当前位置:文档之家› 高等数学证明题练习一

高等数学证明题练习一

高等数学证明题练习一
高等数学证明题练习一

高等数学证明题练习一

高等数学证明题练习一

1. 设lim n →∞x n =a >0, 利用极限定义证明lim n →∞x n +1/x n =1.

2. 设函数f (x ) 在x =a 处连续,且lim x →a f (x ) /(x ?a ) =A, 证明:f (x ) 在点x =a 处可导.

3. 设函数f (x ) 在区间[a, b ]上积分,且F (x ) =

(a)函数F (x ) 为连续函数;

(b)当f (x ) 在点x 处连续时,F (x ) 在点x 处必定可导,且F ′(x ) =

f (x ) .

4. 设F (x, y ) =f (y ?x ) /(2x ) 及F (1, y ) =y 2/2?y +

5. 设x

0>0, x n =F (x n ?1, 2x n ?1) , n =1, 2, ···. 证明:

(a)对任意k, 有lim

y →0x →0y =kx →0∫x 0f (t ) d t. 证明:f (x, y ) =0; (b)lim x →0f (x, y ) =0.

5. (a)设f (x, y ) 是区域D :x 2+y 2≤t 2上的连续函数. 证明

∫∫1lim f (x, y ) d x d y =f (0, 0) ; t →0+πt2D

(b)设f (x, y ) 是定义在区域D :0≤x ≤1, 0≤y ≤1上的二元函数,

f (0, 0) =0, 且在点(0, 0) 处f (x, y ) 可微分. 证明

∫x 2∫√d t x f (t, u ) d u ?f 0 (0, 0) ; lim +=?x 2?x →0?y1?e (c)设函数f (x, y ) 在单位圆域上有连续的偏导数,且在边界上的值

恒为零. 证明

?1lim ε→0+2π∫∫D ′′xf x +yf y d x d y =f (0, 0) , x 2+y

2

1

高等数学证明方法

(3)反证法 这种证法是从反面考虑问题。先假设在已知条件成立的情况下,要证的结论不成立,而后从已知条件出发,运用基本概念和基本定理,通过逻辑推理导出矛盾(或与已知条件矛盾;或与某一已知概念、公式、公理、定理等矛盾;或自相矛盾等),这样则否定假设,从而肯定原结论正确。 例如,证明不是的多项式. 事实上,利用反证法,设是的多项式,不妨记此多项式为次多项式,即,则有 于是次多项式有无穷多个不同实根,这与次多项式最多只有个不同实根相矛盾,由此证明了不是的多项式. 又如,证明不存在(为自然数). 事实上,利用反证法,假设存在且设,则有 又因为 所以有 故 这与产生矛盾,因此不存在. (2)分析法 这种方法基本思路是逆着想。先假设结论正确,运用已有的定义、定理、公式、性质,从后向前一步一步地分析,直至推出已知条件,即由结论找需知,再找需知,……,直至已知。这种“执果溯因”的方法,叫做分析法。 分析法是探求证题途径的重要方法之一。它的优点在于思考过程比较自然,目的明确,较为容易找到证明的思路,但缺点是分析的过程叙述起来往往比较繁琐,因而过程多在草稿纸上进行,不正式写出。在实际解题时,特别对于一些较难的问题,常常先用分析法寻找解题的途径,然后再用综合法叙述解题过程,这种方法也可叫做分析综合法。 例如,设在时连续,且;而在时有单调递增导数,试证在时是单调递增的。 事实上,欲证为单调递增,只需证明就行了,而由于 因此就归结为证明. 利用拉格朗日中值定理及已知条件,有 单调递增 因此在时是单调递增的. 又如,用极限定义证明一数列或函数有已知极限时,多采用分析综合法证明。比如证明,其方法如下: ,欲使不等式成立, 由 所以只需,即成立. 取,于是当时,就有,从而保证了希望的不等式成立. 综合以上分析,就有 ,当时,,根据极限定义,有

2017考研:高数常考的四大定理证明

2017考研:高数常考的四大定理证明 一、求导公式的证明 2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 二、微分中值定理的证明 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。 费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。 闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同

最新高数期末考试题.

往届高等数学期终考题汇编 2009-01-12 一.解答下列各题(6*10分): 1.求极限)1ln(lim 1 x x e x ++ →. 2.设?? ? ??++++=22222ln a x x a a x x y ,求y d . 3.设?????-=-=3 232t t y t t x ,求22d d x y . 4.判定级数()()0!1 2≥-∑∞ =λλλn n n n n e 的敛散性. 5.求反常积分() ?-10 d 1arcsin x x x x . 6.求?x x x d arctan . 7.?-π 03d sin sin x x x . 8.将?????≤≤<=ππ πx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间. 9.求微分方程0d )4(d 2=-+y x x x y 的解. 10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积. 二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域. 三.(9分)在曲线()10sin 2≤≤=x x y 上取点() ()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线 ()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值. 四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间? 五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞ =-02n nx e x 在[),0+∞上一致收敛. (2)求幂级数()∑ ∞ =-----1 221 21212)1(n n n n x n 的收敛域及和函数. 六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()?''-+ ??? ??+-=b a f a b b a f a b dx x f ξ324 1 2

高等数学不等式的证明试题及答案

微积分中不等式的证明方法讨论 不等式的证明题经常出现在考研题中,虽然题目各种各样,但方法无非以下几种: 1.利用函数的单调性证明不等式 若在),(b a 上总有0)(>'x f ,则)(x f 在),(b a 单调增加;若在),(b a 上总有0)(<'x f ,则)(x f 在),(b a 单调减少。 注:考研题的难点是,构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对),(b a 进行分割,分别在小区间上讨论。 例1:证明:当0a b π<<<时, sin 2cos sin 2cos b b b b a a a a ππ++>++. 【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即 sin 2cos sin 2cos b b b b a a a a ππ++>++. 【评注】 证明数值不等式一般需构造辅助函数,辅助函数一般通过移项,使不等式一端为“0”,另一端即为所作辅助函数()f x ,然后求导验证()f x 的增减性,并求出区间端点的函数值(或极限值)。 例2:设2e b a e <<<, 证明)(4ln ln 2 22a b e a b ->-. 【分析】即证a e a b e b 2 222 4ln 4ln ->- 证明: 设x e x x 224ln )(-=?,则 24ln 2)(e x x x -='?, 2ln 12)(x x x -=''?, 所以当x>e 时,,0)(<''x ? 故)(x ?'单调减少,从而当2 e x e <<时,

大一高数同济版期末考试题(精) - 副本

高等数学上(1) 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(l i m . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++=2 2 221 n n n n n n π π ππ . 8. = -+? 2 12 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x

高等数学练习题(附答案)

《高等数学》 专业 年级 学号 姓名 一、判断题. 将√或×填入相应的括号内.(每题2分,共20分) ( )1. 收敛的数列必有界. ( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数. ( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导. ( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线. ( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微. ( )9. 微分方程的含有任意常数的解是该微分方程的通解. ( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则 )0(f 为)(x f 的一个极小值. 二、填空题.(每题2分,共20分) 1. 设2 )1(x x f =-,则=+)1(x f . 2. 若1 212)(11+-= x x x f ,则=+→0 lim x . 3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则 =')3(g . 4. 设y x xy u + =, 则=du .

5. 曲线3 26y y x -=在)2,2(-点切线的斜率为 . 6. 设)(x f 为可导函数,)()1()(,1)1(2 x f x f x F f +==',则=')1(F . 7. 若 ),1(2)(0 2x x dt t x f +=? 则=)2(f . 8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分 =-+∞? dx e x 20 . 10. 设D 为圆形区域=+≤+??dxdy x y y x D 5 2 2 1, 1 . 三、计算题(每题5分,共40分) 1. 计算)) 2(1 )1(11(lim 222n n n n ++++∞→Λ. 2. 求10 3 2 )10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数. 3. 求不定积分 dx x x ? -) 1(1. 4. 计算定积分 dx x x ? -π 53sin sin . 5. 求函数2 2 3 24),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y == ,围成,计算dxdy y y D ?? sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积. 8. 求微分方程y x y y 2- ='的通解. 四、证明题(每题10分,共20分) 1. 证明:tan arc x = )(+∞<<-∞x .

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

高等数学证明题

1. 证明:函数)4)(3)(2()(---=x x x x f 在区间)4,2(内至少存在一点ξ,使0)(=''ξf 。 证明: )(x f 在]3,2[上连续,在)3,2(内可导,且0)3()2(==f f ,由罗尔定理,至少存在一 点)3,2(1∈ξ,使0)(1='ξf ,同理,至少存在一点)4,3(2∈ξ,使得0)(2='ξf ;)(x f '在 ],[21ξξ上连续,在),(21ξξ内可导,再一次运用罗尔定理,至少存在一点)4,2(),(21?∈ξξξ, 使得 0)(=''ξf 。 2. 设f 为[,]a b 上的二阶可导函数,()()0f a f b ==, 并存在一点(,)c a b ∈,使得()0f c >. 证 明至少存在一点(,)a b ξ∈,使得''()0f ξ>. (10分) 证明:考虑区间[,]a c ,则 f 在[,]a c 满足Lagrange 中值定理的条件,则存在1(,)a c ξ∈,使得 1()() '()0f c f a f c a ξ-= >-. (3分) 同理可证存在2(,)c b ξ∈, 使得 2()() '()0f b f c f b c ξ-= <-. (5分) 再考虑区间12[,]ξξ, 由条件可知导函数'()f x 在12[,]ξξ上满足 Lagrange 中值定理的条件,则存在 12(,)ξξξ∈, 使得 2121 ()() ''()0f f f ξξξξξ-= >-. 得证. 3. 设)(x f 在],[b a 上连续,在),(b a 上可导,且 0)(≤'x f ?-= x a dt t f a x x F )(1)( 证明在],[b a 内有0)(≤'x F 证明在],[b a 内有0) (≤'x F ])()()[() (1 )(2?---= 'x a dt t f x f a x a x x F (2分) = )]()()()[()(1 2 ξf a x x f a x a x ---- ]),[],[(b a x a ?∈ξ(2分) = )(ηξ f a x x '-- ]),[),((b a x ?∈ξη 0)(≤'∴x F (2分) 4. 证明:当0>x 时,x x x arctan )1ln( )1(>++

高数中的重要定理与公式及其证明(一)

高数中的重要定理与公式及其证明(一) 考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。 现将高数中需要掌握证明过程的公式定理总结如下。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。 1)常用的极限 0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1 lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想 过它们的由来呢?事实上,这几个公式都是两个重要极限1 lim(1 )x x x e →+=与0sin lim 1x x x →=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技 巧。 证明: 0ln(1)lim 1x x x →+=:由极限1 0lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x →+=。 01lim 1x x e x →-=:在等式0ln(1)lim 1x x x →+=中,令ln(1)x t +=,则1t x e =-。由于极限过程是0x →,此时也有0t →,因此有0 lim 11 t t t e →=-。极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01 lim 1x x e x →-=。 01lim ln x x a a x →-=:利用对数恒等式得ln 0011 lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011lim ln lim ln ln x a x a x x e e a a x x a →→--==。因此有01 lim ln x x a a x →-=。

高等数学证明题练习一

高等数学证明题练习一 高等数学证明题练习一 1. 设lim n →∞x n =a >0, 利用极限定义证明lim n →∞x n +1/x n =1. 2. 设函数f (x ) 在x =a 处连续,且lim x →a f (x ) /(x ?a ) =A, 证明:f (x ) 在点x =a 处可导. 3. 设函数f (x ) 在区间[a, b ]上积分,且F (x ) = (a)函数F (x ) 为连续函数; (b)当f (x ) 在点x 处连续时,F (x ) 在点x 处必定可导,且F ′(x ) = f (x ) . 4. 设F (x, y ) =f (y ?x ) /(2x ) 及F (1, y ) =y 2/2?y + 5. 设x 0>0, x n =F (x n ?1, 2x n ?1) , n =1, 2, ···. 证明: (a)对任意k, 有lim y →0x →0y =kx →0∫x 0f (t ) d t. 证明:f (x, y ) =0; (b)lim x →0f (x, y ) =0. 5. (a)设f (x, y ) 是区域D :x 2+y 2≤t 2上的连续函数. 证明 ∫∫1lim f (x, y ) d x d y =f (0, 0) ; t →0+πt2D (b)设f (x, y ) 是定义在区域D :0≤x ≤1, 0≤y ≤1上的二元函数, f (0, 0) =0, 且在点(0, 0) 处f (x, y ) 可微分. 证明 ∫x 2∫√d t x f (t, u ) d u ?f 0 (0, 0) ; lim +=?x 2?x →0?y1?e (c)设函数f (x, y ) 在单位圆域上有连续的偏导数,且在边界上的值 恒为零. 证明 ?1lim ε→0+2π∫∫D ′′xf x +yf y d x d y =f (0, 0) , x 2+y 2 1

(完整版)高数中需要掌握证明过程的定理(二)

高数中的重要定理与公式及其证明(二) 在第一期的资料内我们总结了高数前半部分需要掌握证明过程的定理,由于最近比较忙,所以一直没来得及写。现将后半部分补上。希望对大家有所帮助。 1)泰勒公式(皮亚诺余项) 设函数()f x 在点0x 处存在n 阶导数,则在0x 的某一邻域内成立 () ()()()2 00' '' ()000 00()()()()...()2! ! n n n x x x x f x f x x x f x f x f x o x x n --??=+-+ ++ +-?? 【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。对于它们,我们首要的任务是记住常见函数(sin ,cos ,ln(1),,(1)x a x x x e x ++)在0x =处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。在复习的前期, 如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。但由于证明过程中所用到的方法还是很常用的。因此把它写在这里。 证明: 令()()()200'''() 00000()()()()()...()2!!n n x x x x R x f x f x x x f x f x f x n ??--=-+-+ ++?????? 则我们要证明()0()n R x o x x ??=-?? 。 由高阶无穷小量的定义可知,需要证明() 0() lim 0n x x R x x x →=-。 这个极限式的分子分母都趋于零,并且都是可导的, 因此用洛必达法则得 () ()()()() 1 ''''()0 0000100()()()...()1!() lim lim n n n n x x x x x x f x f x x x f x f x n R x x x n x x --→→??--+-++?? -????=-- 再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。 不难验证该过程可以一直进行下去, 运用过1n -次洛必达法则后我们可以得到 () ()() ()0 00 (1)(1)()00000(1) (1) () 000()()()() lim lim !()()() lim !! n n n n x x x x n n n x x f x f x x x f x R x n x x x x f x f x f x n x x n --→→--→---=---=- - 由于()f x 在点0x 处存在n 阶导数,由导数的定义可知() (1)(1)()000()() lim ()n n n x x f x f x f x x x --→-=-

高等数学极限习题100道

设,求证:.lim ()lim ()x x x x f x A f x A →→==00 求极限lim sin sin x x x x →021 []求极限lim cosln()cosln x x x →+∞ +-1 求极限.lim sin x x x →+011 求极限.lim arctan x x x x →∞+2112 求极限lim ()x x x e →∞+11 求极限limarctan arcsin x x x →∞?1 求极限.lim x x x →-+0121 22 )sin 1(sin lim n n n -+∞→求数列的极限 []A x f A u f u x u x x x u u x x =?=≠?=?→→→)(lim )(lim )()(lim 0 00试证:,又,且设 设试确定实数,之值,使得:当时,为无穷小; 当时,为无穷大。 f x x x a b x a f x x b f x ()ln ()()= -→→1 设,问:当趋于何值时,为无穷小。f x x x x f x ()tan ()=2 . 该邻域内 的某去心邻域,使得在证明:存在点,且,若)()()(lim )(lim 00 x f x g x A B B x g A x f x x x x >>==→→ 设,试证明: 对任意给定的,必存在正数,使得对适含不等式;的一切、,都有成立。 lim ()()()x x f x A x x x x x x f x f x →=><-<<-<-<0 00010201221εδδδε .,试用极限定义证明:已知:A x f A x f x x x x =>=→→)(lim 0)(lim 0 {}{}{}是否也必发散?同发散,试问数列与若数列n n n n y x y x + 求的表达式f x x x x n n n ()lim =-+→∞+2121

高等数学_证明题(提纲)

复习提纲(证明题) 一、极限存在准则 1. 准则I (夹逼准则):如果数列n n y x ,及n z 满足下列条件: (1)),3,2,1( =≤≤n z x y n n n ; (2),lim , lim a z a y n n n n ==∞ →∞→ 那末数列n x 的极限存在, 且.lim a x n n =∞→ 思路提示: 1)利用夹逼准则求极限,关键是构造出n y 与n z , 并且n y 与n z 的极限相同且容易求. 2)一般通过放大或缩小分母来找出两边数列的通项(右边取分母最小,左边取分母最大) 例题1 证明222111 lim ()112n n n n n n →∞ ?+++=+++ 解:因为22 22222111()121 n n n n n n n n n n ≤?+++≤+++++ , 而22 22lim lim 11n n n n n n n →∞→∞==∴++222111lim ()112n n n n n n →∞?+++=+++ 。 ---------------------------------------------------------------------------------------------------------------------- 例题2 计算.1 21 1 1 lim 2 22???? ?? ++ ++++∞→n n n n n ??≤++≤ , 而1n n ==, 所以lim 1n →∞ ?? = 。 ----------------------------------------------------------------------------------------------------------------------

考研数学:易出证明题的知识点总结

2018考研数学:易出证明题的知识点总结要命的考研数学每年都会难倒一大批考研党,各位2018考研党可得在数学上多下功夫了。今天文都网校考研频道整理了一下容易出证明题的知识点与小伙伴儿们分享,希望对大家有所帮助。 考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下: 一、数列极限的证明 数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。 二、微分中值定理的相关证明 微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理: 1.零点定理和介质定理; 2.微分中值定理; 包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。 3.微分中值定理 积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。 三、方程根的问题 包括方程根唯一和方程根的个数的讨论。 四、不等式的证明 五、定积分等式和不等式的证明 主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。 六、积分与路径无关的五个等价条件 这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。 以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。 2018考研学子想要了解更多考研资讯、复习资料与备考经验,可以搜索文都网校进入考研频道,查看2018考研辅导课程,咨询专业老师考研相关内容。 考研不是你一个人在战斗,漫漫考研路上,文都网校考研老师会一直陪伴在同学们左右。祝2018考研学子备考顺利,考研成功!

高数第一部分5_一元微积分证明题

南京航空航天大学数学系
考研辅导班高等数学辅导课件 (微积分第 部分) (微积分第一部分)
2010年 2010 年7月

第五课:一元微积分证明题

一、内容概要 、内容概要
? 函数零点存在性与个数问题 ? 函数不等式证明 ? 拉格朗日中值定理与拉格朗日余项泰勒 公式的应用

二 数学 考研大纲(2010) 二、数学一考研大纲(2010)
考试内容:
闭区间上连续函数的性质,微分中值定理,定积 闭区间上连续函数的性质 微分中值定理 定积 分的概念和基本性质 定积分中值定理 该部分内容数学一、数学二和数学三的大 该部分内容数学 、数学二和数学三的大 纲基本相同

二 数学 考研大纲(2010) 二、数学一考研大纲(2010)
考试要求: 考试要求
1.了解连续函数的性质和初等函数的连续性,理解闭区 间上连续函数的性质(有界性、最大值和最小值定理、介值定 理),并会应用这些性质. 2 理解并会用罗尔(R ll )定理 拉格朗日(L 2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange) ) 中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值 定理. 3.掌握不定积分和定积分的性质及定积分中值定理

1 函数零点存在性与个数问题 1、函数零点存在性与个数问题
方法1、连续函数介值定理证明函数零 方法1 连续函数介值定理证明函数零 点存在性,单调性确定零点个数 方法2、用罗尔中值定理证明导函数零 方法 、用罗尔中值定理证明导函数零 点存在性

高等数学上册证明题

高等数学上册证明题 一、设函数)(x f 在]1,0[上连续,并且对于]1,0[上的任意x 所对应的函数值)(x f 均有1)(0x f ,证明]1,0[上至少有一点 ,使得)(f 。二、证明方程0155x x 在)0,1(内有唯一实根。 三、设函数f x 在0,1上连续,在0,1内可导,且0 10f f ,证明:存在0,1,使得0f f 。 四、设)(x f 在区间]1,0[上可微,且满足条件2 1 0)(2)1(dx x xf f , 试证:存在)1,0(,使得0)()(f f . 五、设)(x f 在1,0上连续,在)1,0(内可导且0)0()1(f f ,121 f , 证明在)1,0(存在一点,使1)(f 。 六、1、证明2020sin cos cos cos sin sin dx x x x dx x x x , 2、由此计算20cos sin sin dx x x x 。 七、设)(x f 在[0,1]上连续且单调减少,证明:当10时,有 1)()(o o dx x f dx x f 成立。 七题参考答案:设)(x f 在[0,1]上连续且单调减少,证明:当10时,有 1 )()(o o dx x f dx x f 成立。

)6(0)]()()[1(0 1,0).()(.10)] ()()[1() 4()()1()()1()()()1() 2()()()()()(1212121212101 1 001即原不等式成立因此又有)单调减少,(因证f f f f x f f f f f dx x f dx x f dx x f dx x f dx x f dx x f dx x f o o :)6()1,0(0)0()(,0)(,0)1()(,0)(,10)4(. 10),()()()()(0)1()0(,)()()(21 1 原不等式成立时,即当当当]上连续单调减少, )在[(因设证F F F F F F ,x f f f dx x f f F F F dx x f dx x f F o o o :

(完整版)高等数学-微分方程证明题

高等数学 一、证明题(共 52 小题,) 1、验证32 213 1 t t C C x ++=是方程tx x t ''-'=2 的通解。 2、证明:由参数方程x t t y t t C =+=+++? ??????31321413 3 32()所确定的函数y y x C =(,)是方程 x y xy 3330+'-'=的通解。 3、证明:()x C y C ++=22 2 1(C C 12,为任意常数)是方程102 +''+'=yy y 的通解。 4、证明:y e x x =-2333212sin 是初值问题??? ????===++==1d d ,00d d d d 0022x x x y y y x y x y 的解。 5、证明:方程'+=y ky kq x ()的通解是y e C k q u e u kx ku x =+?? ???-?()d 0 ,其中 C 为任意常数。 6、验证:x x y y C 4224 2++=(C 为任意常数)是方程()d x xy x 32+++=()d x y y y 230的通解。 7、验证:y x e x x C x =+?? ? ? ??d 是微分方程xy y xe x '-=的通解。 8、验证x t t =-223(sin sin )是初值问题 d d sin d d 2200410302 x t x t x x t t t +===-?? ??? ??==的解。 9、验证x y C x C y C 22 123220++++=(C C C 123,,为任意常数)是微分方程 '''+'-'''=y y y y [()]()13022的解,并指出是否是通解。 10、验证y e t =+-321212是初值问题d d y t ty t y t +==??? ??=22 1的解。

考研高数证明题的解题方法

分析法,综合法,反证法,都是欧氏分析方法。欧氏分析方法起自于欧氏几何,早在公元前400年左右即为人类总结运用。 构造法是微积分学,代数学自身的方法。 分析法——尽可能由已知条件挖掘信息,并以此为起点作逻辑推理。 一元微积分讲究条件分析。要用分析法,就需要对各个概念理解准确,强弱分明;推理有序,因果清晰。为了弥补非数学专业学生的“短板”,我建议大家把考研题目中出现頻率较高的典型条件,预先推个滚瓜烂熟。比如已知条件“f(x)连续,且x趋于0时,lim(f(x)/x) = 1”的推理。 (见讲座(9)基本推理先记熟。) 已知条件“f(x)在点x0可导,且f ′(x0) > 0 ” 的推理。 (这是阐述“一点可导且导数大于0与一段可导且导数大0的差别;证明洛尔定理(费尔玛引理),达布定理,……,等的关键。 见讲座(11)洛尔定理做游戏;讲座(17)论证不能凭感觉。) 已知条件“非零矩阵AB = 0”的推理。 (见讲座(42)矩阵乘法很惬意。) 已知“含参的三阶方阵A能与对角阵相似,且A有二重特征值。计算参数。”的推理。 (见讲座(48)中心定理路简明。) “已知连续型随机变量X的分布函数或随机向量(X,Y)的密度函数,求函数型随机变量U = φ (x) 或U =φ(x ,y) ”的推理计算 (见讲座(78)分布函数是核心。) 一个娴熟的推导就是一条高速路啊。你非常熟练了吗?! 综合法——由题目要证明的结论出发,反向逻辑推理,观察我们究竟需要做什么。 最典型的范例是考研数学题目“证明有点ξ,满足某个含有函数及其导数的关系式”。 例设函数f (x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f (0) = 0,则区间(0,1)内至少有一点ξ ,使得 f (ξ) f′(1―ξ) = f′(ξ) f(1―ξ) 分析(综合法)即要证明 f (ξ) f′(1―ξ) ― f[b′(ξ) f(1―ξ) = 0 点ξ是运用某个定理而得到的客观存在。用x替换ξ,就得到刚运用了定理,还没有把点ξ代入前的表达式。即 f (x) f′(1―x) ― f′(x) f(1―x) = 0 (在点x =ξ 成立) 联想到积函数求导公式,即(f (x) f(1―x))′= 0 (在点x =ξ 成立) 这就表明应该作辅助函数F (x) = f (x),证明其导数在(0,1)内至少有一零点。 易知F (0) = F (1) = 0,且F (x)在[a, b] 连续,在(a, b)内可导,可以应用洛尔定理证得本题结论。 当然,题型多种多样,但这总是一条基本思路。如果关系式中有高阶导数,那要考虑试用泰勒公式。 反证法——……。 这是大家都较为熟悉的方法。但是你也许没有注意到,用反证法简单可证的一个小结论,在微积分中有着很广的应用。粗糙地说,这就是 “A极限存在(或连续,或可导)+ B极限不存在(或不连续,或连续不可导)= ?” 随便选一说法用反证法,比如 如果,“连续A + 不连续B = 连续C” 则“ 连续C-连续A = 不连续B” 这与定理矛盾。所以有结论:连续函数与不连续函数的和一定不连续。不过要注意,证明是在“同一个点”进行的。

2020考研数学高数暑期复习三步破解考研数学证明题.doc

2020考研数学高数暑期复习三步破解考研数学证明题 考研如过独木桥,在千军万马中脱颖而出总是需要想象不到的汗水和努力,为了帮助考研小伙伴更好的复习,下面由我为你精心准备了“2020考研数学高数暑期复习:三步破解考研数学证明题”,持续关注本站将可以持续获取更多的考试资讯! 2020考研数学高数暑期复习:三步破解考研数学证明题 在考研数学中,答题步骤十分重要,其中证明题的解答更是要有清晰的思维逻辑。 第一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理最好能记住他们的推到过程,有时可以借助几何意义去记忆。 因为知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。 因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,"单调性"与"有界性"都是很好验证的。再比如2009年直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研真题中并不是很多见,更多的是要用到第二步。 第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。 一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

相关主题
文本预览
相关文档 最新文档