少存在一点)4,3(2∈ξ,使得0)(2='ξf ;)(x f '在 ],[21ξξ上连续,在),(21ξξ内可导,再一次运用罗尔定理,至少存在一点)4,2(),(21?∈ξξξ, 使得 0)(=''ξf 。 2. 设f 为[,]a b 上的二阶可导函数,()()0f a f b ==, 并存在一点(,)c a b ∈,使得()0f c >. 证 明至少存在一点(,)a b ξ∈,使得''()0f ξ>. (10分) 证明:考虑区间[,]a c ,则 f 在[,]a c 满足Lagrange 中值定理的条件,则存在1(,)a c ξ∈,使得 1()() '()0f c f a f c a ξ-= >-. (3分) 同理可证存在2(,)c b ξ∈, 使得 2()() '()0f b f c f b c ξ-= <-. (5分) 再考虑区间12[,]ξξ, 由条件可知导函数'()f x 在12[,]ξξ上满足 Lagrange 中值定理的条件,则存在 12(,)ξξξ∈, 使得 2121 ()() ''()0f f f ξξξξξ-= >-. 得证. 3. 设)(x f 在],[b a 上连续,在),(b a 上可导,且 0)(≤'x f ?-= x a dt t f a x x F )(1)( 证明在],[b a 内有0)(≤'x F 证明在],[b a 内有0) (≤'x F ])()()[() (1 )(2?---= 'x a dt t f x f a x a x x F (2分) = )]()()()[()(1 2 ξf a x x f a x a x ---- ]),[],[(b a x a ?∈ξ(2分) = )(ηξ f a x x '-- ]),[),((b a x ?∈ξη 0)(≤'∴x F (2分) 4. 证明:当0>x 时,x x x arctan )1ln( )1(>++

跨考教育考研数学高数第一章常考题型分析二

考研数学高数常考题型二:极限的基本性质 3.【12—2 4分】设0,(1,2,...)n a n >=,1...n n s a a =++,则数列{}n s 有界是数列{}n a 收敛的( ) ()A 充分必要条件. ()B 充分非必要条件. ()C 必要非充分条件. ()D 即非充分地非必要条件. 4.【08—12 4分】设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( ) ()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛. ()D 若{}()n f x 单调,则{}n x 收敛. 5.【03—12 4分】设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a , 1lim =∞→n n b ,∞=∞→n n c lim ,则必有( ) ()A n n b a <对任意n 成立. ()B n n c b <对任意n 成立. ()C 极限n n n c a ∞→lim 不存在. ()D 极限n n n c b ∞ →lim 不存在. 【小结】: 参考答案: 3. 极限的四则运算法则的进一步深化: 1)乘法:00,(0)c c c ?=?∞=∞≠ 2)加法:,c +∞=∞收敛+发散=发散 3)除法:00,,(0),00c c c c c ∞==∞=∞≠=∞ 参考答案 1.【92—2 3分】()D 2.【01—2 3分】()B 3.【12—2 4分】()B 4.【08—12 4分】()B

高等数学证明题练习一

高等数学证明题练习一 高等数学证明题练习一 1. 设lim n →∞x n =a >0, 利用极限定义证明lim n →∞x n +1/x n =1. 2. 设函数f (x ) 在x =a 处连续,且lim x →a f (x ) /(x ?a ) =A, 证明:f (x ) 在点x =a 处可导. 3. 设函数f (x ) 在区间[a, b ]上积分,且F (x ) = (a)函数F (x ) 为连续函数; (b)当f (x ) 在点x 处连续时,F (x ) 在点x 处必定可导,且F ′(x ) = f (x ) . 4. 设F (x, y ) =f (y ?x ) /(2x ) 及F (1, y ) =y 2/2?y + 5. 设x 0>0, x n =F (x n ?1, 2x n ?1) , n =1, 2, ···. 证明: (a)对任意k, 有lim y →0x →0y =kx →0∫x 0f (t ) d t. 证明:f (x, y ) =0; (b)lim x →0f (x, y ) =0. 5. (a)设f (x, y ) 是区域D :x 2+y 2≤t 2上的连续函数. 证明 ∫∫1lim f (x, y ) d x d y =f (0, 0) ; t →0+πt2D (b)设f (x, y ) 是定义在区域D :0≤x ≤1, 0≤y ≤1上的二元函数, f (0, 0) =0, 且在点(0, 0) 处f (x, y ) 可微分. 证明 ∫x 2∫√d t x f (t, u ) d u ?f 0 (0, 0) ; lim +=?x 2?x →0?y1?e (c)设函数f (x, y ) 在单位圆域上有连续的偏导数,且在边界上的值 恒为零. 证明 ?1lim ε→0+2π∫∫D ′′xf x +yf y d x d y =f (0, 0) , x 2+y 2 1

高等数学极限习题100道

设,求证:.lim ()lim ()x x x x f x A f x A →→==00 求极限lim sin sin x x x x →021 []求极限lim cosln()cosln x x x →+∞ +-1 求极限.lim sin x x x →+011 求极限.lim arctan x x x x →∞+2112 求极限lim ()x x x e →∞+11 求极限limarctan arcsin x x x →∞?1 求极限.lim x x x →-+0121 22 )sin 1(sin lim n n n -+∞→求数列的极限 []A x f A u f u x u x x x u u x x =?=≠?=?→→→)(lim )(lim )()(lim 0 00试证:,又,且设 设试确定实数,之值,使得:当时,为无穷小; 当时,为无穷大。 f x x x a b x a f x x b f x ()ln ()()= -→→1 设,问:当趋于何值时,为无穷小。f x x x x f x ()tan ()=2 . 该邻域内 的某去心邻域,使得在证明:存在点,且,若)()()(lim )(lim 00 x f x g x A B B x g A x f x x x x >>==→→ 设,试证明: 对任意给定的,必存在正数,使得对适含不等式;的一切、,都有成立。 lim ()()()x x f x A x x x x x x f x f x →=><-<<-<-<0 00010201221εδδδε .,试用极限定义证明:已知:A x f A x f x x x x =>=→→)(lim 0)(lim 0 {}{}{}是否也必发散?同发散,试问数列与若数列n n n n y x y x + 求的表达式f x x x x n n n ()lim =-+→∞+2121

考研数学篇:典型题型归纳总结

考研数学篇:典型题型归纳总结 近年来考研数学试题难度比较大,平均分比较低,而高等数学又是考研数学地重中之重,如何备考高等数学已经成为广大考生普遍关心地重要问题,要特别注意以下三个方面. 第一,按照大纲对数学基本概念、基本方法、基本定理准确把握(也即三基地重要性务必引起重视).数学是一门逻辑学科,靠侥幸押题是行不通地.只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题地突破口和切入点.分析近几年考生地数学答卷可以发现,考生失分地一个重要原因就是对基本概念、定理理解不准确,数学中最基本地方法掌握不好,给解题带来思维上地困难.资料个人收集整理,勿做商业用途 第二,要加强解综合性试题和应用题能力地训练,力求在解题思路上有所突破.在解综合题时,迅速地找到解题地切入点是关键一步,为此需要熟悉规范地解题思路,考生应能够看出面前地题目与他曾经见到过地题目地内在联系.为此必须在复习备考时对所学知识进行重组,搞清有关知识地纵向与横向联系,转化为自己真正掌握地东西.解应用题地一般步骤都是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其化为某数学问题求解.建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等.资料个人收集整理,勿做商业用途 第三,重视历年试题地强化训练.统计表明,每年地研究生入学考试高等数学内容较之前几年都有较大地重复率,近年试题与往年考题雷同地占左右,这些考题或者改变某一数字,或改变一种说法,但解题地思路和所用到地知识点几乎一样.通过对考研地试题类型、特点、思路进行系统地归纳总结,并做一定数量习题,有意识地重点解决解题思路问题.对于那些具有很强地典型性、灵活性、启发性和综合性地题,要特别注重解题思路和技巧地培养.尽管试题千变万化,其知识结构基本相同,题型相对固定.提练题型地目地,是为了提高解题地针对性,形成思维定势,进而提高考生解题地速度和准确性.资料个人收集整理,勿做商业用途 下面以数学一为主总结一下高数各部分常见题型. 一、函数、极限与连续 求分段函数地复合函数;求极限或已知极限确定原式中地常数;讨论函数地连续性,判断间断点地类型;无穷小阶地比较;讨论连续函数在给定区间上零点地个数,或确定方程在给定区间上有无实根.资料个人收集整理,勿做商业用途 二、一元函数微分学 求给定函数地导数与微分(包括高阶导数),隐函数和由参数方程所确定地函数求导,特别是分段函数和带有绝对值地函数可导性地讨论;利用洛比达法则求不定式极限;讨论函数极值,方程地根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足......”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面地最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线. 资料个人收集整理,勿做商业用途 三、一元函数积分学 计算题:计算不定积分、定积分及广义积分;关于变上限积分地题:如求导、求极限等;有关积分中值定理和积分性质地证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题.(注;高数中解答题地最后一步往往是求解一个积分,故积分地各种求解方法务必熟练再熟练!)资料个人收集整理,勿做商业用途 四、向量代数和空间解析几何 计算题:求向量地数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间

高等数学_证明题(提纲)

复习提纲(证明题) 一、极限存在准则 1. 准则I (夹逼准则):如果数列n n y x ,及n z 满足下列条件: (1)),3,2,1( =≤≤n z x y n n n ; (2),lim , lim a z a y n n n n ==∞ →∞→ 那末数列n x 的极限存在, 且.lim a x n n =∞→ 思路提示: 1)利用夹逼准则求极限,关键是构造出n y 与n z , 并且n y 与n z 的极限相同且容易求. 2)一般通过放大或缩小分母来找出两边数列的通项(右边取分母最小,左边取分母最大) 例题1 证明222111 lim ()112n n n n n n →∞ ?+++=+++ 解:因为22 22222111()121 n n n n n n n n n n ≤?+++≤+++++ , 而22 22lim lim 11n n n n n n n →∞→∞==∴++222111lim ()112n n n n n n →∞?+++=+++ 。 ---------------------------------------------------------------------------------------------------------------------- 例题2 计算.1 21 1 1 lim 2 22???? ?? ++ ++++∞→n n n n n ??≤++≤ , 而1n n ==, 所以lim 1n →∞ ?? = 。 ----------------------------------------------------------------------------------------------------------------------

考研数学基础6大必考题型

高数在考研数学真题中,占很大比重,我们在复习高数时,要有所侧重点,下面是历年考研数学试题中六个必考题型,希望考生们多加注意,重点复习。 第一:求极限。 无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因子、重要极限等中的几种方法,有时考生需要选择其中简单易行的组合完成题目。另外,分段函数个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意! 第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式。 证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个微分中值定理,1个积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用是一个难点,但考查的概率不大。 第三:一元函数求导数,多元函数求偏导数。 求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。 另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。 第四:级数问题。 常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。 第五:积分的计算。 积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数学考生来说常主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想像能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的反用,对称性的使用等。 第六:微分方程问题。 解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。

考研数学:易出证明题的知识点总结

2018考研数学:易出证明题的知识点总结要命的考研数学每年都会难倒一大批考研党,各位2018考研党可得在数学上多下功夫了。今天文都网校考研频道整理了一下容易出证明题的知识点与小伙伴儿们分享,希望对大家有所帮助。 考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下: 一、数列极限的证明 数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。 二、微分中值定理的相关证明 微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理: 1.零点定理和介质定理; 2.微分中值定理; 包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。 3.微分中值定理 积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。 三、方程根的问题 包括方程根唯一和方程根的个数的讨论。 四、不等式的证明 五、定积分等式和不等式的证明 主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。 六、积分与路径无关的五个等价条件 这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。 以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。 2018考研学子想要了解更多考研资讯、复习资料与备考经验,可以搜索文都网校进入考研频道,查看2018考研辅导课程,咨询专业老师考研相关内容。 考研不是你一个人在战斗,漫漫考研路上,文都网校考研老师会一直陪伴在同学们左右。祝2018考研学子备考顺利,考研成功!

高等数学上册证明题

高等数学上册证明题 一、设函数)(x f 在]1,0[上连续,并且对于]1,0[上的任意x 所对应的函数值)(x f 均有1)(0x f ,证明]1,0[上至少有一点 ,使得)(f 。二、证明方程0155x x 在)0,1(内有唯一实根。 三、设函数f x 在0,1上连续,在0,1内可导,且0 10f f ,证明:存在0,1,使得0f f 。 四、设)(x f 在区间]1,0[上可微,且满足条件2 1 0)(2)1(dx x xf f , 试证:存在)1,0(,使得0)()(f f . 五、设)(x f 在1,0上连续,在)1,0(内可导且0)0()1(f f ,121 f , 证明在)1,0(存在一点,使1)(f 。 六、1、证明2020sin cos cos cos sin sin dx x x x dx x x x , 2、由此计算20cos sin sin dx x x x 。 七、设)(x f 在[0,1]上连续且单调减少,证明:当10时,有 1)()(o o dx x f dx x f 成立。 七题参考答案:设)(x f 在[0,1]上连续且单调减少,证明:当10时,有 1 )()(o o dx x f dx x f 成立。

)6(0)]()()[1(0 1,0).()(.10)] ()()[1() 4()()1()()1()()()1() 2()()()()()(1212121212101 1 001即原不等式成立因此又有)单调减少,(因证f f f f x f f f f f dx x f dx x f dx x f dx x f dx x f dx x f dx x f o o :)6()1,0(0)0()(,0)(,0)1()(,0)(,10)4(. 10),()()()()(0)1()0(,)()()(21 1 原不等式成立时,即当当当]上连续单调减少, )在[(因设证F F F F F F ,x f f f dx x f f F F F dx x f dx x f F o o o :

20XX考研数学线代典型题型分析.doc

试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算。 矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程

组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

(完整版)高等数学-微分方程证明题

高等数学 一、证明题(共 52 小题,) 1、验证32 213 1 t t C C x ++=是方程tx x t ''-'=2 的通解。 2、证明:由参数方程x t t y t t C =+=+++? ??????31321413 3 32()所确定的函数y y x C =(,)是方程 x y xy 3330+'-'=的通解。 3、证明:()x C y C ++=22 2 1(C C 12,为任意常数)是方程102 +''+'=yy y 的通解。 4、证明:y e x x =-2333212sin 是初值问题??? ????===++==1d d ,00d d d d 0022x x x y y y x y x y 的解。 5、证明:方程'+=y ky kq x ()的通解是y e C k q u e u kx ku x =+?? ???-?()d 0 ,其中 C 为任意常数。 6、验证:x x y y C 4224 2++=(C 为任意常数)是方程()d x xy x 32+++=()d x y y y 230的通解。 7、验证:y x e x x C x =+?? ? ? ??d 是微分方程xy y xe x '-=的通解。 8、验证x t t =-223(sin sin )是初值问题 d d sin d d 2200410302 x t x t x x t t t +===-?? ??? ??==的解。 9、验证x y C x C y C 22 123220++++=(C C C 123,,为任意常数)是微分方程 '''+'-'''=y y y y [()]()13022的解,并指出是否是通解。 10、验证y e t =+-321212是初值问题d d y t ty t y t +==??? ??=22 1的解。

考研高数证明题的解题方法

分析法,综合法,反证法,都是欧氏分析方法。欧氏分析方法起自于欧氏几何,早在公元前400年左右即为人类总结运用。 构造法是微积分学,代数学自身的方法。 分析法——尽可能由已知条件挖掘信息,并以此为起点作逻辑推理。 一元微积分讲究条件分析。要用分析法,就需要对各个概念理解准确,强弱分明;推理有序,因果清晰。为了弥补非数学专业学生的“短板”,我建议大家把考研题目中出现頻率较高的典型条件,预先推个滚瓜烂熟。比如已知条件“f(x)连续,且x趋于0时,lim(f(x)/x) = 1”的推理。 (见讲座(9)基本推理先记熟。) 已知条件“f(x)在点x0可导,且f ′(x0) > 0 ” 的推理。 (这是阐述“一点可导且导数大于0与一段可导且导数大0的差别;证明洛尔定理(费尔玛引理),达布定理,……,等的关键。 见讲座(11)洛尔定理做游戏;讲座(17)论证不能凭感觉。) 已知条件“非零矩阵AB = 0”的推理。 (见讲座(42)矩阵乘法很惬意。) 已知“含参的三阶方阵A能与对角阵相似,且A有二重特征值。计算参数。”的推理。 (见讲座(48)中心定理路简明。) “已知连续型随机变量X的分布函数或随机向量(X,Y)的密度函数,求函数型随机变量U = φ (x) 或U =φ(x ,y) ”的推理计算 (见讲座(78)分布函数是核心。) 一个娴熟的推导就是一条高速路啊。你非常熟练了吗?! 综合法——由题目要证明的结论出发,反向逻辑推理,观察我们究竟需要做什么。 最典型的范例是考研数学题目“证明有点ξ,满足某个含有函数及其导数的关系式”。 例设函数f (x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f (0) = 0,则区间(0,1)内至少有一点ξ ,使得 f (ξ) f′(1―ξ) = f′(ξ) f(1―ξ) 分析(综合法)即要证明 f (ξ) f′(1―ξ) ― f[b′(ξ) f(1―ξ) = 0 点ξ是运用某个定理而得到的客观存在。用x替换ξ,就得到刚运用了定理,还没有把点ξ代入前的表达式。即 f (x) f′(1―x) ― f′(x) f(1―x) = 0 (在点x =ξ 成立) 联想到积函数求导公式,即(f (x) f(1―x))′= 0 (在点x =ξ 成立) 这就表明应该作辅助函数F (x) = f (x),证明其导数在(0,1)内至少有一零点。 易知F (0) = F (1) = 0,且F (x)在[a, b] 连续,在(a, b)内可导,可以应用洛尔定理证得本题结论。 当然,题型多种多样,但这总是一条基本思路。如果关系式中有高阶导数,那要考虑试用泰勒公式。 反证法——……。 这是大家都较为熟悉的方法。但是你也许没有注意到,用反证法简单可证的一个小结论,在微积分中有着很广的应用。粗糙地说,这就是 “A极限存在(或连续,或可导)+ B极限不存在(或不连续,或连续不可导)= ?” 随便选一说法用反证法,比如 如果,“连续A + 不连续B = 连续C” 则“ 连续C-连续A = 不连续B” 这与定理矛盾。所以有结论:连续函数与不连续函数的和一定不连续。不过要注意,证明是在“同一个点”进行的。

相关主题
文本预览
相关文档 最新文档