当前位置:文档之家› 约束满足与邻域搜索结合的混合算法及应用

约束满足与邻域搜索结合的混合算法及应用

约束满足与邻域搜索结合的混合算法及应用
约束满足与邻域搜索结合的混合算法及应用

约束满足与邻域搜索结合的混合算法及应用[摘要] 总结约束满足求解技术和邻域搜索算法,分析约束满足与邻域搜索

单一算法的优劣,以及两者结合的优势,提出约束满足与邻域搜索相结合的混合算法的一般框架,并以Job Shop 调度优化问题为例对该算法框架进行实例说明。

[关键词] 约束满足;邻域搜索;混合算法

ddoi : 10 . 3969 / j . issn . 1673 - 0194 . 2009 . 21 . 017

1引言

约束满足技术集成了运筹学、人工智能、逻辑编程和图论中的方法和思想,是解决组合优化问题的一门新兴技术。约束满足建模能力较强,在约束求解中,能够充分利用问题的结构信息和约束关系,采用约束传播、回溯等技术对求解空间快速缩减,提高问题的求解效率。邻域搜索算法是一种非常有效的解决组合优化问题的方法,在搜索空间内利用局部指导规则探索优良解,搜索效率高,具有可衡量性。约束满足与邻域搜索法均存在自身的优势和局限性,相互结合可以有效利用算法的互补性。

目前对约束满足与邻域搜索相结合的混合算法的研究成果比较少。文献[1]将邻域搜索和向前看(Look Ahead)技术结合,在搜索过程中遇到死点时要么回溯,要么应用邻域搜索继续新的空间搜索。文献[2]中提出的“Decision-Repair”方法集成了禁忌搜索、一致性技术和基于冲突的启发式方法来引导搜索过程。文献[3]在系统搜索过程中,使用变量排序和值排序法,进行不完全搜索,用N皇后问题进行算法测试。文献[4]用约束规划算法产生一个可行解,作为禁忌搜索算法的初始解。文献[5]对NEH算法加以扩展,得到高质量的初始解,提出跳出局部极值方法,改进约束满足修复算法。

本文首先介绍约束满足技术和邻域搜索技术,然后总结两者相结合的混合算法的框架,最后以Job Shop 调度为例,给出混合算法实现步骤。

2约束满足技术和邻域搜索技术

2.1 约束满足技术

粒子群优化算法综述

粒子群优化算法综述 摘要:本文围绕粒子群优化算法的原理、特点、改进与应用等方面进行全面综述。侧重于粒子群的改进算法,简短介绍了粒子群算法在典型理论问题和实际工业对象中的应用,并给出了粒子群算三个重要的网址,最后对粒子群算做了进一步展望。 关键词;粒子群算法;应用;电子资源;综述 0.引言 粒子群优化算法]1[(Particle Swarm Optimization ,PSO)是由美国的Kenned 和Eberhar 于1995年提出的一种优化算法,该算法通过模拟鸟群觅食行为的规律和过程,建立了一种基于群智能方法的演化计算技术。由于此算法在多维空间函数寻优、动态目标寻优时有实现容易,鲁棒性好,收敛快等优点在科学和工程领域已取得很好的研究成果。 1. 基本粒子群算法]41[- 假设在一个D 维目标搜索空间中,有m 个粒子组成一个群落,其中地i 个粒子组成一个D 维向量,),,,(21iD i i i x x x x =,m i ,2,1=,即第i 个粒子在D 维目标搜索空间中的位置是i x 。换言之,每个粒子 的位置就是一个潜在的解。将i x 带入一个目标函数就可以计算出其适 应值,根据适应值得大小衡量i x 的优劣。第i 个粒子的飞翔速度也是一个D 维向量,记为),,,(21iD i i i v v v v =。记第i 个粒子迄今为止搜索到的最优位置为),,,(21iD i i i p p p p =,整个粒子群迄今为止搜索到的最优位置为),,,(21gD gi g g p p p p =。 粒子群优化算法一般采用下面的公式对粒子进行操作

)()(22111t id t gd t id t id t id t id x p r c x p r c v v -+-+=+ω (1) 11+++=t id t id t id v x x (2) 式中,m i ,,2,1 =;D d ,,2,1 =;ω是惯性权重, 1c 和2c 是非负常数, 称为学习因子, 1r 和2r 是介于]1,0[间的随机数;],[max max v v v id -∈,max v 是常数,由用户设定。 2. 粒子群算法的改进 与其它优化算法一样PSO 也存在早熟收敛问题。随着人们对算 法搜索速度和精度的不断追求,大量的学者对该算法进行了改进,大致可分为以下两类:一类是提高算法的收敛速度;一类是增加种群多样性以防止算法陷入局部最优。以下是对最新的这两类改进的总结。 2.1.1 改进收敛速度 量子粒子群优化算法]5[:在量子系统中,粒子能够以某一确定的 概率出现在可行解空间中的任意位置,因此,有更大的搜索范围,与传统PSO 法相比,更有可能避免粒子陷入局部最优。虽然量子有更大的搜索空间,但是在粒子进化过程中,缺乏很好的方向指导。针对这个缺陷,对进化过程中的粒子进行有效疫苗接种,使它们朝着更好的进化方向发展,从而提高量子粒子群的收敛速度和寻优能力。 文化粒子群算法]6[:自适应指导文化PSO 由种群空间和信念空间 两部分组成。前者是基于PSO 的进化,而后者是基于信念文化的进化。两个空间通过一组由接受函数和影响函数组成的通信协议联系在一起,接受函数用来收集群体空间中优秀个体的经验知识;影响函数利用解决问题的知识指导种群空间进化;更新函数用于更新信念空间;

二分搜索算法和快速排序算法及分治策略

实验课程:算法分析与设计 实验名称:实验二C/C++环境及递归算法(综合性/设计性) 实验目标: 1、熟悉二分搜索算法和快速排序算法; 2、初步掌握分治算法; 实验任务: 掌握分治策略的概念和基本思想。 实验题: 1、设a[0:n-1]是一个已排好序的数组。请改写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素的位置i和大于x的最小元素位置j。当搜索元素在数组中时,I 和j相同,均为x在数组中的位置。设有n个不同的整数排好序后存放于t[0:n-1]中,若存在一个下标i,0≤i<n,使得t[i]=i,设计一个有效的算法找到这个下标。要求算法在最坏的情况下的计算时间为O(logn)。 2、在快速排序中,记录的比较和交换是从两端向中间进行的,关键字较大的记录一次就能交换到后面单元,关键字较小的记录一次就能交换到前面单元,记录每次移动的距离较大,因而总的比较和移动次数较少。 实验设备及环境: PC;C/C++的编程环境Visual C++。 实验主要步骤: (1)明确实验目标和具体任务; (2)理解实验所涉及的分治算法; (3)编写程序并实现分治算法; (4)设计实验数据并运行程序、记录运行的结果; 实验数据及运行结果、实验结果分析及结论: 1、#include using namespace std; int main() { int const length=100; int n,x; int a[length]; cout<<"依次输入数组的长度,数组内容,要查找的数"<>n; //输入数组的长度 for(int i=0;i>a[i]; cin>>x;

约束满足与邻域搜索结合的混合算法及应用

约束满足与邻域搜索结合的混合算法及应用[摘要] 总结约束满足求解技术和邻域搜索算法,分析约束满足与邻域搜索 单一算法的优劣,以及两者结合的优势,提出约束满足与邻域搜索相结合的混合算法的一般框架,并以Job Shop 调度优化问题为例对该算法框架进行实例说明。 [关键词] 约束满足;邻域搜索;混合算法 ddoi : 10 . 3969 / j . issn . 1673 - 0194 . 2009 . 21 . 017 1引言 约束满足技术集成了运筹学、人工智能、逻辑编程和图论中的方法和思想,是解决组合优化问题的一门新兴技术。约束满足建模能力较强,在约束求解中,能够充分利用问题的结构信息和约束关系,采用约束传播、回溯等技术对求解空间快速缩减,提高问题的求解效率。邻域搜索算法是一种非常有效的解决组合优化问题的方法,在搜索空间内利用局部指导规则探索优良解,搜索效率高,具有可衡量性。约束满足与邻域搜索法均存在自身的优势和局限性,相互结合可以有效利用算法的互补性。 目前对约束满足与邻域搜索相结合的混合算法的研究成果比较少。文献[1]将邻域搜索和向前看(Look Ahead)技术结合,在搜索过程中遇到死点时要么回溯,要么应用邻域搜索继续新的空间搜索。文献[2]中提出的“Decision-Repair”方法集成了禁忌搜索、一致性技术和基于冲突的启发式方法来引导搜索过程。文献[3]在系统搜索过程中,使用变量排序和值排序法,进行不完全搜索,用N皇后问题进行算法测试。文献[4]用约束规划算法产生一个可行解,作为禁忌搜索算法的初始解。文献[5]对NEH算法加以扩展,得到高质量的初始解,提出跳出局部极值方法,改进约束满足修复算法。 本文首先介绍约束满足技术和邻域搜索技术,然后总结两者相结合的混合算法的框架,最后以Job Shop 调度为例,给出混合算法实现步骤。 2约束满足技术和邻域搜索技术 2.1 约束满足技术

图像局部特征点检测算法综述

图像局部特征点检测算法综述 研究图像特征检测已经有一段时间了,图像特征检测的方法很多,又加上各种算法的变形,所以难以在短时间内全面的了解,只是对主流的特征检测算法的原理进行了学习。总体来说,图像特征可以包括颜色特征、纹理特等、形状特征以及局部特征点等。其中局部特点具有很好的稳定性,不容易受外界环境的干扰,本篇文章也是对这方面知识的一个总结。 本篇文章现在(2015/1/30)只是以初稿的形式,列出了主体的框架,后面还有许多地方需要增加与修改,例如2013年新出现的基于非线性尺度空间的KAZE特征提取方法以及它的改进AKATE等。在应用方面,后面会增一些具有实际代码的例子,尤其是基于特征点的搜索与运动目标跟踪方面。 1. 局部特征点 图像特征提取是图像分析与图像识别的前提,它是将高维的图像数据进行简化表达最有效的方式,从一幅图像的M×N×3的数据矩阵中,我们看不出任何信息,所以我们必须根据这些数据提取出图像中的关键信息,一些基本元件以及它们的关系。 局部特征点是图像特征的局部表达,它只能反正图像上具有的局部特殊性,所以它只适合于对图像进行匹配,检索等应用。对于图像理解则不太适合。而后者更关心一些全局特征,如颜色分布,纹理特征,主要物体的形状等。全局特征容易受到环境的干扰,光照,旋转,噪声等不利因素都会影响全局特征。相比而言,局部特征点,往往对应着图像中的一些线条交叉,明暗变化的结构中,受到的干扰也少。 而斑点与角点是两类局部特征点。斑点通常是指与周围有着颜色和灰度差别的区域,如草原上的一棵树或一栋房子。它是一个区域,所以它比角点的噪能力要强,稳定性要好。而角点则是图像中一边物体的拐角或者线条之间的交叉部分。 2. 斑点检测原理与举例 2.1 LoG与DoH 斑点检测的方法主要包括利用高斯拉普拉斯算子检测的方法(LOG),以及利用像素点Hessian矩阵(二阶微分)及其行列式值的方法(DOH)。 LoG的方法已经在斑点检测这入篇文章里作了详细的描述。因为二维高斯函数的拉普拉斯核很像一个斑点,所以可以利用卷积来求出图像中的斑点状的结构。 DoH方法就是利用图像点二阶微分Hessian矩阵:

启发式优化算法综述

启发式优化算法综述 一、启发式算法简介 1、定义 由于传统的优化算法如最速下降法,线性规划,动态规划,分支定界法,单纯形法,共轭梯度法,拟牛顿法等在求解复杂的大规模优化问题中无法快速有效地寻找到一个合理可靠的解,使得学者们期望探索一种算法:它不依赖问题的数学性能,如连续可微,非凸等特性; 对初始值要求不严格、不敏感,并能够高效处理髙维数多模态的复杂优化问题,在合理时间内寻找到全局最优值或靠近全局最优的值。于是基于实际应用的需求,智能优化算法应运而生。智能优化算法借助自然现象的一些特点,抽象出数学规则来求解优化问题,受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。 为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。因此,采用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的。启发式算法是一种技术,这种技术使得在可接受的计算成本内去搜寻最好的解,但不一定能保证所得的可行解和最优解,甚至在多数情况下,无法阐述所得解同最优解的近似程度。 启发式算法是和问题求解及搜索相关的,也就是说,启发式算法是为了提高搜索效率才提出的。人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题

时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案,以随机或近似随机方法搜索非线性复杂空间中全局最优解的寻取。启发式解决问题的方法是与算法相对立的。算法是把各种可能性都一一进行尝试,最终能找到问题的答案,但它是在很大的问题空间内,花费大量的时间和精力才能求得答案。启发式方法则是在有限的搜索空间内,大大减少尝试的数量,能迅速地达到问题的解决。 2、发展历史 启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,才能取得了巨大的成就。纵观启发式算法的历史发展史: 40年代:由于实际需要,提出了启发式算法(快速有效)。 50年代:逐步繁荣,其中贪婪算法和局部搜索等到人们的关注。 60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规模的问题仍然无能为力(收敛速度慢)。 70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。由此必须引入新的搜索机制和策略。 Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的兴趣。 80年代以后:模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较火热的:演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms),拟人拟物算法,量子算法等。

禁忌搜索算法

禁忌搜索算法 2009210042 李同玲运筹学与控制论 搜索是人工智能的一个基本问题,一个问题的求解过程就是搜索。人工智能在各应用领域中,被广泛的使用。现在,搜索技术渗透在各种人工智能系统中,可以说没有哪一种人工智能的应用不用搜索方法。 禁忌搜索算法(Tabu Search或Taboo Search,简称TS)的思想最早由Glover (美国工程院院士,科罗拉多大学教授)在1977年提出,它是对局部邻域搜索的一种扩展,是一种全局邻域搜索算法,是人工智能的一种体现,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。 1.1引言 1.1.1局部邻域搜索 局部邻域搜索是基于贪婪思想持续地在当前的邻域中进行搜索,虽然算法通用易实现,且容易理解,但其搜索性能完全依赖于邻域结构和初始解,尤其容易陷入局部极小而无法保证全局优化性。 局部搜索的算法可以描述为:

1、 选定一个初始可行解:0x ; 记录当前最优解0best x x =,()best T N x =; 2、 当\best T x =?时,或满足其他停止运算准则时,输出计算结果, 停止运算;否则,从T 中选一集合S ,得到S 中的最好解now x ;若()()now best f x f x <,则b e s t n o w x x =,()best T N x =;否则,\T T S =;重复2,继续搜索 这种邻域搜索方法容易实现理解,容易实现,而且具有很好的通用性,但是搜索结果完全依赖于初始解和邻域的结构,而且只能搜索到局部最优解。为了实现全局搜索,禁忌搜索采用允许接受劣解来逃离局部最优解。针对局部领域搜索,为了实现全局优化,可尝试的途径有:以可控性概率接受劣解来逃逸局部极小,如模拟退火算法;扩大领域搜索结构,如TSP 的2-opt 扩展到k-opt ;多点并行搜索,如进化计算;变结构领域搜索( Mladenovic et al,1997);另外,就是采用TS 的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。 1.1.2禁忌搜索算法的基本思想 禁忌搜索算法的基本思想就是在搜索过程中将近期的历史上的搜索过程存放在禁忌表(Tabu List )中,阻止算法重复进入,这样就有效地防止了搜索过程的循环。禁忌表模仿了人类的记忆功能,禁忌搜索因此得名,所以称它是一种智能优化算法。 具体的思路如下:禁忌搜索算法采用了邻域选优的搜索方法,为了能逃离局部最优解,算法必须能够接受劣解,也就是每一次迭代得到的解不必一定优于原来的解。但是。一旦接受了劣解,迭代就可能

差分进化算法综述概况

差分进化算法(DE)[1]是Storn 和Price 在1995 年提出的一种基于种群差异的进化算法,DE是一种随机的并行搜索算法。差分进化计算和其他进化计算算法一样,都是基于群体智能理论的优化算法,利用群体内个体之间的合作与竞争产生的群体智能模式来指导优化搜索的进行。与其他进化计算不同的是,差分进化计算保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和一对一的竞争生存策略,降低了进化操作的复杂性。差分进化计算特有的进化操作使得其具有较强的全局收敛能力和鲁棒性,非常适合求解一些复杂环境中的优化问题。 最初试图使用向量差进行向量种群的混洗,以此来解决切比雪夫多项式适应性问题。DE 通过种群内个体间的合作与竞争来实现对优化问题的求解,其本质上是一种基于实数编码的具有保优思想的进化算法。该算法实现技术简单,在对各种测试问题的实验中表现优异,已经成为近年来进化算法研究中的热点之一。 差分进化算法基本原理 基本的差分进化算法是基于候选方案种群的算法,在整个搜索空间内进行方案的搜索,通过使用简单的数学公式对种群中的现有方案进行组合实现的。如果新的方案有所改进,则被接受,否则被丢弃,重复这一过程直到找到满意的方案。 设 f 是最小化适应度函数,适应度函数以实数向量的形式取一个候选方案作为参数,给出一个实数数值作为候选方案的输出适应值。其目的是在搜索空间的所有方案p 中找到m 使得f(m) ≤f(p)。最大化是找到一个m 使得f(m) ≥f(p)。 设X=(x1, x2,…, xn)∈?n是种群中一个个体,基本的差分进化算法如下所述: ?在搜索空间中随机地初始化所有的个体。 ?重复如下操作直到满足终止条件(最大迭代数或者找到满足适应值的个体) o 对于种群中的每个个体: ●随机地从种群中选择三个彼此不同的个体a,b 和c。 ●选择一个随机索引R ∈{1, ..., n},n 是被优化问题的维数。 ●通过对每个i ∈{1, ..., n}进行如下的迭代计算可能的新个体Y = [y1, ..., yn] 生成一 个随机数ri~U(0,1); ●如果(i=R)或者(ri3。差分进化算法作为一种新出现的优化算法在实际应用中表现出了优异的性能,被广泛应用到不同的领域,已经成为近年来优化算法的研究的热点之一。研究差分进化算法,探索提高差分进化算法性能的新方法,并将其应用到具体工程问题的解决中,具有重要的学术意义和应用价值。 差分进化计算的群体智能搜索策略分析 1 个体行为及个体之间信息交互方法分析 差分进化的个体表示方式与其他进化计算相同,是模拟生物进化中的关键因素,即生物的染色体和基因,构造每个解的形式,构成了算法的基础。一切的寻优操作都是在个体的基础上进行的,最优个体是搜寻到的最优的解。 差分进化的个体行为主要体现在差分变异算子和交叉算子上。

人工智能 约束满足问题 6-3 回溯搜索CSP

Backtracking Search for CSPs

Contents ?6.3.1 Overview of Backtracking Search ?6.3.2Questions to Improve Backtracking

6.3. Backtracking Search for CSPs Overview of Backtracking Search 回溯搜索概述 ?It is a general algorithm on depth-first search, used for finding solutions to some computational problems, notably CSPs. 是一种深度优先搜索的通用算法,用于查找某些计算问题的答案,尤其是CSPs。 ?Backtracking search incrementally builds candidates to the solutions, and abandons each partial candidate c(backtracks), as soon as it determines that c cannot possibly be completed to a valid solution. 回溯搜索递增地构建解的候选,而且一旦确定部分候选c不能成为一个合法的解,就将c抛弃(回溯)。 Example: 8-queens puzzle 8皇后难题 ?In the common backtracking approach, the partial candidates are arrangements of k queens in the first k rows of the board, all in different rows and columns. 常见的回溯方法,部分候选是在棋盘的在前k行上布局k个皇后,所有这些要在不同的行与列上。

组合优化近似搜索算法中的超启发式发展趋势

文章编号:100622475(2004)0620007205 收稿日期:2003206230 作者简介:李菊芳(19782),女,河南林州人,国防科技大学人文与管理学院博士研究生,研究方向:系统管理与综合集成技术,智能优化算法;谭跃进(19582),男,湖南长沙人,教授,博士生导师,研究方向:系统管理与综合集成技术。 组合优化近似搜索算法中的超启发式发展趋势 李菊芳,谭跃进 (国防科技大学人文与管理学院系统工程研究所,湖南长沙 410073) 摘要:对组合优化中近似搜索算法采用的超启发式策略进行了总结和分类,并着重从强化和变化两个概念出发分析了不同超启发式的优缺点,探讨了其发展趋势,目的是为开发博采众长的混合近似搜索算法提供参考和指导。关键词:近似搜索算法;超启发式;强化;变化;混合算法中图分类号:TP301.6 文献标识码:A U ptrend on Metaheuristics in Approxim ate Search Algorithms for Combinatori al Optimization LI Ju 2fang ,T AN Y ue 2jin (Institute of Management Science ,National University of Defense T echnology ,Changsha 410073,China ) Abstract :This paper classifies and summarizes the metaheuristics in approximate search alg orithms for combinatorial optimization ,and em phasizes analyzing s ome strengths and weaknesses of different approaches from tw o concepts as intensification and diversification.The purpose is to find the uptrend and provide s ome references and guidance for developing hybrid alg orithms combining strengths of different mataheuristics. K ey w ords :approximate search alg orithm ;metaheuristic ;intensification ;diversification ;hybrid alg orithm 0 引 言 组合优化问题的求解算法可以分为两大类:一类 是精确算法,这类算法将对解空间进行完整搜索,可以保证找到小规模问题的最优解;另一类是近似算法,这类算法放弃了对解空间搜索的完整性,因此不能保证最终解的全局最优性。由于组合优化问题中大量存在着NP 2Hard 问题,因此精确搜索算法在问题规模较大时往往无法实现。而近似算法尽管不能证明解的最优性,但很多情况下却能够以合理的计算代价找出较好的近优解,因而逐渐被理论研究和实践应用所广泛关注。 组合优化问题的近似求解技术中,较常用、较有代表性的是邻域搜索(neighborhood search )算法,这类算法从某初始解出发,利用一些规则指导搜索过程反复对当前解的邻域进行搜索并替换当前解,最终逐步实现向最优解移动。基本局部搜索(basic local search )算法或称爬山法(hill climbing )可以看作是最简单的邻域搜索算法,它采用一种迭代式改进的简单 思想,以贪婪的方式在当前解的近邻中进行搜索,每步移动只接受比当前解更好的解。基本局部搜索的最大缺点在于其往往很快就会到达局部极值并终止整个搜索过程,从而放弃对解空间中其它区域的搜索,所找到的局部极值解则往往离全局最优解还有很大距离。针对这个缺点,许多改进的邻域搜索算法在基本局部搜索算法的基础上,采用了一些更好的规则和方法来指导搜索过程摆脱局部极值,实现在整个解空间中对优良解的探索,如模拟退火、禁忌搜索、遗传算法等等,它们所使用的用于指导搜索的规则和方法又被称为超启发式(metaheuristics )。目前对超启发式尚没有统一的标准定义,从字面理解,英文中heuristic (译为启发式)的意思是探索性过程或方法,而前缀meta 是超出、在一个更高层次的意思,算法中采用超启发式的目的是要在一个更高的层次对解空间进行探索。 总的说来,超启发式一般具有如下基本属性[2]:(1)它是一种指导搜索过程的策略;(2)其目标是高效地探索解空间来寻找最优(次优)解;(3)构造超启发 计算机与现代化  2004年第6期 J IS UAN J I Y U XI ANDAIH UA 总第106期

基于RRT的运动规划算法综述

基于RRT的运动规划算法综述 1.介绍 在过去的十多年中,机器人的运动规划问题已经收到了大量的关注,因为机器人开始成为现代工业和日常生活的重要组成部分。最早的运动规划的问题只是考虑如何移动一架钢琴从一个房间到另一个房间而没有碰撞任何物体。早期的算法则关注研究一个最完备的运动规划算法(完备性指如果存在这么一条规划的路径,那么算法一定能够在有限时间找到它),例如用一个多边形表示机器人,其他的多边形表示障碍物体,然后转化为一个代数问题去求解。但是这些算法遇到了计算的复杂性问题,他们有一个指数时间的复杂度。在1979年,Reif则证明了钢琴搬运工问题的运动规划是一个PSPACE-hard问题[1]。所以这种完备的规划算法无法应用在实际中。 在实际应用中的运动规划算法有胞分法[2],势场法[3],路径图法[4]等。这些算法在参数设置的比较好的时候,可以保证规划的完备性,在复杂环境中也可以保证花费的时间上限。然而,这些算法在实际应用中有许多缺点。例如在高维空间中这些算法就无法使用,像胞分法会使得计算量过大。势场法会陷入局部极小值,导致规划失败[5],[6]。 基于采样的运动规划算法是最近十几年提出的一种算法,并且已经吸引了极大的关注。概括的讲,基于采样的运动规划算法一般是连接一系列从无障碍的空间中随机采样的点,试图建立一条从初始状态到目标状态的路径。与最完备的运动规划算法相反,基于采样的方法通过避免在状态空间中显式地构造障碍物来提供大量的计算节省。即使这些算法没有实现完整性,但是它们是概率完备,这意味着规划算法不能返回解的概率随着样本的数量趋近无穷而衰减到零[7],并且这个下降速率是指数型的。 快速扩展随机树(Rapidly-exploring Random Trees,RRT)算法,是近十几年得到广泛发展与应用的基于采样的运动规划算法,它由美国爱荷华州立大学的Steven M. LaValle 教授在1998年提出,他一直从事RRT算法的改进和应用研究,他的相关工作奠定了RRT算法的基础。RRT算法是一种在多维空间中有效率的规划方法。原始的RRT算法是通过一个初始点作为根节点,通过随机采样,增加叶子节点的方式,生成一个随机扩展树,当随机树中的叶子节点包含了目标点或进入了目标区域,便可以在随机树中找到一条由树节点组成的从初始点到目标点的路径。 快速扩展随机树(RRT)也是一种数据结构和算法,其设计用途是用来有效搜索高维非凸空间,可应用于路径规划、虚拟现实等研究。RRT是一种基于概率采样的搜索方法,它采用一种特殊的增量方式进行构造,这种方式能迅速缩短一个随机状态点与树的期望距离。该方法的特点是能够快速有效的搜索高维空间,通过状态空间的随机采样点,把搜索导向空白区域,从而寻找到一条从起始点到目标点的规划路径。它通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效的解决高维空间和复杂约束的路径规划问题。RRT 算法适合解决多自由度机器人在复杂环境下和动态环境中的路径规划问题[8]。与其他的随机路径规划方法相比,RRT算法更适用于非完整约束和多自由度的系统中[9]。 相比于最原始的RRT算法的一些缺点,又提出了许多改进的RRT算法,例如:(1)基于概率P的RRT 为了加快随机树到达目标点的速度,简单的改进方法是:在随机树每次的生长过程中,根据随机概率(0.0到1.0的随机值p)来选择生长方向是目标点还是随机点。2001年,LaValle

遥感图像信息提取方法综述

遥感图像信息提取方法综述 遥感图像分析 遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。 在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。 1、遥感信息提取方法分类 常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。 1.1目视解译 目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。 1)遥感影像目视解译原则 遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。在此基础上,再进行地质、地貌等专门要素的判读。 2)遥感影像目视解译方法 (1)总体观察 观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。(2)对比分析 对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。 各种直接判读标志之间的对比分析,可以识别标志相同(如色调、形状),而另一些标识不同(纹理、结构)的物体。对比分析可以增加不同物体在图像上的差别,以达到识别目的。(3)综合分析 综合分析主要应用间接判读标志、已有的判读资料、统计资料,对图像上表现得很不明显,或毫无表现的物体、现象进行判读。间接判读标志之间相互制约、相互依存。根据这一特点,可作更加深入细致的判读。如对已知判读为农作物的影像范围,按农作物与气候、地貌、土质的依赖关系,可以进一步区别出作物的种属;河口泥沙沉积的速度、数量与河流汇水区域

粒子群优化算法及其相关研究综述

粒子群优化算法及其相关研究综述 摘要:粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。本文围绕粒子群优化算法的原理、特点、改进与应用等方面进行全面综述,侧重于粒子群的改进算法,简短介绍了粒子群算法在典型理论问题中的应用,最后对其未来的研究提出了一些建议及研究方向的展望。 关键词:粒子群优化;PSO;群智能优化;智能算法 Abstract: Particle swarm optimization is a new swarm intelligence-based heuristic global search algorithm, through competition and collaboration between the particles in order to achieve the advantages of looking at complex global search space. It has easy to understand, easy to implement, strong global search ability and other characteristics, much attention in the field of science and engineering, has become one of the fastest growing intelligent optimization algorithms. This paper focuses on aspects of the principle of particle swarm optimization, characteristics, improvement and application of a comprehensive review, focusing on improved PSO algorithm, a brief description of the particle swarm algorithm in a typical problem in the theory, and finally presented its future research Looking for some advice and research directions. Key Words: Particle Swarm optimization; PSO; Swarm intelligence optimization;Intelligent algorithm 1 引言 粒子群算法(Particle Swarm optimization,PSO)的基本概念源于对于鸟群捕食行为的简化社会模型的模拟,由Kenndy和Eberhart等人提出[1-2],1995年IEEE国际神经网络学术会议发表了题为“Particle Swarm Optimization”的论文,标志着PSO算法诞生。它同遗传算法类似,通过个体间的协作和竞争实现全局搜索系统初始化为一组随机解,称之为粒子。通过粒子在搜索空间的飞行完成寻优,在数学公式中即为迭代,它没有遗传算法的交叉及变异算子,而是粒子在解空间追随最优的粒子进行搜索。目前,粒子群优化算法应用于神经网络的训练、函数优化、多目标优化等领域并取得了较好的效果,有着广阔的应用前景。 粒子群算法本质上是一种随机搜索算法,并能以较大的概率收敛于全局最优解。实践证明,它适合在动态、多目标优化环境中寻优,与传统的优化算法相比较具有更快的计算速度和更好的全局搜索能力。但是,PSO的发展历史尚短,在理论和实践方面还存在一些不足。粒子群优化算法根据全体粒子和自身粒子的搜索经验向着最优解的方向发展,在进化后期收敛速度变慢,同时,算法收敛精度不高,尤其是对于高维度极值的复杂优化问题。

粒子群算法研究综述

粒子群算法综述 控制理论与控制工程09104046 吕坤一、粒子群算法的研究背景 人工智能经过半个世纪的发展,经历了由传统人工智能、分布式人工智能到现场人工智能等阶段的发展。到二十世纪九十年代,一些学者开始从各种活动和现象的交互入手,综合地由个体的行为模型开始分析社会结构和群体规律,于是90年代开始, 就产生了模拟自然生物群体(swarm)行为的优化技术。Dorigo等从生物进化的机理中受到启发, 通过模拟蚂蚁的寻径行为, 提出了蚁群优化方法;Eberhart和Kennedy于1995年提出的粒子群优化算法是基于对鸟群、鱼群的模拟。这些研究可以称为群体智能(swarm-intelligence)。通常单个自然生物并不是智能的,但是整个生物群体却表现出处理复杂问题的能力,群体智能就是这些团体行为在人工智能问题中的应用。粒子群优化(Particle Swarm Optimization,PSO)最初是处理连续优化问题的, 目前其应用已扩展到组合优化问题。由于其简单、有效的特点, PSO已经得到了众多学者的重视和研究。 二、粒子群算法的研究现状及研究方向 粒子群算法(PSO)自提出以来,已经历了许多变形和改进,包括数学家、工程师、物理学家、生物学家以及心理学家在内的各类研究者对它进行了分析和实验,大量研究成果和经验为粒子群算法的发展提供了各许多合理的假设和可靠的基础,并为实际的工业应用指引了新的方向。目前,PSO的研究也得到了国内研究者的重视,并已取得一定成果。 十多年来,PSO的研究方向得到发散和扩展,已不局限于优化方面研究。PSO 算法按其研究方向分为四部分:算法的机制分析研究、算法性能改进研究、算法的应用研究及离散性PSO算法研究。算法的机制分析主要是研究PSO算法的收敛性、复杂性及参数设置。算法性能改进研究主要是对原始PSO算法的缺陷和不足进行改进,以提高原始PSO算法或标准PSO算法的一些方面的性能。目前技术与方法的改进主要是增加算法的多样性、加强局部搜索性及融合其它智能优化算法的技术;PSO算法的应用研究主要是关于如何利用PSO算法对工程技术、经济及社会等需要优化的问题求解,其中包括多目标问题、约束问题、动态问题和大量实际应用问题;离散PSO研究主要针对离散性的优化问题,PSO算法如何进行优化求解,原始PSO算法主要是解决连续性的优化问题,而离散性问题存在特殊性,因此离散性问题的求解,PSO算法需要一些特殊技术进行处理,其研究问题主要包括离散二进制问题和一般组合优化问题。 同时粒子群算法还存在很多的不足需要进一步研究,主要的研究及改进方向集中为以下几方面: (1)粒子群算法的改进 与许多仿生算法一样,粒子群算法现在还只是刚刚起步,本身有很多的不足之处需要改进,尤其它作为一种仿生算法,是对生物群体行为的模拟而产生的,

土地利用规划新技术与新方法综述

地利用规划新技术与新方法综述 摘要:土地利用规划是一项复杂的系统工程,在土地利用规划过程会涉及到自然、经济、人口、建设等多方面的内容,而且也需要进行大量的图形处理、数据的管理和分析。现代技术的发展为土地利用规划的实施和管理提供了强有力的技术支撑和多样的方法手段。各种新方法的使用也为土地利用规划的更好实施提供了契机。本文归纳了土地利用规划新技术与新方法的主要研究进展,讨论了土地利用规划各阶段对新技术的需求,在此基础上,对新技术与新方法的研究前景进行了展望。 关键词:土地利用规划;新技术;新方法;模型;综述 1 前言 土地利用规划概述 土地利用规划是指对一定区域未来土地利用超前性的计划和安排,是依据区域社会经济发展和土地的自然历史特性在时空上进行土地资源分配和合理组织土地利用的综合性技术经济措施。[1]土地利用规划以“十分珍视、合理利用土地,切实保护耕地”的基本国策为原则和依据,其基本任务是制定最优的土地利用方案,提高土地利用率和土地生产率,以取得最大的经济效益、社会效益和生态环境效益,同时又为将来而保护好土地资源,以达到土地资源可持续利用的目的。 研究意义 土地利用规划是一个复杂的大系统,由许多子系统组成,其边界模糊,关系复杂,是一个复杂庞大的大系统学科,涉及土地学、经济学、生态学、地理学、社会学、数理统计等多门学科。而土地利用规划是农业规划、城市规划和区域规划等的基础工作,是在土地上落实其他各项规划的必要条件,具有重要的战略意义。土地利用规划需要现代新技术与新方法为其实施和管理提供技术支撑和方法手段,才能达到规划的科学合理性以及规划实施的可操作性,因此研究新技术与新方法在土地利用规划中的应用是十分必要的。 2 新技术在土地利用规划中的应用 “3S”技术 “3S”技术是指遥感技术(RS)、全球定位系统(GPS)和地理信息系统(GIS)的统称,是将空间技术、传感器技术、卫星定位与导航技术和计算机技术、通讯技术相结合,多学科高度集成的对空间信息进行采集、处理、管理、分析、表达、传播和应用的现代信息技术,“3S”是目前对地观测系统中空间信息获取、存贮管理、更新、分析和应用的三大支撑技术。 土地利用规划的工作环节包括:土地利用规划数据阶段、土地利用规划编制阶段、土地利用规划成果阶段。土地利用规划的每一个环节都包含大量的信息,

相关主题
文本预览
相关文档 最新文档