当前位置:文档之家› 节能自动控制系统优化

节能自动控制系统优化

节能自动控制系统优化
节能自动控制系统优化

抽油机节能自动控制系统优化

一、抽油机节能自动控制系统优化背景

1.1国际环境

当前全球经济发展过程中,有两条显著的相互交织的主线:能源和环境。能源的紧张不仅制约了相当多发展中国家的经济增长,也为许多发达国家带来了相当大的问题。因此,不论在国内还是国外,尤其是在工业生产中,节能问题已经受到越来越多的重视。而油田作为耗能大户其节能受到全世界的关注。

1.2国内环境

我国油田在原油生产过程中,油气集输、含油污水处理、油田注水、水源井供水等主要生产工艺大部分是通过各种泵、空气压缩机来完成,其用电量占油田总用电量的70%~80%。在油田开采过程中,通常电动机的装机功率较大:一是泵装置的设计能力按最大化的抽取要求选择,设计及选型阶段即存在能力过剩;二是随着油井由浅入深的抽取,抽油机装置的能力过剩随流体总量的减少而加大,产量越趋降低,泵装置水泵和空气压缩机大都处于电动机驱动恒速运转状态,由于设计时考虑到油田发展的需要,选型时一般选择容量较大的电动机,使得大多数油井泵都存在大马拉小车的现象;另一方面,随着油田开发程度的加深,注采、集输等要求的不断调整,很大一部分油、水泵处于变工况状态下运行,因此在运行中普遍存在着离心泵节流、往复泵打回流的现象,造成

电能损失巨大。三是为保证抽油机的启动要求;四是保证在运行时有足够的过载能力。而电动机正常工作时常以轻载运行,因此造成抽油机与电动机的荷载匹配不合理,在运行中处于大功率带小负载的情况。电机在抽油机上行时处于有功工作状态,下行时处于发电状态,大部分时间出现“大马拉小车”现象,这种现象普遍存在于油田开采中。特别是在油田的开发后期,机采井的产量急剧下降,抽油机在工作中存在着不同程度的“泵空”和“干抽”情况,工作效率低,能耗大,无效行程增加。

1.3孤岛采油厂现状

孤岛油田进入开发中后期,部分区块由于含水上升,开发难度加大,设备老化,机械采油耗电量增加。电动机的平均负荷率仅为20%一30%,部分电动机负荷率更低,造成能源的极大浪费。在采油成本中,抽油机电费占30%左右,年耗电量占油田总耗电量的20%-30%,为油田电耗的第二位,仅次于注水。如果一台抽油机节省一点能源消耗,则整个经济效益是相当惊人的。面对现状,孤岛采油厂加强内部用电管理,优化抽油机倒发电与节能自动控制系统,电量消耗得到有效控制。

1.4游梁式抽油机运行技术分析

游梁式抽油机,性能稳定,运行可靠,维修方便,是我厂普遍采用的抽油机。虽然其抽汲速度慢,却一直是世界上使用的主要抽油设备,在我国的老油田,使用率在80%以上。孤岛采油厂有稠油井900多口,生产井750口左右。游梁式抽油机使用率达99%。

游梁式抽油机电机轴扭矩与时间的变化曲线如图1所示。

从图1中可以看出,游梁式抽油机的负荷是周期性波动变化的,同时在每个周期中存在负扭矩。由于所用电机的输出功率是稳定的,两者的工作特性不匹配,造成了每个抽油周期中存在“倒发电”和“大马拉小车”现象。“倒发电”的危害是十分大的,除了造成一部分电能损失外,还会极大的影响电网侧的功率因数。根据计算和测试,可造成20%左右的电能损耗,使功率因数降低0.4左右;再加上“大马拉小车”造成的电能损耗及功率因数的降低、正常的机械摩擦损耗及电机发热损耗,游梁式抽油机的效率不超过30%,电网侧的功率因数只有0.3左右。

根据电业部门出台的新法规,电机电网侧的功率因数达不到0.85就按一定比例罚款,这对使用地方电网供电的油田和油区来说,提高抽油机电网侧的功率因数的问题迫在眉睫。

二、自动控制系统的总体设计方案

图2所示为本系统的组成原理框图,本系统采用功能单元模块化结构,其总体方案主要包括交流电源控制变流器单元;不平衡馈能自动处

理单元;检测与保护控制单元;单片机系统控制单元。单片机系统控制模块作为整个系统的智能化控制核心,连续不断地通过检测与保护控制单元模块,对抽油机电机的电流、功率因数和功率等参数进行实时监测,进而对电机的工作状态进行综合判断,并通过电源控制功率模块,对电机绕组的工作电压实施平滑控制。

本方案采用16位高档单片机完成电机工作电压的寻优控制算法,使抽油机电机总是运行于功率因数和效率最佳的工作状态。采用先进的高频PWM控制技术,使系统具有供电波形好(电机电流很接近正弦波),谐波含量少等优点。

本系统将倒发电能量吸收与处理单元模块和电机并行连接,通过单片机系统控制模块、检测与保护控制单元模块的配合,完成倒发电吸收单元与抽油机电机之间的检测反馈、切换和协调控制,并通过闭环系统的自动调节达到功率的跟踪平衡效果。

三、电路与软件设计

该控制系统采用逆变式PWM变流器实现,其主电路如图3所示。

电路中的自关断器件采用了IGBT,具有较快的响应速度,适合跟踪负荷调节输出电压,解决“大马拉小车”的问题。

给主电路的直流侧电容并联一个由IGBT与能耗电阻0R组成的泵升电压限制电路。当抽油机处于倒发电状态时,控制电路使0V开关导通,把电动机反馈的电能消耗在0R上。0R用套管式散热器制作,并套在井口附近的油管上,给管内原油加热,减少管壁结腊。

该变流器主电路的整流电路采用二极管整流,使输入电压与输入电流相比没有相位滞后,即使输入电流中含有谐波成分,输入回路总的功率因数能接近于1。逆变电路采用PWM控制方式,可以大大减少输出电压中所含谐波,使输出电流接近正弦波,而对输出回路的基波功率因数没有影响。因此,采用该逆变式PWM变流器,可以使电网侧的功率因数得到大大提高。

逆变式PWM变流器的控制电路选用了Intel公司的16位高档单片机

80C196MC作为控制核心,该单片机配有专门的PWM波形发生器,特别适合于逆变器控制。

检测与保护电路对系统的电压、电流、温度等参数进行检测并通知单片机,经单片机运算处理后,向相应的控制元件发出指令,从而对系统进行过压、过流、欠压、再生反馈电压、过温及轻载与过载保护。

该变流器控制软件框图如图4,

电机运行以后,各检测电路所检测的信号经A/D转换成为数字信号,通过查表与计算处理得出波形发生器所需的控制参数,从而控制波形发

生器产生相应的PWM波。

四、FACTS中控制器的使用

4.1静止无功补偿器SVC

静止无功补偿器的典型代表是晶闸管投切的电容器(TSC),和晶闸管控制的电抗器(TCR)。实际应用中,将TCR与并联电容器配合使用,根据投切电容器的元件不同,可分为TCR与固定电容器配合使用的静止无功补偿器,和TCR与断路器投切电容器配合使用的补偿器,以及TCR 与TSC配合使用的无功补偿器。这些组合而成的SVC的重要特性是它能连续调节补偿装置的无功功率,进行动态补偿,使补偿点的电压接近维持不变,但SVC只能补偿系统的电压,其无功输出与补偿点节点电压的平方成正比,当电压降低时其补偿作用会减弱。SVC的主要作用是电压控制,采用适当的控制方式后,SVC也可以有阻尼系统功率振荡和增加稳定性等作用。目前,SVC技术已经比较成熟,国外从60年代就已经开始应用SVC,七十年代末开始用于输电系统的电压控制,经过几十年的发展,不仅将静止无功补偿器,用于输电系统的电压控制,也用于配电系统的补偿和控制,还可用于电力终端用户的无功补偿一电压控制。

4.2静止同步补偿器STATCOM

静止同步补偿器也可以称为ASVG——有源静止无功发生器。它的基本原理是将自换相桥式电路直接或者通过电抗器并联到电网上,适当调节桥式电路交流侧输出电压的幅值和相位,就可以使该电路吸收或发出满足要求的无功电流,实现动态无功补偿。ASVG根据直流侧采用的

电容和电感两种不同的储能元件,可以分为电压型和电流型。它可以通过控制其容性或感性电流,与系统交换无功,在任何系统电压的情况下,都能输出额定的无功功率,与SVC相比,在系统故障的情况下静止同步补偿器维持系统电压,提高系统暂态稳定性和抑制系统振荡的作用较明显;近二十几年,静止同步补偿器受到了国内外专家学者的普遍重视,日本从1980年研制出第一台20Mvar的强迫自换相的桥式ASVG,1991年又投入了一台±80Mvar的ASVG成功地运行在154kV的输电线路上,而美国于1995年投入了一台±100Mvar的ASVG。我国清华大学和河南电力局共同研制成功了一台±20Mvar的静止无功补偿器,并于1999年在河南洛阳朝阳变电所投入运行。

4.3并联蓄能系统

并联蓄能装置包括蓄电池蓄能系统(BESS)和超导磁能存储器(SMES)等,是采用并联式电压源换流器的能量存储系统,其换流器可通过快速调节向交流系统供给或吸收电能。将SMES用于两机系统的频率控制,可以有效地抑制两系统之间的频率偏移。也可将SMES与静止移相器相结合用于互联系统负荷频率控制。但这种超导储能装置不但技术要求高,而且在目前的条件下投资费用比较昂贵,大量投入系统运行还存在一定的困难。

4.4晶闸管控制的串联电容器TCSC

晶闸管控制的串联电容器的模块主要由串联电容和含有电抗、晶闸管开关的并联回路组成,通过可控硅控制可以灵活、连续地改变补偿容

量,达到快速响应的效果。TCSC在改善电力系统性能方面有很多优点,将TCSC用于高压输电系统,可发挥现有系统的潜力,提高功率传输极限,灵活地调节系统潮流,增加系统阻尼作用,是保证超高压电网安全稳定运行的重要措施。

TCSC与其它FACTS装置相比,潮流控制功能比较简单,受到了GE、ABB和Siemens等大公司的关注和重视。在美国有三处已经安装了TCSC,并且运行良好,瑞典、巴西等国家也相继将TCSC投入实际运行。我国在伊敏电厂至齐齐哈尔地区的冯屯变电站的双回输电线上采用串联补偿技术。

4.5静止同步串联补偿器SSSC

静止同步串联补偿器是以DC/AC逆变器为基本结构,它的基本原理是向线路注入一个与电压相差90的可控电压,以快速控制线路的有效阻抗、从而进行有效地系统控制。它在系统中的作用有些类似于TCSC,但是,它控制潮流的能力远大于单方向减少线路阻抗功能的TCSC控制器,并且谐波含量小。

4.6晶闸管控制的移相变压器TCPST

晶闸管控制的移相变压器是利用可控硅开关控制移相角度从而改变线路两侧的移相角来控制潮流的大小或方向。移相器的发展比较早,早在三十年代第一台移相器已经在美国投入运行,随着电力电子技术的发展,70年代开始各国电力专家将晶闸管与移相器相结合开始进行晶闸管控制的移相器TCPST的研究。经研究表明TCPST具有提高联络线传输

潮流,抑制小干扰,提高系统稳定性,阻尼功率振荡,母线电压控制,规约联络线潮流等功能,晶闸管控制的移相器的控制速度快,相角阶梯可以很小,甚至达到无级调节,但晶闸管控制的移相器有一个缺点,它本身需要消耗无功功率,运行中一般需要与无功补偿装置联合使用,并且谐波的含量较高,因此对电能质量有一定的影响

4.7可转换式静止补偿器CSC

可转换式静止补偿器是近两年推出的FACTS控制器的一种新产品,它实际上是将基于同步变流器的串并联补偿器技术,通过在结构上实现柔性化,使其可以更加灵活地应对不断变化的电力系统要求。CSC是由2台电压源换流器、一个与输电线并联的变压器和2个串联的变压器组成。通过开关的转换实现补偿器的不同运行工作状态,根据控制目标的不同,CSC可以提供静止同步无功补偿器,静止同步串联无功补偿器、统一潮流控制器和线间潮流控制器4种基本控制方式。

4.8统一潮流控制器UPFC

UPFC的概念是由美国西屋科技中心的L.Gyugyi于1992年首次推出的,统一潮流控制器是一种从原有潮流控制装置的基础上发展而来的新型潮流控制装置,它由一个并联的换流器和一个串联的换流器通过公共侧的电容耦合而成,仅仅通过控制量的变化就可以分别实现并联补偿、串联补偿或移相器的功能,也可以将三者的功能结合使用。通过不同控制策略的设计,UPFC不但可以用于控制母线电压。线路潮流、提高系统动态和暂态稳定性,抑制系统振荡,而且可以快速地转换工作状态以适

应系统的紧急状态的需要。它被认为是FACTS家族中最有代表性、功能最强大和技术最复杂的成员。

五、抽油机的节能措施

5.1.采用节电驱动设备

5.1.1双功率电动机

石油大学与胜利油田合作进行了双功率电动机试验,其定子绕组是两个可以并联运行的绕组。电控箱中有一个电流检测电路,能够实现绕组的自动切换。启动时两个绕组分时投入,根据负荷的变化以不同的绕组运行。如果抽汲工况变化,负荷较大时,两个绕组都投入。这样,电动机在各种状况下都有较高的负荷率,运行效率和功率因数都有较大的提高,原有电动机的改造成本也低。

5.1.2蓄能器

蓄能器用来增加抽油机的转动惯量,充分发挥其动能的均衡作用,具体做法是,在电机启动时,首先带动合适转动惯量的飞轮旋转,达到额定转速后,再闭合离合器,启动抽油机,只要电动机的额定功率大于抽油机的平均功率,抽油机就能平稳工作,因而可降低电动机容量,实现节能降耗。

5.1.3调压节能装置

可控硅调压是根据电动机的负荷率的变化不断调节电动机的输入端电压,使电动机运行在最佳状态。抽油机运行时,电动机的输入电压随着抽油机井的载荷变化自行调节,即载荷小时电动机的输入电压下降,

载荷大时电动机的输入电压升高。减少了电动机的损耗,提高了电动机的运行效率。

5.2.改进结构型式

5.2.1偏置式抽油机

这种抽油机曲柄平衡重中心线与曲柄对称中心线偏离一个角度,所以人们称它为偏置型游梁式抽油机(简称偏置机)。偏置机是对四连杆机构实现悬点运动和动力特性的优化,实现“慢提快放”,改变抽油机曲柄轴净扭矩曲线的形状和大小,使其波动平坦,减小负扭矩,从而小抽油机的周期载荷系数,提高电动机的工作效率,达到节能目的。

5.2.2前置式抽油机

前置式抽油机多为重型长冲程抽油机。目前生产的12型,16型两种机型已在油田广泛使用。从工作扭矩曲线分析,前置式抽油机平衡后的理论净扭矩曲线是一条比较均匀的接近水平的直线,因此其运行平衡,减速箱齿轮基本无反向负荷,连杆游梁不易疲劳损坏,机械磨损小,噪声比常规式抽油机低,整机寿命长。

5.3.改进平衡方式

5.3.1平衡相位角

前面提到的偏置抽油机的曲柄平衡块重心与曲柄轴中心连线和曲柄销中心与曲柄轴中心连线之间构成一定的夹角,称为平衡相位角。这个角的存在主要是因为改变参数后抽油机的与下死点对应的曲柄位置比常规机“滞后”了一个相位角。为了平衡扭矩与载荷扭矩对齐,偏置了这

样一个角度。很多其它结构的抽油机也应用了这一平衡方法。

5.3.2气动平衡

气动平衡重量轻,比机械平衡轻40%,平衡效果好,比机械平衡转矩下降10%,节能效果显著,比机械平衡能耗降低28.15%,但气动平衡的可靠性较差。而且受到各方面条件的制约,未能大量推广使用。

5.3.3游梁偏置复合平衡

它是基于常规机结构不变,在游梁尾部增加固定偏置平衡装置,其重心相对游梁下偏一个角度。

5.3.4变矩平衡

所谓变矩平衡原理:即抽油机尾梁平衡配重的力臂是变化的,因此平衡扭矩也是变化的。在上冲程抽油载荷最大时,其平衡重的力臂也最大,下冲程时平衡块储能以克服负扭矩。从而提高了电机的功率利用率。这种动态平衡节能技术解决的是抽油载荷正常生产时的周期变化。

5.4.采用节能监控装置

5.4.1多功能程控装置

目前抽油机用电动机功率因数仅为0.3-0.6左右,有的甚至更低,造成电网无功损失;大庆石油学院研制的DSC系列抽油机多功能程控装置较好地解决了这一问题。DSC多功能程控装置有程控启动、断电保护、过载保护、短路及无功补偿等多项功能。这可视为是我国抽油机无人监控,由定时巡查走向自动监控的起步。

5.4.2间抽定时控制装置

该装置可以根据油井工况和抽油工艺要求伺服调整电动机启动和停

机时间,选定开停次数,实现对油井间抽定时控制,从而避免抽空现象,对于老油井,低产井无疑是一绝好的节能手段和增产措施,该装置由华北采研所研制,颇受油田欢迎。

5.5.采用节能传动元件

5.5.1窄 V带传动

近二十年来,窄V带在美、英、德、日、俄罗斯等国早已普及推广。目前在国内石油矿场己大量应用。窄V带具有独特的结构承载能力,比普通三角带高30%-50%;传动效率高,可达96%-98%,比普通三角带高4.5%(普通三角带传动效率只有92%-93%);工作寿命长可达

2000-3000小时,比普通三角带长3-7倍。

5.5.2同步带传动

1986年大庆石油学院与桦林橡胶总厂开始研制同步带。同步带传动效率高,可达99%。传动比准确,永不打滑。是一种很有技术前途的新型传动带。同步带问世于70年代,日本应用最早。1985年美国率先首次应用于抽油机,获得令人满意的效果。同步带比普通三角带节能14.4%。

5.6.研究开发新型节能抽油机

5.6.1链条式无游梁抽油机

利高原公司生产的长冲程、低冲次、ROTAFLEX链条驱动的皮带式抽油机是一种全新结构的高性能有杆抽油设备,该机可以满足下泵深抽、大泵排液、长冲程低冲次抽稠采油工艺中高含水期油井加深泵挂大排量

的需要,是一种高效节能经济性好的机种。

5.6.2液压抽油机

液压抽油机由液力、电动、气动元件结合组成。其特点是:(1)冲程长度和速度可以任意调节,液控元件可通过仪表随时显示抽油杆的瞬时负荷,示功仪亦可预先装在抽油机上,以观察全机运行情况;(2)上下冲程的速度可以单独控制,使抽油杆受力比较平稳、合理;(3)轻便。

5.6.3数控抽油机

数控抽油机是近几年研制的机电一体化的抽油装置,数控抽油机采用了全数控电力拖动系统,综合了微电子技术、电力电子技术、过程控制技术,是按照机电一体化的设计思想精心制作的电子机械装置。

5.6.4宽带长冲程抽油机

该机仍然采用普通异步交流电动机作为驱动力并采用了和游梁方式等,实现抽油机节能的目的,减小能源消耗,降低采油成本,已经有一大批新型的抽油机相继投入油田开采。在开发新产品的同时,也要对现有抽油机实施节能技术改造,不断地推广节能技术。而在研究节能抽油机的同时,系统的可靠性、经济性和使用维护方便是生产厂家和用户所特别关注的问题。研究经济、可靠耐用、节能效果显著的抽油机有着广阔的发展前景,具有重大的潜在工程应用背景,科式抽油机相似的皮带传动及减速器作减速装置,是当前油田机械装备研究的热点方向之一。

5.6.5摩擦式抽油机

摩擦式抽油机通过电动机正反转驱动减速器带动摩擦轮转动,无触点换向开关换向,使抽油杆上下运动来抽汲油液。钢丝绳一端通过悬绳器

与光杆连接,另一端与配重箱连接,根据示功图载荷的大小可调整配重铁,以调节摩擦轮两端的拉力差,做到精确平衡。

5.6.6直线电机抽油机

由于游梁式抽油机是利用电能转换为旋转运动,减速后再经四连杆机构转换为直线往复运动,其传动系统能量损失高,加上旋转特性造成启动扭矩大,系统效率一般不超过30%。

六、游梁式抽油机节能技术今后的发展

1.在市场经济条件下,油田开发必须以经济效益为中心。因此,依靠技术,节能降耗,挖潜增效是油田开发永恒的主题,也是节能型抽油机发展的方向。

2.节能型抽油机的发展,必须使其技术性和经济性相统一,而且技术性永远是第一位的。即必须在保证其正常运行的前提下,才能提高节能效果和整机的经济性。过分强调其节能效果和整机价格低廉,将会牺牲整机的安全性和使用寿命,故障率也高,不利于生产。

3.节能型抽油机的发展,经国内各油田十几年的探索证明:近期内必须立足于在常规游梁式抽油机的基础上求发展,继承其优点,克服其缺点,才能形成适于野外生产的节能新型机。

4.节能型抽油机的设计制造必须尽可能的使抽油机平衡曲线和抽油机载荷曲线的变化规律相抵消,而且和不同阶段的抽油机载荷相适应。

5.智能化抽油机是节能型抽油机的发展趋势和方向。

6.评价新型高效节能抽油机的综合标准应该遵守的原则。即:结构简单,可靠耐用,操作简便,维护容易,节能效果好,调参方便及整机

价格低。

七、实验室测试结果

变流器实验室实验结果如下:

在实验室中,用示波器绘出了几条变流器输出波形,它们是两路线电压波形、电机电流波形(轻载)、电机电流波形(加载)及Y 接电机两路相电压波形。由于篇幅的限制,这里只给出有代表性的两个波形图,即图5。图中可以看出,不论轻载还是加载,经PWM 控制方式控制的变流器输出电流波形,正弦波形保持良好,特别是没有换流电压尖峰,对器件耐压要求较低,使变流器具有了较高的可靠性。

八、现场实验测试结果

变流器样机完成以后,到现场进行了实验。实验地点是胜利油田孤岛采油厂孤四管理区,所用抽油机电机的额定功率与电压:55kW/380V ;实测电网电压:410V 测试中,采取了测试负载率 与调压系数k 的方法。负载率是电机的实际输出功率与额定功率的比;调压系数是电机的实际输入电压与380V 电压的比。实测负载率与调压系数数据如表1所示,图

6

是调压系数k 随负载率ρ变化的曲线。

表1 逆变式PWM 变流器输出调压系数(K )随负载率(ρ)变化实测数据表

由图6曲线可以看出,逆变式PWM 变流器的输出电压是随抽油机负荷的变化而变化的,这就较好地解决了“大马拉小车”的问题,可以提高电网侧的功率因数。

从电机电压跟踪调节范围可以看出,电机的电压达不到额定电压,仅能达到额定电压的60%,这说明被试抽油机存在的大马拉小车现象是十分严重的。对倒发电的测试情况看,倒发电的最大功率几乎达到了抽油机实际输入最大功率的33%(由最大负荷率可计算出电机的最大输出功率为k 0.8 0.7 0.6 0.5 0.4 0.3

0.2

0.1

0.6×55=33kW),由此可见,电机倒发电对我厂的单井电量的影响是相当大的,这部分能量被截流不返回到电网,可以降低单井计量的电量。

表2 逆变式PWM变流器控制抽油机时实测数据表

该逆变式PWM变流器,由于同时解决了“倒发电”及“大马拉小车”两个问题,双管齐下,使得实测功率因数始终保持在较高的范围内。由于解决了大马拉小车的问题,减少了轻载时电机的铁损与铜损,测试结果节能可达10%左右。

九、经济效益计算

以每口井每月平均耗电量5000度计,采油厂共有油井约1650余口。每月可节约生产用电量为: 5000°×10%×1650=825000°年节电量为:825000°×12=9900000°

以0.5元/度计:0.5×9900000=495万元

可见:抽油机节能控制系统优化为采油厂每年节约生产成本约495万元。

供热系统优化节能技术措施的研究

供热系统优化节能技术措施的研究 发表时间:2018-12-03T16:22:16.853Z 来源:《防护工程》2018年第24期作者:王伟[导读] 随着社会经济的发展,我国对能源的消耗越来越大,使得节能减排的环保理念不断深入,使供热系统的管理工作越来越严格 王伟 天津市热电有限公司天津市 300161 摘要:随着社会经济的发展,我国对能源的消耗越来越大,使得节能减排的环保理念不断深入,使供热系统的管理工作越来越严格。供热系统也开始积极倡导节能减排,并且加大管理措施,已经得到了社会各界人士的普遍重视和关注。本文主要针对供热系统的节能措施分析元阐述展开深入的探究,并提出几点针对性的建议、对策,以供相关人士的借鉴,旨在进一步推动供热系统走上可持续发展之路。 关键词:供热系统;节能措施;分析;阐述引言目前,城市集中供热已经成为一种大的趋势,城市集中供热不只包括供应热气,还要包括供应生活用水等等,甚至以后都会发展出供冷功能,这也是将来公共设施所发展的一个趋势。如今的城市集中供暖主要是靠供热管网实现的,相比于区域锅炉供热,它具有能耗小、绿色无污染的特点,为了开拓城市自动化供热减排技术目前所使用的这种技术主要有四种:供热管网的分层管控技术、气候补偿技术、用户热计量、水力平衡技术,今天我们对这些技术进行简单的介绍。 1供热系统能源浪费原因对于供热系统能源浪费的原因分析,主要是因为选型不合理导致电能浪费。一些设计人员针对供热系统能源应用设计,墨守成规的设计方式,加上按照平时工作经验对其进行设计,对于具体的能源消耗等调查与分析不到位,导致资源浪费现象非常严重。其次是技改措施不合理导致资源浪费,一些企业技术人员,其供热系统在运行期间存在供热问题,对于问题研究分析不到位,并没有准确寻找出出现问题的原因,单凭经验进行问题处理,导致问题处理不及时、不到位,造成能源浪费。加上在管理措施上制定与执行不到位,造成水循环阻力增加,导致供热系统能源浪费。 2供热系统的节能技术研究 2.1用户方面的研究 (1)在用户端使用双通阀的系统。双通阀在用户室内进行安装时,常常都是在室内管网中安装相应的双通阀对用户室内供热系统进行控制。在这个过程中,要做到每一室内散热器都要配备一个性能优良的温度控制阀,进而可以实现系统自身控制并检测室内的散热情况,从而依次控制用户室内的水平系统和温度系统,而在用户室内安装温度控制阀,就能实现室内供热体系的平衡,另一方面能够最大程度实现供热系统对于变流量的要求。(2)在用户端使用三通阀的系统。用户室内也可以使用三通阀,利用三通阀可以实现室内供热系统的调节,进而使室内的供热系统达到平衡,一般三通阀主要用来控制垂直系统的散热体系,有效的使用三通阀也能够最大程度的满足供热系统对于变流量的要求。 2.2气候补偿技术 我们采用的是天然气的热水锅炉。利用气候补偿的技术就是自动化技术的一种,在面对不同的天气时候,人们所需要的工作量是不同的。比如天气晴朗,气候温暖的时候,虽然一样是寒冷的冬天,但是在室内的供热量可以收稍稍减少,但是在天气寒冷的情况下,虽然温度较高,仍然要加大供热量。气候补偿器就是这种自动调控技术的一种,将气候补偿器安放在天然气热水锅炉中,根据气候补偿器所获得的气候情况行输入到管理系统中,管理系统对各个采热管道的数据进行合理的分析,可以通过管理系统调控热水的供应量和烧煤量以及供热程度等等,最后确定整体的工作量,这样就可以达到自动调节,不会起到过多浪费,比如说,天气炎热的时候,供热量卷和平常一样用户觉得室内温度过高,同时也造成了能源的浪费,得不偿失。 2.3水泵变频技术 热计量系统中,用户可以根据室外温度和自身的需求,不断调节散热器。水泵是供热系统中比较重要的部分之一,以往传统的水泵主要采用节流调节的方式,导致大量的功率流失和浪费。但是水泵变频调节技术的应用,就可以大大发挥水泵的节能优势,同时也可以提升管道网设备和水泵的使用年限。 2.4水力平衡技术 静态水力失调主要是由于施工和设计方面出现的问题所导致的,也就是供热管自身的限制性因素。进而使管道阻力出现较为严重的差异,进而引发水力失调。动力水利失调主要是指在供热管道网的运行过程中,热用户随意调节阀门,进而使管道阻力出现变化。用户之间的流量会被重新分配,致使实际流量与设计流量出现偏差,引发水力失调。 2.5分层管控技术概述 这个技术主要是对供热管道的管理采用三级管理体系,我们将对每层管理进行详细的介绍如下:一级管理站是总体的调控中心,通过调控中心管理者可以实时采集和监控下属各个监控分站的各项数据,并及时进行彼此间异常数据与控制命令的传输。二级管理站就是调控中心和各个三级管理站的传递中心,主要对不同的区域的供热需求进行采集。主要有具备四种功能,第一种是通讯功能,第二种是数据采集功能,第三种是管理功能,第四种是数据转发功能。首先数据采集不需要我们过多的赘述。统计的整个控制区域的供热数据以及管道的正常运转信息,一旦出现于正常数据不同的时候,将信息传递到调控中心既可。收集从三级管理站得到的信息,汇总好后,转给调控中心即可。数据转发功能是指中介站作为三级管理站和一级管理站的数据转发中心所具有特色的功能,向上一级管理中心转达三极管理中心的供热的具体情况,同时给三级管理站传达一级管理站的具体命令在数据采集的基础上延伸出的管理功能。通过日常的供热管道数据采集,可以得到整个供热管道正常工作时的各项数据指标范围,在确定数据指标范围之后,就可以对供热管道进行监控了,一旦发现数据异常的情况,就可以通过管理系统进行管理。管理之后延伸出的是通讯功能,在管理中心除了把数据转发,除了发送管道信息之外,也可以和一级管理中心通过系统进行沟通,对管道的问题进行调控。确定是否减少供热,还是增加供热,请工作人员对供热管道进行维修等等。三级管理即中继站的热量管理。中继站中的下位机在接收到由监控分站转发的操作指令后可在确保安全运行的前提下自行达成各种热量调控工作。

智能电网节能优化调度系统

智能电网节能优化调度系统 王朝明[1][2],马春生[2] (东南大学江苏南京 210096)[1] (南京软核科技江苏南京 210019)[2] 摘 要:本文基于智能电网和节能发电调度背景下,针对现代地区电网调度的特点,提出了智能电网节能优化调度系统,本系统由电网经济运行控制系统、分布式无功电压优化控制系统、能耗在线监测及综合降损分析系统、分布式电源优化调度和大用户优化调度等多个模块构成。通过该系统,地区电网能够实现有功无功的联合优化控制,在智能电网调度的正常模式下,实现电网在安全约束条件下的经济运行。 关键词:节能优化调度,节能发电调度,智能电网,经济运行,无功电压优化,在线线损 0 引言 经济调度的目标是在保证电网安全运行的前提下,尽可能提高电网运行的经济性。传统的经济调度一般只考虑当前运行方式的安全性约束,而不考虑预想故障条件下的安全性约束,从而使问题大大简化,数值计算简单迅速,其结果则可能导致调度后电网因不满足预想故障条件下的安全性约束而进入预警状态,下一断面又需进行预防控制以消除预警状态,从而出现控制振荡现象。为避免出现上述情况,在经济调度问题中应加入预想故障条件下的安全性约束。其求解可在传统经济调度结果的基础上,借鉴预防控制问题的求解方法加以实现。 在智能电网环境下,要求各级调度在安全可靠、经济环保、运行效率等多个目标下进行优化调度,要求传统的调度转为以节能、环保、经济为目标,以公正友好的方式接纳各种电源,能够兼顾多目标优化、灵活协调、安全可靠。在智能电网环境下,传统的经济调度要转变为节能优化调度,调度员也只有在节能优化调度帮助下才能达到智能电网的要求。 在节能发电调度和智能电网的背景下,智能电网节能优化调度是地区电网经济运行的综合决策平台,为地调提供了智能电网下、节能环境下地区电网经济运行整体解决方案。它以系统安全运行为约束条件,以降损节能为目标进行经济调度。1地区电网节能优化调度系统的定位 1.1与省网节能发电调度的关系 为实现节能减排目标,引导电源结构向高效率、低污染方向发展,2007年8月,国家发展和改革委员会等部门提出了《节能发电调度办法(试行)》(以下简称《办法》),要求改革现行发电调度方式,开展节能发电调度[1]。 节能发电调度是指在保障电力可靠供应的前提下,按照节能、经济的原则,优先调度可再生发电资源,按机组能耗和污染物排放水平由低到高排序,依次调用化石类发电资源,最大限度地减少能源、资源消耗和污染物排放。节能调度的基本原则是:以确保电力系统安全稳定运行和连续供电为前提,以节能、环保为目标,通过对各类发电机组按能耗和污染物排放水平排序,以分省排序、区域内优化、区域间协调的方式,实施优化调度,并与电力市场建设工作相结合,充分发挥电力市场的作用,努力做到单位电能生产中能耗和污染物排放最少。 目前节能发电调度主要在广东、贵州、四川、江苏和河南五个省份进行试点。由于受到金融危机的影响,节能发电调度的试点遇到不少阻力。但是,节能降耗和污染减排是“十一五”期间一项全社会任务,是构建和谐社会的重要因素。国家在“十一五”规划中提出2010年单位GDP能耗下降20%,这个任务非常艰巨。因此随着经济复苏,节能发电调度的试点会不断推进。 节能发电调度是从省调层面,以降损节能为目标,对大型发电机、高耗能机组、新能源进行优化调度。地区电网作为省级电网的子网,同样需要降损节能。两者有机配合才能真正实现降损节能的目标。 1.2与智能调度的关系 近年来,智能电网是国际电力业界的热门话题,被认为是改变未来电力系统面貌的电网发展模式。我国国家电网公司已明确提出要“建设坚强的智能电网”的规划。 目前,在扩大内需的大背景下,智能电网的

空调系统节能优化研究

空调系统节能优化研究 发表时间:2019-07-05T10:15:01.760Z 来源:《基层建设》2019年第11期作者:康文平 [导读] 摘要:近年来由于生活水平的提高,空调成为大部分家庭都使用的电器之一。 广州华凌制冷设备有限公司广东广州 511462 摘要:近年来由于生活水平的提高,空调成为大部分家庭都使用的电器之一。但是空调的使用也存在着许多问题,空调的消耗过大成为人们关注的重要问题。而随着我国能源消耗和用电量过大问题的产生,我国开始倡导节能减排,创建绿色家园,共同减少能源的损耗和使用,并且要求每个人都具有环保意识。本文通过对空调的节能优化问题的分析,提出比较科学的优化措施,对于空调系统的优化节能具有很好的研究价值。 关键词:空调系统;节能优化;研究 空调是我国大部分家庭用户都使用的电器之一,众所周知,空调的耗电量很大,并且非常的消耗能源,为了减少空调的能耗量,增加利用率,需要对空调内部系统设计进行重点优化。空调系统内部优化是一个浩大的工程,如果节能优化成功,将会更好的满足空调用户的需求,提高用户使用满意度。 1.空调系统以及其节能优化的相关内容 1.1空调系统的特点 全空气系统,这类空调系统的特点是全部由处理过的空气负担室内空调负荷。需要很大的空气量,并且风道截面大,输送的耗能大。适用于商场、候车厅、影剧院等。空气-水空调的系统由处理过的空气和水共同负担室内空调负荷。适用于宾馆、办公楼、医院、商业建筑等。全水系统的空调全部由水负担室内空调负荷,输送管路断面小,但不能通风换气,一般不单独使用。制冷剂系统制冷系统蒸发器或冷凝器直接放室内吸收(或放出)余热余湿,冷、热量输送损失少。适用于公寓、办公、住宅等各类中、高档建筑。由于空调的测温点比较高,在开机时间长了之后还会有少量发热,无法准确判断房间温度,需制冷量达到一定程度、你已经感觉很冷了,空调测温点达到所设置的温度,才会停止压缩机运转。 1.2空调系统节能优化的原则 空调系统的节能优化原则应该为节能、环保,在一定基础上实现空调的减排和提高空调的使用效率。在不改变空调使用方法和功能的原则下,进行优化。用户对于空调改造的要求主要在于电量的节省,利用能耗模拟软件,首先对抽象出的建筑模型进行空调系统设计冷、热负荷的模拟研究,并对其组成进行了分析,研究建筑工作周期、围护结构、室内环境干扰等对设计负荷的影响等等。通过一系列的设计前期的工作,在这些工作都做完之后,设计出空调最终的设计图纸,把前期发现的问题都很好解决后,最终确定使用环保的组件进行空调的加工,使生产出来的空调具有环保、低能耗、利用率高的特点。 1.3空调系统节能优化的重点 由于每个月电费无法具体细化到具体电器的能耗,不知道空调具体耗电,一开空调电费就暴涨,知道空调目前和历史用电量,并计算出不同天气状况下的平均每小时耗电就极为重要。在积极响应社会“节能减排”号召的前提下,安装一套“空调管家”智能设备,通过大数据分析,将空调接入物联网平台,优化空调运行、节约空调能耗尤为重要。营造健康绿色空间,通过智能化设备进行调节,计算耗电量,充分利用空调的制冷制热功能,使消耗量降低到最小。 2.空调系统节能优化中存在的问题 2.1空调系统设计缺乏节能环保意识 原有的空调设计系统并未全部达到环保要求,空调的部件没有运用先进的环保原料,只是使用了简单易损坏的塑料加工部件,这样生产出来的空调并不环保,甚至存在着许多隐藏的环境危害。过载保护器的外壳与压缩机壳体表面紧贴,缺乏相应保护机制,存在安全隐患。 2.2空调系统自动化控制存在问题 原有的空调控制方法是采用传统群控为主的控制策略,但受当时技术的限制,在运行与能源消耗方面还有很多优化改造的空间。空调的系统受外界温度和湿度的影响较大,空调的能源消耗随温度的高低而改变,继而会产生多余能耗。 空调调节系统方法虽然很多,通常可以分为两大类,即变量调节和变质调节。变量调节是改变介质的流量,如改变冷、热水流量、蒸汽流量、冷剂流量、风量和电流等。变质调节是改变介质的“质”,如改变水的温度、风的温度、气体的浓度等。 自动调节系统发挥功能性的同时兼具美观,将空调的风口与优雅格调整体设计融为一体,带来隐形的空气气流舒适体验。随着计算机技术的应用和提高,空调在一定程度上可以实现部分的自动化调节和控制,但这远远是不够的,就整个空调系统的整体来说,还只是止于初级阶段,没有实现整体的控制,这样对于空调的其他的功能来说,很大程度上影响了其他功能的使用。所以要就这个问题,对空调系统进行逐步的优化,最终达到集中控制的目标。 2.3空调系统节能优化手段落后 为了减少空调响声,在设置温度相对合理且室温到达人体舒适区内,便不会对空调进行控制。压缩机是空调固件里最耗电的部位,此外空调顶部还有一个测温点,只有测温点达到设定的温度,空调才会让压缩机休息一会儿,由于测温点在空调上方,冷空气下沉,测温点很难达到设定的温度,压缩机就会一直搬运冷空气到室内。压缩机长时间不间断运行的话,一方面室内温度过低容易导致空调病,另一方面影响空调寿命、造成能耗的浪费,温度传感器是赋予空调的另一个测温点,通过对人体活动区温度的准确把握,使空调温控更“聪明”,把室内温度控制在人体舒适度范围内,也让压缩机不那么辛苦,达到省电的效果。 3.空调系统节能优化的有效策略 3.1优化空调系统设计环节,强化节能概念 空调设备的容量减小,既可节省设备费的投资,也进一步降低了系统的运行能耗。空调的系统设计环节,缺少节能概念。设备原理可以采用国际上先进的变频技术和计算机模糊控制理论。其基本原理是依据电机配套系统的运行状况和系统设定的情况,自动检测变频器、电机、负载的运行曲线,随时进行优化控制,使三者运行曲线始终处于最佳状态,并确保在满足系统需求的前提下,最大限度地减少消耗,提高系统效率,达到最大节电效果。空调在进行系统内部的优化调节后,可以得到很大的改变。因此,在空调系统设计环节中强化节

中央空调节能自控系统改造方案设计

1.1空调自控系统改造方案 1.1.1控制设备范围 一套制冷系统中的制冷机组、冷冻水循环泵、冷却水循环泵、冷却塔、相关 阀门、膨胀水箱、软化水箱等。 1.1.2空调自控系统 1.1. 2.1.监测功能信息采集优化 A通过冷机通讯接口读取(包括但不限于)以下参数: 冷水机组运行状态、故障报警状态 冷冻水供/回水温度、冷却水供/回水温度 冷冻水温度设定值 运行时间、压缩机运行电流百分比、压缩机运行小时数、压缩机启动次数、蒸发温度、冷凝温度、蒸发压力、冷凝压力。 B冷冻水系统 冷冻水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水补水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水供回水管温度、水流量反馈(AI) 冷冻水泵进口、出口分支管压力(AI) 冷冻水供回水环网压力、冷冻水供回水环网间压差反馈(AI) 冷冻水泵变频器频率反馈(AI) 最不利末端供回水压差

C冷却水系统 冷却水泵、冷却塔风机运行状态、故障报警、手/自动模式反馈(DI) 冷却水供回水管温度、环网水流量反馈(AI) 冷却水泵进口、出口分支管压力反馈(AI) 冷却水泵、冷却塔风机变频器频率反馈(AI) 冷却水补水泵运行状态、故障报警、手/自动模式反馈(DI) D电动蝶阀 压差旁通阀开度反馈(AI) 免费供冷管路上切换电动蝶阀开关状态反馈(DI)E液位监控 膨胀水箱超高、超低水位监测(DI) 软化水补水箱高、低水位监测(DI) F其他参数 室外干球温度、相对湿度(AI) 计算室外湿球温度、焓值 免费供冷系统水泵运行、故障、手/自动状态(DI) 免费供冷板换进出口压力监测(AI) 1.1. 2.2.控制功能 1、冷水机组启/停控制、出水温度设定(通过冷机通讯接口控制) 2、冷冻水系统: 冷冻水泵启/停控制(DO)及反馈

电厂热动系统节能优化分析

电厂热动系统节能优化分析 摘要:我国目前电力系统基本上还是采用火力发电,而使用的资源还是以煤炭 为主,所以节能降耗不仅可以节约煤炭资源的使用量,还可以起到一定的环保作用,所以提高煤炭的使用率和效率便是节能减排的关键。随着生活水平的提升, 很多地区加大了对电力的需求,很多电厂应运而生,当然在此之间火力发电的热 动系统对能源的损耗也是巨大的。在我国,火力发电的能源消耗在全国能源消耗 总量中占很大的比重,对火力发电热动系统的节能降耗已是一个急需解决的问题,它直接和我国的能源使用状况息息相关。电厂的节能降耗可以节约一大批的国家 资源,并且有助于减少电厂的开支,不管是对于国家还是个人都是有益的。 关键词:电厂;热动系统;节能降耗; 1电厂热动系统中存在的一些问题 1.1设备的老化、不先进 很多建设已久的火力发电厂目前都存在设备老化,无高科技系统支持的问题。电厂的设备资金投入是一笔庞大的数目,对一些小规模的电厂来说设备的技改更 换很容易造成资金的周转困难,所以很多的企业便一直使用传统的设备,不更新 设备系统,造成了对资源的利用不完全和损耗。比如火电厂的锅炉,它是火力发 电的重要设备之一,但是在工作的时候,很多的煤炭不能被完全的利用,因此, 锅炉节能就成为一项长期而艰巨的任务。我们知道锅炉的作用主要是将煤炭的化 学能转变成蒸汽的热能的重要设备,但是在转化的时候,由于锅炉设备的老化等 诸多因素,很多的环节会出现能源的低效损耗,譬如:热能的流失,化学能的不 能完全转化。锅炉与煤炭是直接接触的系统,对锅炉的完善是至关重要的,另外 其他的设备也要进行及时的更新,对老化的设备进行技改淘汰处理,尽量的减少 和避免热能在传递中的流失,保证能源的利用率,最大限度的降低能耗。 1.2煤粉不能完全燃烧导致的能源损耗 目前,面临着能源资源逐渐匮乏和能源需求总量日益增大的双重挑战,节能 降耗刻不容缓,尤其是能耗大户行业。电厂热动系统首当其冲,且与发达国家相比,我国的热动系统节能降耗还是有很大的潜力和空间可以充分挖掘。有理由相信,随着相关热动系统分析方法的逐步发展和完善,电厂热动系统节能降耗将会 取得更长远的进步。火电厂煤粉在实现能量转换的过程中的损失是降低能耗的重 要因素之一。主要有以下几个方面: (1)不完全燃烧人损失,煤粉未完全燃烧所产生碳热损失; (2)渣热损失,排炉渣带出的热量损失; (3)锅炉散热损失,锅炉壁保温不好向四周散热造成的损失; (4)排烟热损失,锅炉排烟温度过高所造成的损失。 经检测和统计,在以上列举的热损失中,未燃尽煤粉热损失最大,对锅炉热 效率影响也最大。在煤炭资源进行转化利用的时候由于煤粉的大小粗细等等会对 其造成直接影响,所以要对煤粉的粗细进行控制,保证煤粉自身的规格大小和质量,这样既可以提升煤炭资源的利用率又可以尽可能的降低能量的损耗。充分的 利用煤粉燃烧降低能耗,具体可以根据锅炉煤质的不同合理的计算出煤粉的经济 细度。这些都是在燃烧作业的时候采取严格的技术控制,可以大大提升效率减少 能耗。 2电厂热动系统节能降耗的具体措施 2.1优化锅炉设备和提升工作人员的专业知识

控制系统节能优化技术研究与应用探讨

控制系统节能优化技术研究与应用探讨 发表时间:2019-09-18T08:58:11.450Z 来源:《电力设备》2019年第7期作者:许明阳朱秀春 [导读] 摘要:燃煤电厂在生产过程中一般通过运行操作优化(运行调度)、主辅机设备节能改造来提高机组经济性,本文通过分析火电厂节能降耗管理措施现状及发展趋势,提出了通过控制系统节能优化技术降低机组能耗的思路,为热控技术管理提供新的理念和方向。 (华润电力(贺州)有限公司广西贺州 542709) 摘要:燃煤电厂在生产过程中一般通过运行操作优化(运行调度)、主辅机设备节能改造来提高机组经济性,本文通过分析火电厂节能降耗管理措施现状及发展趋势,提出了通过控制系统节能优化技术降低机组能耗的思路,为热控技术管理提供新的理念和方向。 关键词:控制系统节能优化、自动寻优控制、机组协调控制、自动控制节能化 1.概述 在传统燃煤电厂的生产运营管理中,降低机组能耗的措施主要通过运行操作调整、主辅机设备节能改造来实现,然而工艺设备节能改造需要投入大量的改造费用,且经过多年设备优化、调整优化,机务设备、运行调整在节能方面各种方式似乎已用尽,电厂生产运营节能管理该朝哪个方向发展成为了电厂经营管理日夜思索的问题。 2.控制系统节能技术研究探讨 对于火力发电厂来说,考核机组节能降耗关键指标为发电煤耗、厂用电率,要确保上述2个指标处于最低值,机组必须稳定在最佳经济工况运行。 2.2火电厂关键控制系统节能技术概述 2.2.1协调控制系统节能优化 2.2.1.1协调控制系统优化节能优化之“稳”、“准”原则 只要确保控制系统“稳”、“准”即可达到机组节能效果,因此机组协调控制系统需要不断持续改进,提高控制系统稳定性、准确性,将相关控制对象参数控制在机组最佳经济运行工况即可获得巨大的节能效果。 2.2.1.2协调控制系统优化节能优化之“细”原则 2.2.2送风控制系统 笔者所在电厂机组配置双进双出磨煤机制粉系统,根据其制粉系统特点,风量指令是通过负荷指令-风量函数F (x)后,进入超前滞后、惯性环节得到初始的送风指令,回路中的超前滞后环节的采用是为了满足先加风后加煤设置,以满足炉膛的燃烧过程。 对于送风控制系统优化相对比较简单,只需通过试验摸索最佳负荷指令-风量函数F (x),并结合氧量校正回路优化即可将风量需求控制更加精准,达到降低送、引风机电耗,降低排烟损失和减少NO x排放。 2.2.3氧量自动寻优校正回路 负荷指令产生的风量指令还需考虑到实际煤种的变化情况,常规处理在控制回路中增加氧量校正的环节,以确保燃烧的稳定性和经济性,过高氧量会造成送、引风机电耗增加,锅炉排烟损失增大,同时NOx含量升高,增加下游脱硝设备运行损耗及液氨投量;过低氧量会造成锅炉燃烧不充分、烟气飞灰含碳及COe等不完全燃烧损失增大,同时燃烧产生大量COe对炉膛炉管有腐蚀作用,因此,合适氧量校正曲线对机组运行的稳定性和经济性尤为重要,氧量校正曲线优化对于机组节能具有重要作用。 2.2.4 一次风压自动寻优 一次风压控制回路策略一般采用定压或者根据机组负荷滑压方式,然而不管哪一种都是不经济的。 对于一次风压控制系统节能优化,可通过磨煤机入口风压、风量变化,结合机组负荷指令,在线计算一次风压目标值,实现一次风压自动寻优控制。 2.2.5加热器水位自动寻优控制 由于部分机组的水位给定值不科学,需要进行水位调整试验,确定合理的运行水位。试验方法很简单,机组运行平稳后,保持各参数不变,逐步提高加热器水位,观察疏水温度下降情况,当水位提高到疏水温度不再降低时,说明此时已无蒸汽进入水封,然后再考虑适当裕量即为最低水位值,而高水位则以不淹没排空气管为限。同时可在此基础上引入加热器端差等有关运行参数,在线修正加热器运行水位定值,实现自动寻优控制。 3.控制系统节能技术实例 贺州电厂先期于2014年展开“协调控制节能优化技术”、“氧量手动寻优控制”的研究,对相关控制回路进行了初步节能优化,从数据统计看取得了非常可观节能成果,主要优化内容如下: 3.1通过试验寻找锅炉最佳氧量控制模型,对燃烧控制系统氧量动态数学模型进行修正;优化后锅炉燃烧过剩空气系数控制更加精确,提高燃烧效率,降低送、引风机厂用电,使控制系统更佳节能。 3.2贺州电厂制粉系统配置了双进双出磨煤机,入炉煤量无法直接测量,因此采用了软测量模型计算入炉煤量;本次优化对双进双出磨煤机料位与入炉煤量的动态特性数学模型进行深度优化,为负荷风挡板控制系统、协调控制系统控制模型优化提供新的理论依据。使用新模型后,提高入炉煤软测量的准确性,使原软测量偏差30~50吨降低至5~13吨,使控制系统入炉煤量控制更加精准。 3.3对协调控制系统子系统“锅炉主控”比例、积分实施变参数控制策略,解决了原控制系统周期性波动问题;在主汽压力控制回路中增加变负荷过程中压力设定值的自适应产生算法回路,以改善机组变负荷过程中的压力调节品质。 3.4对协调控制汽机指令进行相应的修改,增加机组负荷指令对应函数的前馈量;增加压力解耦控制回,提高主要压力控制品质。 3.5根据南方电网两个考核细则标准,结合机组运营现状,优化一次调频控制回路模型,提高一次调频动作合格率。 3.6优化后降低了送、引风机厂用电率 2014年3月、9月分别对贺州电厂#2、1机组氧量控制动态数学模型进行优化设计后,对锅炉燃烧过剩空气系数控制更加精确,送、引风机电耗大幅降低。 4.优化后控制系统调节品质指标 贺州电厂在对协调控制系统进行节能优化后,各主要技术考核指标均优于1000MW级机组调节系统动、稳态偏差行业标准优良指标。

能源管理系统优化

能源管理系统优化 瓦房店轴承集团有限责任公司 主创人:江忠元陈家君 主要参与人:孙永生赵玮高显华初勇 节约能源、降低消耗、保护资源是国家实施可持续发展战略的重要组成部分,而对于加入WTO融入国际经济一体化的中国国有企业,如何提高核心竞争力,在激烈的市场竞争中立于不败之地,是摆在我们面前一个十分紧迫的话题。瓦轴集团公司近几年来紧紧围绕增强市场竞争力、降低成本、提高经济效益、实现集约式发展这一目标,在多年实践探索的基础上,以现代化管理思想为指导,采用科学配套的现代管理方法和手段建立系统高效的节能管理体系,并在生产经营实践中不断优化,取得了较好的效果,使公司能源管理实现了系统化、科学化、高效化。 一、选题依据 瓦轴集团公司是一个年耗标准煤12.5万吨,能耗总价值达1.2亿元,占产品制造成本的12%左右。其中耗煤7.8万吨标煤,耗电11072万千瓦时,耗焦碳250吨,耗成品油2千吨,热力消耗25670百万千焦。万元产值综合能耗为1.03吨标煤。由此可见,能源消耗在企业产品成本中占有举足轻重的地位,加强能源管理,实现节能降耗已势在必行。 在能源管理工作中,虽然公司在管理水平、管理方法、指标水平上居于国内先进水平,但与国际先进水平相比,与企业参与国际市场竞争的要求相比,与企业“十五”发展目标要求相比,尚有较大差距。存在的主要问题是:

──节能理念上的差距。从节能主体上说,节约能源无论从能动性还是经济适用上都是积极的,要求企业经营者和员工都有必须具有主动节能意识,而目前员工已习惯于传统的被动式节约能源意识和思维定势。 ──人员责任上的差距。随着企业技术进步步伐的加快,现代企业能源管理更需要精通能源技术,熟练运用现货管理方法,具备全部节能理念的复合型、知识型管理人才。而我们在这方面的人才十分短缺,已不适应节能工作的需要。 ──技术工艺上的差距。节能新技术、新工艺未能很好地应用于生产经营中,造成企业能源利用率相对较低,主要耗能产品单耗太高。 ──装备上的差距。近几年虽然进行了较大力度的设备改造,但由于资金等原因仍缺少先进的节能型设备,普遍使用的是七、八十年代的机床,装备水平低。 ──管理体制上的差距。虽然进行了能源管理体制改革,但在运行过程中仍缺乏科学、规范、高效的系统性管理模式,能源管理体系不完善。 鉴于上述问题,我们从公司实际出发,在对能源管理系统进行自检的基础上,以能源管理系统优化为目标,以系统工程为主,配套应用多项现代化管理方法,实现能源管理系统的改善。 系统工程是以科学的观点和现化数学的方法,在充分调动人的积极因素的基础上对系统进行组织和管理,使其在总体上达到最优的目标。应用系统工程的理论来指导建立能源管理系统,进行系统设计,使能源管理体系更系统性,以达到整体优化的状态。能源管理的追求目标就是在不断优化单

系统的优化的教学设计

系统的优化的教学设计 教材分析: 系统优化是系统分析的深入和延伸,系统分析和系统优化是系统设计的基础,更是系统设计过程中的重要环节。 本节教材中分三个部分: 第一部分:案例分析 “建造隔音墙”案例,目的是为了阐述系统的意义。从实例分析入手,降低教学难度,运用系统的思想定性分析的方法,进行研究、优化,在分析过程中体验系统优化的意义。 为了让学生体会分析和优化仅仅靠定性的分析是远远不够的,还需要更多的定量计算才行,以“为江边码头选址”为例,让学生们建立数学模型并计算。 第二部分:根据案例分析总结阐述系统优化方法和一般性步骤,分析影响系统优化的因素。要求学生运用系统的思想和定性、定量相结合的方法,确定研究课题、进行分析研究、评价比较、优化方案。总结归纳出系统最优化方法的含义。 第三部分:通过试一试和技术试验的活动,让学生亲自完成一个系统优化的过程,体验系统是如何优化的。 学情分析: 学生在具体分析过程中往往会局限在具体问题的深入探究上,不能运用系统的思想和定性、定量相结合的方法,

进行优化系统。要及时对学生进行指导,帮助学生从宏观上把握系统分析和系统优化的全过程,注重学生的体验和感悟。 教学目标: 知识与技能:1、理解系统优化的意义 2、能分析影响系统优化的因素 3、初步掌握系统最优化的方法 4、能够对一个简单系统运用最优化的方法进行分析 5、运用系统最优化方法的一般性步骤对简单系统进行优化 过程与方法:通过讨论、案例分析,使学生懂得用所学的知识解决有关问题 情感态度与价值观:体验系统优化的意义,指导学生把系统优化的思想延伸到整个生活和学习当中。 教学重点与难点: 重点:系统最优化方法和一般性步骤 难点:系统优化的过程分析 教学准备:多媒体 教学流程: 教学内容与过程: ★复习巩固::

中央空调系统节能控制系统设计方案和对策

KT仟亿 中央空调系统节能控制系统设计方案北京仟亿达科技有限公司

1 概述 国家“十一五”规划纲要中明确提出要把节约资源和保护环境基本国策,建设低投入、高产出,低消耗、少排放,能循环、可持续的国民经济体系和资源节约型、环境友好型社会。提出了“十一五”期间单位国内生产总值能源消耗降低20%左右、主要污染物排放总量减少10%等目标。这是针对资源环境压力日益加大的突出问题提出来的,体现了建设资源节约型、环境友好型社会的要求,是现实和长远利益的需要,具有明确的政策导向。 中央空调在各大中型民用、商用建筑中的普及,带来了严重的能耗问题。中央空调系统的电耗一般占整座建筑电耗的50%~60%,建筑能耗则占全国总能耗的1/3左右,因此提高能源利用率是我国能源可持续发展的方向。 中央空调系统的设计通常按建筑物所在地的极端气候条件来计算其最大冷负荷,并由此确定空调主机的装机容量及空调水系统的供水流量。然而,实际上每年只有极短时间出现最大冷负荷的情况。因此,中央空调系统在绝大部分时间里,都是在部分负荷(远小于其额定容量)条件下运行的。据统计,实际空调负荷平均只有设备能力的50%左右,这无疑造成了大量的能源白白浪费。而且,空调水系统的水泵、风机等机电设备,长期处在工频额定状态下高速运行,机械磨损严重,导致设备故障增加和使用寿命缩短。 另一方面,空调负荷又具有变动性。由于季节交替、气候变幻、昼夜轮回、使用变化(如旅游旺、淡季)及人流量增减(如宾馆入住率的变化)等各种因素变化的影响,中央空调系统的负荷具有起伏变化和不恒定的特点,如果中央空调的运行方式不能根据负荷的变化而调节,始终在额定容量(即满负荷状态)下运行,也势必造成巨大的能源浪费。 由北京仟亿达科技有限公司提供的中央空调分布式系统节能控制装置——KTC-2005系列、KTC-2005系列产品,以模糊控制理论为指导、以计算机技术、系统集成技术、变频调速技术为控制手段,以多年丰富的实践经验和数据为基础,科学地实现了中央空调能量供应按末端负荷需要提供,最大限度地减少了空调系统能源浪

浅谈循环水系统节能优化

浅谈循环水系统节能优化 摘要:循环水系统在很多行业都有着广泛的应用,对其进行节能优化,能够帮 助企业降低能耗,提高系统能源利用效率以及企业的经济效益和社会效益。本文 从循环水系统的发展情况出发,结合循环水系统运行中存在的问题,就其节能优 化策略进行了讨论,希望能够为循环水系统的节能优化提供参考。 关键词:循环水系统;节能优化;策略 前言:循环水系统是工业企业中常见的热媒介质换热方式,不过其在运行过程中 需要消耗大量的能源,而且能源利用率较低。可持续发展理念不断深化背景下, 要求企业必须做好循环水系统的节能优化工作,提高系统能源利用效率,降低能 源消耗,对循环水系统运行中存在的问题进行处理,以保证节能降耗的效果。 1 循环水系统的发展状况 循环水系统的基本功能,是将冷却水输送到高低压凝气器中,对汽轮机低压 缸排出的气体进行冷却,维持高低压凝气器真空状态,确保汽水循环能够持续进行。现如今,国内外都在加强对于循环水系统节能技术的研究,研究的主要方向 是利用水轮机来替代电机,驱动风机运转。运用在循环水系统中,能够代替电机 驱动风机运转的水轮机有三种,分别是低速混流式三元流模拟设计水轮机、低速 混流式补偿设计水轮机和高速混流式水轮机,第一种水轮机的技术水平较高,能 源利用效率可以达到90%以上。事实上,为了能够降低循环水系统的能耗,使用 水轮机代替电机驱动风机,对操作方法和操作条件进行优化,是今后相当长一段 时间内的主要节能措施,已经在不少工业企业中得到了应用,并且取得了较为显 著的成果。 2 循环水系统运行中存在的问题 从目前来看,在循环水系统运行中,存在很多问题,影响系统功能正常发挥 的同时,也导致了能耗的增大。一是水泵选型问题。现阶段,部分工业企业在设 置循环水系统的过程中,没有重视循环水泵的选型工作,导致水泵和实际运行不 匹配,存在高扬程低流量的情况,循环水系统换热器的流速相对较低,对于患者 效果产生了负面影响;二是局部偏流问题。部分循环水分支管线的流速偏低,导 致换热器换热效果差,而且很多时候,换热器中的循环水会走管程,在流速较低 的情况下,很容易出现循环水管束管路堵塞的问题,还可能引发垢下腐蚀;三是 轮机驱动问题。就目前来看,循环水系统中水轮机的驱动方式可以分为电机驱动 和上文提到的水力驱动,两种驱动方式各有利弊,同时也都有着一定的优化空间;四是系统压力问题。在循环水系统中,压力问题是一个综合性问题,通常来讲, 单个循环水系统会同时供多套装置使用,存在跨部门使用的情况,给系统管理工 作带来了一定难度,如何对系统压差和循环水换热器管束的流速进行平衡,是技 术人员需要解决的关键性问题;五是水质问题。结合循环水系统换热器的检修情 况分析,不少换热器都存在结垢和腐蚀的问题,表明水质相对较差,需要对垢下 腐蚀的原因进行分析,做好循环水水质的优化,对其运行方式进行调整和完善, 保证循环水系统的稳定运行;六是温差问题。循环水系统中,换热器给水和回水 存在相应的温差问题,可能出现不同位置的换热器换热温差有的可以满足需求, 有的无法满足需求的情况。 3 循环水系统节能优化策略 3.1做好水泵选用 循环水泵的运行效率会对循环水系统的节能效果产生直接影响,就目前而言,高

空调系统节能优化设计

空调系统节能优化设计 发表时间:2012-12-18T16:30:00.623Z 来源:《建筑学研究前沿》2012年8月Under供稿作者:汪舟生 [导读] 在空气处理单元中,新风与部分回风经混合后形成混风,当混风经由热交换器冷冻水进行热交换后则形成送风。 汪舟生(无锡市申新工程技术有限公司 214071) 摘要:空调系统能耗占整个建筑能耗的 70% 左右。近年来,伴着节能技术的日臻完善,空调怎样在保证舒适性要求的前提下以增强能源利用率来实现节能,本文指出了目前空调系统节能优化中存在的主要问题,同时提出空调系统节能优化的一些措施。 关键词:空调系统;节能优化;消耗 智能建筑节能是世界性的大潮流及大趋势,也是中国改革与发展的迫切要求,是21世纪中国建筑事业发展的一个重点。节能与环保是实现可持续发展的关键。从可持续发展理论出发,建筑节能的关键又在于提高能量效率,所以无论制订建筑节能标准还是从事具体工程项目的设计,都应把提高能量效率作为建筑节能的着眼点。 一、暖通空调概述 1.暖通空调的工作原理 暖通空调的主要工作原理是制冷剂在空调制冷机组内的蒸发器中与冷冻水进行热量交换发生气化,这一过程会使冷冻水的温度降低,被气化后的制冷剂在空压机的作用下,会形成高压、高温的气体,当气体流经制冷机组的冷凝器时,则会被来自冷却塔的冷却水所冷却,从而是气体转变为低压、低温的液体,与此同时,被降温后的冷冻水经由水泵被送至空气处理机的热交换器中,随后与混风进行冷热交换形成冷风源,最后经由送风管路送入到各个房间。通过这样的循环过程,在夏季房间内的热量会被冷却水带走,流经冷却塔后释放到空气当中。 2.空调供水系统 通常情况下,冷冻水系统内的冷冻水管道均为循环式系统;变流量系统按照组成装置的不同,可分为相对变流量和真正变流量两种,其中真正变流量可以充分发挥变流量系统的节能潜力。 3.空气处理单元 在空气处理单元中,新风与部分回风经混合后形成混风,当混风经由热交换器冷冻水进行热交换后则形成送风。冬季时,混风能够吸收能量,从而是温度升高,夏季时,随着混风温度降低,送风进入室内后会与室内的空气进行热量的传递,最终将温度调节至房间所需的设定值。此时房间内的气体在排风机的作用下与新风混合后,重复上诉过程进行循环。由于混风和冷冻水的热交换过程是在热交换器中进行的,因此,热交换器属于暖通空调空气处理单元中较为重要的组成部分。当热交换器的工作状况处于部分负荷时,与设计工况是不同的,而在实际使用中,大部分时间热交换器都是处于部分负荷状态,也就是说其基本都处在非设计工况下工作,所以在进行设计时应尽量了解热交换器的这一特点。 二、暖通空调工程设计优化的重要性 其一,对暖通空调工程进行优化设计,不仅可以满足人们对工作和生活环境舒适性的要求,而且还可以使工作效率和生活质量有所提高;其二,由于暖通空调工程属于整个建筑中能耗较高的部分,所以对其进行优化设计,可以起到节约能源、提高能源利用率的作用;其三,随着直接数字控制器(DDC)、变频技术以及能源管理控制系统等的广泛应用,使暖通空调工程的优化设计策略和控制技术相辅相成,在节能降耗的同时,能够更好的对暖通空调系统进行指导和控制;其四,基于大部分暖通空调工程在设计之初,没能很好考虑季节变化、时间以及房屋的朝向等问题引起的冷负荷变化,致使这样的设计难免会造成能源的浪费,而对暖通空调工程进行优化设计后,可以从根本弥补这一缺陷,并且还能降低事故的发生几率;其五,由于在进行暖通空调设备选型时,通常都是按照设备的最大负荷进行计算的,并采用固定工作时间的方式运行。但是在大多数情况下,暖通空调都不是处于满负荷运行的,同时由于多种因素的影响,如阳光照射、建筑外部环境的温湿度、房间内部的负荷变化等,一旦采用固定工作时间运行,必然会导致设备的使用效率低下,使能源大量浪费。因此,为了调整空调系统的运行时间,作为施工单位,对暖通空调的运行比较了解,就必须配合设计人员对暖通空调工程进行优化设计,从而确保空调系统的运行效率,达到节约能源的目的。 三、暖通空调工程的优化设计方法 1.控制策略的优化 由于空气处理机的直接数字控制器(DDC)基本都是采用PTD进行控制的,所以选用一个较为合适的PTD参数能够起到促进空调系统稳定运行的作用。PTD的系数高,可以使室内温度较快的达到预定值,反之这一过程会较慢,但也并不是说PTD的系数越高就越好,一旦系数太高时很容易引起DDC控制器失稳。虽然PTD可以解决大多数场所的空调控制问题,但是有些特殊场所仅靠较高的PTD系数提高空调系统对负荷变化的响应速度是很难解决问题的,比如影剧院等大热惯性场所,对于这样场所可采用双级控制,即将温度传感器分别安装在室内和送风道上,由主DDC控制器完成室内温度的设定,而水阀的驱动则可由副DDC按照主DDC以及风道传感器的指令来完成,基于风道温度变化的速度要快于房间内温度的变化,采用这样的控制方式可以加速空调系统对温度波动的响应。在实际工程设计中,可以根据不同情况的需要,选择不同的优化控制,从而达到最优的效果。如,写字楼、大型商场等场所,夏、秋季在清晨时通过控制程序启动空气处理机,并利用室外的凉风对室内进行全面换气预冷,这样做不进可以节约能源消耗,而且还可以提高室内空气的质量。 2.控制权的优化设计 在某些特定的场合,如会议室,如果可以将空调或是通风系统的参数设定功能放置在现场,那么则能够更加符合用户的需要。然而DDC本身却并具备这样的功能,必须添设专门的部件才能实现。为了实现这一功能必要时可以添设VRV控制面板的设定器,它可以给用户带来极大的方便和舒适性。 3.DDC的优化 由于DDC控制系统的处理能力是不同的,所以应根据各个场合不同的需要,选择合适处理能力的DDC,如热力站监控点、冷冻机房等密集场合应优先考虑采用大型的DDC控制器,以减少控制器间的通讯和故障发生的频率;对于通风机、新风机、空气处理机等通常采用中型或小型的DDC即可满足使用需要。目前,可编程逻辑控制器(PLC)的发展速度较快,其应用范围也越来越广泛,因此,在暖通空调现

电除尘节能优化控制系统设计与开发

电除尘节能优化控制系统的设计与开发 厦门龙净环保节能科技有限公司李建阳 摘要:本文介绍了电除尘器节能优化控制系统需要解决的问题和关键性技术开发。在现场运行数据分析的基础上,结合多年的电除尘器工作经验,设计和开发了该系统的软件和硬件。 关键词:节能优化电除尘器工况诊断分析 一、前言 “节能减排”是我国的一项重要决策,是国家经济社会发展的必然选择。电除尘器作为重要的环保设备,也是火电厂的高能耗设备,一般情况下电除尘器的耗电量约占电厂厂用电的3~5‰。 在实际运行中,电除尘器作为一个耗电大户,降低电除尘消耗功率引起电厂高度重视,电除尘器耗能指标已经成为投标的一个重要技术参数,近年来的研究与实践表明:在满足排放要求的前提下,电除尘器具有很大的节电潜力,经济效益明显。而如何在提高除尘效率、降低烟尘排放浓度的同时,大幅度降低电除尘器的能耗,是目前需要解决的重要课题。 二、需要解决的问题 1、电除尘器的复杂性 在燃煤电厂,电除尘器是最广泛使用的工业系统,用于收集燃烧后的飞灰。它同时是一台机械(振打系统,电晕线结构,收尘板等),一台电气机械(高压电源、放电等), 一台流体动力机械(气流分布和调节等),一台“化工机械”(灰特性和烟气调质)。因此电除尘器是一个多参数的复杂系统,掌握各种重要参数对电除尘器工况特性和对电除尘器性能的影响是十分关键的。 通过对电除尘器节能潜力的分析,选择正确的方法,设计一个多参量反馈闭环、保证电除尘器性能不降低、可靠有效的节能控制系统来满足节能减排的需求是一项非常急迫的工作。 2、煤种的多变性 由于煤炭资源缺乏,发电厂燃用煤种经常变化,导致电除尘器工况特性变化较大。如果缺乏了解煤种、飞灰特性对电除尘器性能影响的经验,又没有电除尘器运行工况分析软件的支持,设计的控制系统就不能正确地自动跟踪工况的变化,系统虽然可以有一定的节能,但电除尘器除尘效率经常受到较大影响,有的排放严重超标。 3、手工节能的局限性 在有些现场和其他的公司的产品,他们采用的节能方式是手工设定电除尘器或者采用停电场的方式进行节能,这种方式不仅要时时刻刻进行人工干预,而且不能保证电除尘器的高效率

相关主题
文本预览
相关文档 最新文档