当前位置:文档之家› 开关电源闭环反馈响应

开关电源闭环反馈响应

开关电源闭环反馈响应
开关电源闭环反馈响应

开关电源闭环反馈响应

Testing Closed-Loop Feedback Response For Switching-Power Suppling

■Clarke-Hess通信研究公司Ken Salz

开关电源依靠反馈控制环路来保证在不同的负载情况下得到所需的电压和电流。反馈控制环路的设计影响到许多因素,包括电压调整、稳定性和瞬态响应。

当某个反馈控制环路在某个频率的环路增益为单位增益或更高且总的相位延迟等于360 时,反馈控制环路将会产生振荡。稳定性通常用下面两个参数来衡量:

相位裕量:当环路增益为单位增益时实际相位延迟与360 间的差值,以度为单位表示。

增益裕量:当总相位延迟为360 时,增益低于单位增益的量,以分贝为单位表示。

对多数闭环反馈控制系统,当环路增益大于0dB时,相位裕量都大于45 (小于315 )。当环路相位延迟达到360 时,增益裕量为-20dB或更低。

如果这些条件得到满足,控制环将具有接近最优的响应;它将是无条件稳定的,即不会阻尼过小也不会阻尼过大。通过测量在远远超出控制环通常操作带宽的情况下控制环的频率响应,可以保证能够反映出所有可能的情况。

一个单输出开关电源的控制环增益和相位响应曲线。测量是利用一个GP102增益相位分析仪(一种独立的用来评价控制环增益和相位裕量的仪器)进行的,然后输入到电子表软件中。

在这一例子中,从0dB增益交点到360 测量得到的相位裕量为82 (360 到278 )。从0dB增益交点到相位达到360 的增益裕量为-35dB。把这些增益和相位裕量值与-20dB增益裕量和60 相位裕量的目标值相比较,可以肯定被测试电源的瞬态响应和调节是过阻尼的,也是不可接受的。

0dB交点对应的频率为160Hz,这导致控制环的响应太慢。理想情况下,在1或2KHz处保持正的环增益是比较合适的,考虑到非常保守的增益和相位裕量,不必接近不稳定区即可改善控制环的动态特性。当然需要对误差放大器补偿器件进行一些小的改动。进行修改后,可以对控制环重新进行测试以保证其无条件稳定性。

通常可利用频率响应分析仪(FRA)或增益-相位分析仪进行这种测量。这些仪器采用了离散傅里叶变换(DFT)技术,因为被测信号经常很小且被掩盖在噪声和电源开关台阶所产生的失真中。DFT用来从中提取出感兴趣的信号。

测试信号注入

为进行测量,FRA向控制环中注入一个已知频率的误差信号扰动。利用两个FRA通道来判断扰动要多长时间才能从误差放大器输入到达电源输出。

扰动信号应该在控制环反馈信号被限制在单条路径的地方注入,并且来自低阻抗的驱动源。连接到电源输出或误差放大器输出的反馈路径是注入扰动信号的好地方。

通过信号发生器通过一个隔离变压器连接到测试电路,以保证FRA信号发生器和被测试电路间的电气隔离。注入方法将扰动信号注入到误差放大器的输入。对于电源输出电压在FRA最大输入电压限制以内的情况,这一方法是合适的。

如果被测量电源的输出电压比FRA最大输入电压还要高,那么第一种注入方法就不适用了。扰动信号被注入到误差放大器的输出,此处的控制环对地电压比较低。如果电源电压超过FRA输入范围则应采用这种注入方法。

选定合适的注入点以后,还必须仔细地设定扰动信号的幅度。扰动的响应可通过连接到电源输出的示波器看到。

开始时,FRA信号发生器幅度应该设为零和低频率,通常在控制环带宽的低端。然后慢慢提高FRA信号发生器的幅度。FRA信号发生器幅度的一个比较好的起始点是能够在示波器上看到电源输出电压波动为额定输出电压的5%左右。

必须在控制环带宽的高端重复这一过程以确保是否可在整个控制环带宽上使用同样的驱动水平。FRA发生器不能欠驱动或过驱动控制环。在此种条件下进行的任何测量都是不准确的。

不大可能在整个控制环带宽范围内使用同一组FRA信号发生器设臵。这种情况下,可以利用幅度补偿来保证频率切换和环增益变化时扰动信号稳定。这可以通过控制FRA信号发生器幅度,从而保证恒定的误差放大器输入来达到。进行测量

FRA的两个输入分别连接到注入隔离变压器的次级的两端。CH2测量控制环输出,CH1测量控制环输入。测量是相对于地进行的。

从10Hz扫描到30KHz,观察增益和相位测量重复性,以保证注入控制环的扰动信号幅度是正确的。参考增益-相位图表核对控制环增益和相位裕量。

可在误差放大器一级加入适当的补偿器件。再次进行从低频到高频的扫描可以看到补偿值变化的效果。理想情况下,环增益每频程应该下降-20dB,特别是在控制环增益经过单位增益时。

功率因数校正电路

反馈控制环并不仅限于用于开关电源的输出调节。通常用在整流桥后的动态功率因数校正(PFC)电路中采用两个控制环来达到正弦输入电流,从而使负载功率因素接近1.0。PFC电路通常基于专用的控制器IC、一个开关器件和一个能量储存电感器,即所谓的DC连接。

第一个控制环即电压控制环,试图在DC连接或PFC电路输出维持一个稳定的直流电压。这一控制环响应相对比较慢,大约在10Hz左右跨越0dB。第二个控制环即电流控制环有效地控制输入电流的波形。这一脉宽调制(PWM)斩波器电路必须跟踪整流正弦电压波形,因此,电流控制环的参考点是动态的。由于电流控制环必须跟踪交流电源频率,因此其交叉点可能达数KHz。

测试电压控制环

测试较慢的电压控制环和快速的电流控制环需要不同的方法:

PFC 电压控制环

电压控制环的测试是比较直接的。不需要对电路进行改动。实际上,在对电压环测试时,电流控制环仍在工作。注入点选择的一般规则在这儿都适用。您可在环中找一个源为低阻抗且信号限制在单条路径的点来注入扰动信号。注入采用的电阻值大约1,000 。

PFC电流控制环

测试较快的电流控制环需要更多考虑和注意,因为需要对电路进行一些变动才能获得对增益和相位裕量的真实评估。

1.利用一个0 至 400-V 直流电源为PFC电路的输入供电。不需要交

流电源,并且应该断开。

2.禁止电压控制环工作,但并非整块IC。

3.如果需要,为PFC控制器IC提供一个辅助电源,典型为+18V。

4.利用一个0至10-V直流电源根据输入电压的相应水平来控制PFC 输出电流。实际上,0至10V直流电源将控制控制器内的控制增益并代替电压参考(对50或60Hz交流电频率通常每秒变化100至120次)。电流反馈环应当跟踪输入电源,因此利用0至10V直流电流来设定不同的条件。

5.在PFC的输出适加一个可变负载。

6.采用一个100- 注入电阻连接在电流传感电阻和PFC传感输入之间。

7.从50Hz扫描到约开关频率的一半。检查在第4点和第5点中所描述的不同设臵组合情况下的环响应。例如,应该对控制环在零电流、峰值电流和中间状态下进行测试。

在PFC区的测量是危险的。应该确保隔离地和频率-响应分析仪输入通道以及信号发生器,以及后两者。

高频电源变压器设计原则要求和程序

[出处/作者]:徐泽玮《国际电子变压器》编辑部

摘要:从高频电源变压器作为一种产品(即商品)出发,说明了它的设计原则和要求,并介绍了它的设计程序。

关键词:高频电源变压器;设计原则;设计要求;设计程序

1前言

电源变压器的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用。根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~0.5kVA为中功率,0.5kVA~25VA为小功率,25VA以下为微功率。传送功率不同,电源变压器的设计也不一样,应当是不言而喻的。有人根据它的主要功能是功率传送,把英文名称“Power Transformers”译成“功率变压器”,在许多文献资料中仍然在使用。究竟是叫“电源变压器”,还是叫“功率变压器”好呢?有待于科技术语方面的权威机构来选择决定。

同一个英文名称“Power

Transformer”,还可译成“电力变压器”。电力变压器主要用于电力输配系统中起功率传送、电压变换和绝缘隔离作用,原边电压为6kV以上的高压,功率最小5kVA,最大超过上万kVA。电力变压器和电源变压器,虽然工作原理都是基于电磁感应原理,但是电力变压器既强调功率传送大,又强调绝缘隔离电压高,无论在磁芯线圈,还是绝缘结构的设计上,都与功率传送小、绝缘隔离电压低的电源变压器有显著的差别,更不能将电力变压器设计的优化设计条件生搬硬套地应用到电源变压器中去。电力变压器和电源变压器的设计方法不一样,也应当是不言而喻的。

高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高

频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。这样,既有工作频率的差别,又有传送功率的差别,工作频率不同档次的电源变压器设计方法不一样,也应当是不言而喻的。

如上所述,作者对高频电源变压器的设计原则、要求和程序不存在错误概念,而是在2003年7月初,阅读《电源技术应用》2003年第6期特别推荐的2篇高频磁性元件设计文章后,产生了疑虑,感到有些问题值得进一步商讨,因此才动笔写本文。正如《电源技术应用》主编寄语所说的那样:“具体地分析具体的情况”,写的目的,是尝试把最难详细说明和选择的磁性元件之一的高频电源变压器的设计问题弄清楚。如有说得不对的地方,敬请几位作者和广大读者指正。

2 高频电源变压器的设计原则

高频电源变压器作为一种产品,自然带有商品的属性,因此高频电源变压器的设计原则和其他商品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好。有时可能偏重性能和效率,有时可能偏重价格和成本。现在,轻、薄、短、小,成为高频电源的发展方向,是强调降低成本。其中成为一大难点的高频电源变压器,更需要在这方面下功夫。所以在高频电源变压器的“设计要点”一文中,只谈性能,不谈成本,不能不说是一大缺憾,如果能认真考虑一下高频电源变压器的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来。不谈成本,市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰。往往一种新产品最后被成本否决。一些“节能不节钱”的产品为什么在市场上推广不开值得大家深思。

产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本。因此,为了节约时间,根据以往的经验,对高频电源变压器的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,有什么不好?为什么一定要按步就班地来回进行推算和仿真,才不是概念错误?作者曾在20世纪80年代中开发高频磁放大器式开关电源,以温升最低为条件,对高频电源变压器进行过优化设计。由于热阻难以确定,结果与试制样品相差甚远,不得不再次修正。现在有些公司的磁芯产品说明书中,为了缩短用户设计高频电源变压器的时间,有的列出简化的设计公式,有的用表列出磁芯在某种工作频率下的传送功率。这种既为用户着想,又推广公司产品的双赢行为,是完全符合市场规律的行为,绝不是什么需要辨析的错误概念。问题是提供的参考数据,推荐的方案是否是经验的总结?有没有普遍性?包括“辨析”一文中提出的一些说法,都需要经过实践检验,才能站得住脚。

总之,千万记住:高频电源变压器是一种产品(即商品),设计原则是在具体的使用条件下完成具体的功能中追求性能价格比最好。检验设计的唯一标准是

设计出的产品能否经受住市场的考验。

3 高频电源变压器的设计要求

以设计原则为出发点,可以对高频电源变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本。

3.1 使用条件

使用条件包括两方面内容:可靠性和电磁兼容性。以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性。

可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止。一般使用条件对高频电源变压器影响最大的是环境温度。有些软磁材料,居里点比较低,对温度敏感。例如:锰锌软磁铁氧体,居里点只有215℃,其磁通密度,磁导率和损耗都随温度发生变化,故除正常温度25℃外,还要给出60℃,80℃,100℃时的各种参考数据。因此,将锰锌软磁铁氧体磁芯的工作温度限制在100℃以下,也就是环境温度为40℃时,温升只允许低于60℃,相当于A级绝缘材料温度。与锰锌软磁铁氧体磁芯相配套的电磁线和绝缘件,一般都采用E 级和B级绝缘材料,采用H级绝缘的三重绝缘电磁线和聚酰胺薄膜,是不是大材小用?成本增加多少?是不是因为H级绝缘的高频电源变压器优化的设计方案,可以使体积减少1/2~1/3的缘故?如果是,请举具体实例数据。作者曾开发H 级绝缘工频50Hz,10kVA干式变压器,与B级绝缘工频50Hz,10kVA干式变压器相比,体积减小15%到20%,已经相当可观了。本来体积就比较小的高频100kHz10VA高频电源变压器,如次级绕组采用三重绝缘线,能把体积减小1/2~1/3,那一定是很宝贵的经验。请有关作者详细介绍优化设计方案,以便广大读者学习。

电磁兼容性是指高频电源变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰。电磁干扰包括可闻的音频噪声和不可闻的高频噪声。高频电源变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩。磁致伸缩大的软磁材料,产生的电磁干扰大。例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上。因此锰锌软磁铁氧体磁芯产生的电磁干扰大。高频电源变压器产生电磁干扰的主要原因还有磁芯之间的吸力和绕组导线之间的斥力。这些力的变化频率与高频电源变压器的工作频率一致。因此,工作频率为100kHz左右的高频电源变压器,没有特殊原因是不会产生20kHz以下音频噪声的。既然提出10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz,一定有其原因。由于没有画出噪声频谱图,具体原因说不清楚,但是由高频电源变压器本身产生的可能性不大,没有必要采用玻璃珠胶合剂粘合磁芯。至于采用这种粘合工艺可将音频噪声降低5dB,请给出实例与数据以及对噪声原因的详细说明,才会令人可信。

屏蔽是防止电磁干扰,增加高频电源变压器电磁兼容性的好办法。但是为了

阻止高频电源变压器的电磁干扰传播,在设计磁芯结构和设计绕组结构也应当采取相应的措施,只靠加外屏蔽带并不一定是最佳方案,因为它只能阻止辐射干扰,不能阻止传导干扰。

3.2 完成功能

高频电源变压器完成功能有3个:功率传送,电压变换和绝缘隔离。功率传送有两种方式。第一种是变压器功率的传送方式,加在原绕组上的电压,在磁芯中产生磁通变化,使副绕组感应电压,从而使电功率从原边传送到副边。在功率传送过程中,磁芯又分为磁通单方向变化和双方向变化两种工作模式。单方向变化工作模式,磁通密度从最大值Bm变化到剩余磁通密度Br,或者从Br变化到Bm。磁通密度变化值ΔB=Bm-Br。为了提高ΔB,希望Bm大,Br小。双方向变化工作模式磁通度从+Bm变化到-Bm,或者从-Bm变化到+Bm。磁通密度变化值ΔB=2Bm,为了提高ΔB,希望Bm大,但不要求Br小,不论是单方向变化工作模式还是双方向变化工作模式,变压器功率传送方式都不直接与磁芯磁导率有关。第二种是电感器功率传送方式,原绕组输入的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁使副绕组感应电压,变成电能释放给负载。传送功率决定于电感磁芯储能,而储能又决定于原绕组的电感。电感与磁芯磁导率有关,磁导率高,电感量大,储能多,而不直接与磁通密度有关。虽然功率传送方式不同,要求的磁芯参数不一样,但是在高频电源变压器设计中,磁芯的材料和参数的选择仍然是设计的一个主要内容。在电源变压器“设计要点”一文中,很遗憾缺少这一个主要内容。只是在“交流损耗”一条中,提出BAC典型值为0.04~0.075T。显然,文中的高频电源变压器是采用电感功率传送方式,为什么不提磁导率,而提BAC弄不清楚。经查阅,在《电源技术应用》2003年1/2期,同一主要作者写的开关电源“设计要点”一文中,列出了“磁芯的选择”,也没有提磁导率,只是提出最大磁通密度Bm为0.275T。由于没有画磁通密度变化波形,弄不清楚前文中的BAC和后文中的Bm是否一致:为什么BAC和Bm相差6.8~3.7倍?更不清楚,选的是哪一种软磁铁氧体材料?为什么选这种型号?两文中都没有一点说明,只好让读者自己去猜想了。

电压变换通过原边和副边绕组匝数比来完成。不管功率传送是哪一种方式,原边和副边的电压变换比等于原绕组和副绕组匝数比,只要不改变匝数比,就不影响电压变换。但是,绕组匝数与高频电源变压器的漏感有关。漏感大小与原绕组匝数的平方成正比。有趣的是,漏感能不能规定一个数值?《电源技术应用》2003年第6期同时刊登的两篇文章有着不同的说法。“设计要点”一文中说:“对于一符合绝缘及安全标准的高频变压器,其漏感量应为次级开路时初级电感量的1%~3%”。“辨析”一文中说:“在很多技术单上,标注着漏感=1%的磁化电感或漏感<2%的磁化电感等类似的技术要求。其实这种写法或设计标准很不专业。电源设计者应当根据电路正常工作要求,对所能接受的漏感值作一个数值限制。在制作变压器的过程中,应在不使变压器的其他参数(如匝间电容等)变差的情况下尽可能减小漏感值,而非给出漏感与磁化电感的比例关系作为技术要求”。“否则这将表明你不理解漏感知识或并不真正关心实际的漏感值”。虽然两篇文章说法不一样,但是有一点是共同的,就是尽可能减小漏感值。因为漏感值大,储存的能量也大,在电源开关过程中突然释放,会产生尖峰电压,增加开关器件

承受的电压峰值,对绝缘不利,也产生附加损耗和电磁干扰。

绝缘隔离通过原边和副边绕组的绝缘结构来完成。为了保证绕组之间的绝缘,必须增加两个绕组之间的距离,从而降低绕组间的耦合程度,使漏感增大。还有,原绕组一般为高压绕组,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。这样,匝数有下限,使漏感也有下限。总之,在高频电源变压器绝缘结构和总体结构设计中,要统筹考虑漏感和绝缘强度问题。

3.3 提高效率

提高效率是对电源和电子设备的普遍要求。虽然从单个高频电源变压器来看,损耗不大。例如,100VA高频电源变压器,效率为98%时,损耗只有2W,并不多。但是成十万个,成百万个高频电源变压器,总损耗可能达到上100kW,甚至上MW。还有,许多高频电源变压器一直长期运行,年总损耗相当可观,有可能达到上10GW〃h。这样,提高高频电源变压器效率,可以节约电力。节约电力后,可以少建发电站。少建发电站后,可以少消耗煤和石油,可以少排放CO2,SO2,NOx,废气,废水,烟尘和灰渣,减少对环境的污染。既具有节约能源,又具有环境保护的双重社会经济效益。因此,提高效率是高频电源变压器一个主要的设计要求,一般效率要提高到95%以上,损耗要减少到5%以下。高频电源变压器损耗包括磁芯损耗(铁损)和绕组损耗(铜损)。有人关心变压器的铁损和铜损的比例。这个比例是随变压器的工作频率发生变化的。如果变压器的外加电压不变,工作频率越低,绕组匝数越多,铜损越大。因此在50Hz工频下,铜损远远超过铁损。例如:50Hz,100kVAS9型三相油浸式硅钢电力变压器,铜损为铁损的5倍左右。50Hz,100kVASH11型三相油浸式非晶合金电力变压器,铜损为铁损的20倍左右。并不存在“辨析”一文中所说那样,工频变压器从热稳定热均匀角度出发,把铜损等于铁损作为经验设计规则。随着工作频率升高,绕组匝数减少,虽然由于趋表效应和邻近效应存在而使绕组损耗增加,但是总的趋势是铜损随着工作频率升高而下降。而铁损包括磁滞损耗和涡流损耗,随着工作频率升高而迅速增大。在某一段工作频率,有可能出现铜损和铁损相等的情况,超过这一段工作频率,铁损就大于铜损。造成铁损不等于铜损的原因,也并不象“辨析”一文中所说那样是由于“高频变压器采用非常细的漆包线作为绕组”。导线粗细的选择,虽然受趋表效应影响,但主要由高频电源变压器的传送功率来决定,与工作频率不存在直接关系。而且,选用非常细的漆包线作为绕组,反而会增加铜损,延缓铜损的下降趋势。说不定在设计选定的工作频率下,还有可能出现铜损等于铁损的情况。根据有的资料介绍,中小功率高频电源变压器的工作频率在100kHz左右,铁损已经大于铜损,而成为高频电源变压器损耗的主要部分。

正因为铁损是高频电源变压器损耗的主要部分,因此根据铁损选择磁芯材料是高频电源变压器设计的一个主要内容。铁损也成为评价软磁芯材料的一个主要参数。铁损与磁芯的工作磁通密度工作频率有关,在介绍软磁磁芯材料铁损时,必须说明在什么工作磁通密度下和在什么工作频率下损耗。用符号表示时,也必须标明PB/f…式中工作磁通密度B的单位是T(特斯拉),工作频率f的单位是Hz(赫芝)?。例如,P0.5/400表示工作磁通密度为0.5T,工作频率为400Hz时的损耗。又例如,P0.1/100k表示工作磁通密度为0.1T,工作频率为100kHz时

的损耗。铁损还与工作温度有关,在介绍软磁磁芯材料铁损时,必须指明它的工作温度,特别是软磁铁氧体材料,对温度变化比较敏感,在产品说明书中都要列出25℃至100℃的铁损。

软磁材料的饱和磁通密度并不完全代表使用的工作磁通密度的上限,常常是铁损限制了工作磁通密度的上限。所以,在新的电源变压器用软磁铁氧体材料分类标准中,把允许的工作磁通密度和工作频率乘积B×f,作为材料的性能因子,并说明在性能因子条件下允许的损耗值。新的分类标准根据性能因子把软磁铁氧体材料分为PW1,PW2,PW3,PW4,PW5等5类,性能因子越高的,工作频率越高,极限频率也越高。例如,PW3类软磁铁氧体材料,工作频率为100kHz,极限频率为300kHz,性能因子B×f为10000mT×kHz,即在100mT(0.1T)和100kHz下,100℃时损耗a级≤300kW/m(300mW/cm3),b级≤150kW/m3(150mW/cm3)。日本TDK公司生产的PC44型软磁铁氧体材料达到PW3a级标准,达不到PW3b级标准。

“设计要点”一文中提出高频变压器使用的铁氧体磁芯在100kHz时的损耗应低于50mW/cm3,没指明是选哪一类软磁铁氧体材料,也没说明损耗对应的工作磁通密度。读者只好去猜:损耗对应的工作磁通密度是《电源技术应用》2003年6期“设计要点”一文中的BAC典型值0.04~0.075T?还是《电源技术应用》2003年1/2期“设计要点”一文中的Bm值0.237T?不管是0.075T,还是0.237T?要达到100kHz下铁损低于50mW/cm3的铁氧体材料是非常先进的。请介绍一下是哪家公司哪种型号产品,以便读者也去购买。

在某一段工作频率下,高频电源变压器的绕组损耗(铜损)与铁损相接近时,例如,铜损/铁损=100%~25%范围内,铜损也不能忽视,也应当考虑采取措施来减少铜损。由于原绕组和副绕组承担的功率相近,往往在设计中取原绕组的铜损等于副绕组的铜损,以便简化设计计算过程,这并不象“辨析”一文中所说的那样:“只是工频变压器设计的一种经验规则,”对一定工作频率下高频电源变压器设计也适用。不能只强调依靠温升来设计高频电源变压器,由于热阻不容易准确确定,设计计算相当麻烦。因此,为了简化计算,有时根据经验预先推荐一些原则和数据是必要的。同样,为了简化计算,对不同工作频率,不同功率的高频电源变压器推荐不同的绕组电流密度,也是必要的,但不限于某一个电流密度值,例如,2A/mm2~3A/mm2。应当看到:实现高频电源变压器设计要求的方法并不限于一种,应当允许进行多种多样的探索。“你走你的阳关道,我走我的独木桥”。为什么一定要按你指定的道路走,才不是“错误概念”呢?

3.4 降低成本

降低成本是高频电源变压器的一个主要设计要求,有时甚至是决定性的要求。高频电源变压器作为一种产品,和其他商品一样,都面临着市场竞争。竞争的内容包括性能和成本两个方面,缺一不可。不注意降低成本,往往会在竞争中被淘汰。

高频电源变压器的成本包括材料成本,制造成本和管理成本。设计是高频电源变压器降低成本的主要手段。高频电源变压器所用的材料和零部件的贵贱和数

量的多少?是否方便采购?是否要备有多少库存量?磁芯,线圈和总体结构的加工和装配工艺复杂还是简单?需要人工占的比例多大(实现生产过程的机械化和自动化,可以减少人工工时,更能保证产品的一致性和质量)?是否需要工模具?质量控制中需要检测的工序和参数:哪些参数要在加工过程中检测?哪些参数要在出厂试验中检测(出厂试验的参数应选择能决定性能的关键参数,数量不要多,以便能即时判断产品质量。)?哪些参数要在型式试验中检测?要用什么检测仪器和设备,价格如何?等等,都是由设计来决定的。因此,高频电源变压器的设计者除了要了解高频电源变压器的理论和设计方法而外,还要了解各种软磁材料和磁芯的性能和价格,各种电磁线的性能和价格,各种绝缘材料的性能和价格;还要了解磁芯加工热处理工艺,线圈绕制和绝缘处理工艺及变压器组装工艺;还要了解实现质量控制的检测参数和仪器设备;还要了解生产管理的基本知识以及高频电源变压器的市场动态等等。只有知识全面的设计者,才能设计出性能好,成本低的高频电源变压器产品。

降低成本是促进高频电源变压器技术发展的一种推动力。为什么轻、薄、短、小成为高频电源变压器的发展方向?原因之一是这样既能降低材料成本,又能降低制造成本。提高工作频率,可以使高频电源变压器的重量和体积下降。但是,要克服高频带来的负面影响,必须采用新的软磁材料和导电材料并增加抑制高频电磁干扰的措施,因此,对具体使用条件下的高频电源变压器究竟选用多高的工作频率?要在综合考虑性能和总体成本后决定。提高效率,降低损耗发生的热量,可以减少高频电源变压器散热的表面积,从而使体积和重量下降。但是,降低损耗必须采用新材料和新工艺。因此,对具体使用条件下的高频电源变压器究竟达到多高的效率?也要在综合考虑性能和总体成本后决定。 4

高频电源变压器的设计程序

高频电源变压器的设计程序,包括磁芯材料,磁芯结构,磁芯参数,线圈参数,组装结构和温升校核等内容。下面分别进行讨论。

4.1 磁芯材料

根据高频电源变压器的设计要求,选择软磁材料本来应当是设计程序的第一项。但是,现在一般都认为高频电源变压器应当选择软磁铁氧体,是自然而然的事情。许多有关高频电源变压器的论文,专著和教材,只针对软磁铁氧体进行讨论,而对其他软磁材料有时说明一下,有时只字不提。而且究竟选择哪一类软磁铁氧体,也不加以说明,好象大家都知道。《电源技术应用》2003年第6期中的两篇文章就是一例。

和任何软磁磁芯材料一样,软磁铁氧体有自己的优缺点。软磁铁氧体的优点是电阻率高、交流涡流损耗小,价格便宜,易加工成各种形状的磁芯。缺点是工作磁通密度低,磁导率不高,磁致伸缩大,对温度变化比较敏感。因此,有些高频电源变压器并不适合选择软磁铁氧体。例如,工作频率比较低(50kHz以下),功率比较大的高频电源变压器,如果选择软磁铁氧体,由于工作磁通密度低,用材料多,磁芯体积大,加工困难,易碎,成品率不高,显不出价格便宜的优势。

又例如,工作频率高(500kHz以上),功率比较小的高频电源变压器,磁芯重量和体积本来都小,如果选择软磁铁氧体,必须用PW4、PW5类材料,价格也不便宜,与其他软磁材料相比,磁芯价格基本相当,有时反而由于体积大,而处于不利地位。即使在适合于软磁铁氧体的工作频率范围内,也要对选择哪一类软磁铁氧体更能全面满足高频电源变压器的设计要求,进行认真考虑,才可以使设计出来的高频电源变压器达到比较理想的性能价格比。

4.2 磁芯结构

高频电源变压器设计中选择磁芯结构时考虑的因素有:降低漏磁和漏感,增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配接线方便等。

漏磁和漏感与磁芯结构有直接关系。如果磁芯不需要气隙,则尽可能采用封闭的环形和方框型结构磁芯,特别是工作频率高的电源变压器,因为,有一点漏感,就容易产生比较大的漏阻抗。封闭磁芯的磁通基本上集中在磁芯里面,漏磁小。同时,不论外界干扰磁场从哪个方向侵入,都在磁芯中分为两个方向通过,产生的干扰互相抵消。但是,封闭磁芯绕线困难,且环形磁芯散热要通过线圈,而且内层引出线也要穿过线圈引出,故必须加强绝缘。不封闭磁芯绕线容易,磁芯散热面大,可直接散热,引出线也容易。建议装线圈的磁路部分为圆柱形截面,减少平均匝长,降低损耗。矮胖圆柱形磁芯的漏磁和漏感比瘦高圆柱形磁芯大,一个原因是胖,圆柱形大,漏磁辐射面大;另一个原因是矮,上下两磁轭距离近,容易形成漏磁通的路径。不封闭磁芯中的气隙大小和位臵与漏磁和漏感有密切关系。在保证完成功能所需的气隙条件下,尽可能减少气隙尺寸。因为,气隙尺寸增大,不但增加漏磁和漏感,还减少等值磁导率,增加激磁功率,对高频电源变压器工作不利。另外,气隙的位臵最好处于线圈的中间部位,可以起到减少气隙漏磁通的作用。

窗口面积的大小与线圈发热损耗和散热面积有关。窗口面积大,绕的电磁线截面大,电阻小,损耗小,发热小。同时,线圈外形尺寸大,散热面积也大。“辨析”一文中提出窗口面积利用问题,不能采取完全肯定和完全否定的态度。一般在留足工艺需要的窗口面积以后,希望尽可能把窗口面积绕满。如果不能充分利用窗口面积,将会造成磁芯尺寸和变压器外形尺寸不必要的增大,有可能要增加材料成本。因此,在高频电源变压器磁芯结构设计中,对窗口面积的大小,要综合考虑各种因素后来决定。“辨析”一文中关于填满磁芯窗口主要是受工频磁性元件设计的影响的理由并不成立。工频变压器的铜损比铁损大,为了增加线圈散热面积,磁芯与线圈之间留有足够的气隙,有时原绕组和副绕组之间也留有气隙。而不是“强调铁芯和绕组的整体性,因而不希望铁芯与绕组中间有气隙”。也不是“设计成绕组填满整个窗口,从而保证其机械稳定性”。线圈和磁芯既然不是一个整体,必须分别用夹件固紧,才能保证各自的机械稳定性。同时,为了保证足够的绝缘距离,线圈两端和绕组之间都必须留有气隙,不可能用绕组填满整个窗口。

为了防止高频电源变压器从里向外和从外向里的电磁干扰,有些磁芯结构在窗口外面有封闭和半封闭的外壳。封闭外壳屏蔽电磁干扰作用好,但散热和接线

不方便,必须留有接线孔和出气孔。半封闭外壳,封闭的地方起屏蔽电磁干扰作用,不封闭的地方用于接线和散热。窗口完全开放,接线和散热方便,屏蔽电磁干扰作用差。

4.3 磁芯参数

高频电源变压器磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。

对变压器功率传送方式的磁通单方向变化工作模式,ΔB=Bm-Br,既受饱和磁通密度限制,又更主要地是受损耗限制。但是单方向变化的高频电源变压器工作时,沿局部磁滞回线来回变化,磁芯损耗比双方向变化沿大的磁滞回线来回变化小,只有它的30%~40%。而材料测试时是按正弦波双向激磁条件下变化的ΔB为2Bm进行的。因此,Bm可以取材料测试损耗值时,选取的B值高一倍以上。Br受材料磁滞回线上的Br限制,可以用开气隙的办法来降低Br,以增大磁通密度变化值ΔB。虽然开气隙后,激磁电流有所增加,但增大ΔB后可以减少磁芯体积,还是值得的。对变压器功率传送方式磁通双方向变化工作模式,ΔB=2Bm,工作的磁滞回线包围的面积比局部回线大得多,损耗也大得多,Bm主要受损耗限制,在双方向变化工作模式中,还要注意由于各种原因造成激磁的正负变化的伏秒面积不相等,而出现直流偏磁问题。可以在磁芯磁路中加一个小气隙,或者在电路设计时加隔直流电容,或者采用电流型控制来解决。

对电感器功率传送方式,磁导率是有气隙后的等值磁导率,一般都比磁化曲线测出的磁导率小。可以在确定磁芯结构后,直接测试它。“设计要点”一文中的高频电源变压器采用电感器功率传送方式。不知道为什么不提选用的磁导率,而提BAC或者Bm?也不提BAC或Bm与损耗的关系?

4.4 线圈参数

高频电源变压器设计的线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排。

原绕组匝数根据外加激磁电压或者原绕组激磁电感(储存能量)来决定,匝数不能过多,也不能过少。如果匝数过多,会增加漏感和绕线工时;如果匝数过少,在外加激磁电压比较高时,有可能使匝间电压降和层间电压降增大,而必须加强绝缘。

副绕组匝数由输出电压决定。高频电源变压器主要用于高频开关电源。开关电源可以对输出电压进行调整,调整上限受允许的开关占空比限制。在从要求的负载电压计算变压器输出电压时,应考虑开关占空比,串联二极管压降和变压器的内阻抗压降。

导线截面(直径)决定于绕组的电流密度。绕组损耗(铜损)占总损耗比例比较大时,推荐电流密度取2~4A/mm2,铜损占总损耗比例比较小时,推荐电流

密度取8~12A/mm2,但是,要经过变压器温升校核后进行必要的调整。还要注意的是导线截面(直径)的大小还与漏感有关。在同样匝数下,导线截面直径增加,内层排列的匝数减少,层数增加。而漏磁场分布靠近磁芯的内层大,外层小,与磁芯距离平方成反比例地衰减。这样,漏磁通大的内层交链的匝数减少从而使漏感下降。

“设计要点”一文中提出的绕组排列形式,是一般用的绕组排列方式:原绕组靠近磁芯,副绕组和反馈绕组逐渐向外排列。这种绕组排列形式并不理想。下面推荐两种绕组排列形式:

1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排;

2)如果要增加原和副绕组之间耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的绕组排列形式,这样有利于减少漏感。

绝缘安排首先要注意使用的电磁线和绝缘件的绝缘材料等级,要与磁芯和绕组允许的工作温度相匹配。等级低,满足不了耐热要求,等级过高,会增加不必要的材料成本。其次,对在圆柱形磁路上绕线的线圈,最好采用线圈骨架,既可以保证绝缘,又可以简化绕线工艺。还有,线圈最外层和最里层,高压和低压绕组之间都要加强绝缘。如果一般绝缘只垫一层绝缘薄膜,加强绝缘应垫2~3层绝缘薄膜。

4.5 组装结构

高频电源变压器组装结构分为卧式和立式两种。如果选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组装结构,上下表面比较大,有利于散热

或者附加散热器,高度低,有利于安装在印刷电路板上。组装结构中采用的夹件和接线端子等尽量采用标准件,以便于外协加工,降低成本。

4.6 温升校核

温升校核可以通过计算和样品测试来进行。一般通过样品试验进行温升核算的比较多一些。如果样品试验温升不超过允许温升,可以通过。但是试验温升低于允许温升15℃以上,要对绕组的电流密度和导线截面进行调整,适当增加电流密度和减少导线截面。如果样品试验温升超过允许温升,则要对绕组的电流密度和导线截面进行调整,适当减少电流密度和增加导线截面。如果增加导线截面,窗口绕不下,要增加磁芯尺寸。如果样品试验磁芯温升超过允许温升,则要增加磁芯的散热面积,加大磁芯。

5 结语

《电源技术应用》2003年第6期主编寄语中说:“科学技术的发展历程犹如登山运动,每攀登一步,便会上升到一个新的台阶,新的台阶自有新的风光”。本文作者对此深表赞同。

高频电源变压器随着工作频率的提高,设计不断发生变化,不断出现新的软磁材料,新的磁芯结构,新的导线材料和绝缘材料,新的线圈结构和组装结构等等,不断出现新的设计方法,就象登山一样,不断攀上新的台阶。

登山要有目标。登山的目标是攀上顶峰。失去目标,登山会迷路。高频电源变压器设计也有目标,设计的目标是实现设计原则,在具体使用条件下完成具体的功能中追求性能价格比最好。失去目标,高频电源变压器设计也会误入歧途。

登山的道路不只一条。不管是从东西南北哪条道路攀登,只要能攀上顶峰,则该条道路就是可行的。同样,高频电源变压器的设计方法也不只一种。不管采用哪一种设计方法,只要能实现设计原则,则该种设计方法就不能说是概念错误的。

攀登山上山,放眼天外天!在登上更高的山后,会看见更大的天地,更好的风光。高频电源变压器设计发展到一个新阶段后,会设计出性能更好成本更低的产品来。让我们共同努力吧!

作者简介

徐泽玮(1936-),男,西安非晶科技股份有限公司总工程师,兼任《国际电子变压器》杂志编辑委员会主任。

开关电源闭环反馈响应及测试

开关电源闭环反馈响应及测试 开关电源依靠反馈控制环路来保证在不同的负载情况下得到所需的电压和电流。反馈控制环路的设计影响到许多因素,包括电压调整、稳定性和瞬态响应。当某个反馈控制环路在某个频率的环路增益为单位增益或更高且总的相位延迟等于360 时,反馈控制环路将会产生振荡。稳定性通常用下面两个参数来衡量: 相位裕量:当环路增益为单位增益时实际相位延迟与360 间的差值,以度为单位表示。 增益裕量:当总相位延迟为360 时,增益低于单位增益的量,以分贝为单位表示。 对多数闭环反馈控制系统,当环路增益大于0dB时,相位裕量都大于45 (小于315 )。当环路相位延迟达到360 时,增益裕量为-20dB或更低。 如果这些条件得到满足,控制环将具有接近最优的响应;它将是无条件稳定的,即不会阻尼过小也不会阻尼过大。通过测量在远远超出控制环通常操作带宽的情况下控制环的频率响应,可以保证能够反映出所有可能的情况。 一个单输出开关电源的控制环增益和相位响应曲线。测量是利用一个GP102增益相位分析仪(一种独立的用来评价控制环增益和相位裕量的仪器)进行的,然后输入到电子表软件中。 在这一例子中,从0dB增益交点到360 测量得到的相位裕量为82 (360 到 278 )。从0dB增益交点到相位达到360 的增益裕量为-35dB。把这些增益和相位裕量值与-20dB增益裕量和60 相位裕量的目标值相比较,可以肯定被测试电源的瞬态响应和调节是过阻尼的,也是不可接受的。 0dB交点对应的频率为160Hz,这导致控制环的响应太慢。理想情况下,在1或2KHz处保持正的环增益是比较合适的,考虑到非常保守的增益和相位裕量,不必接近不稳定区即可改善控制环的动态特性。当然需要对误差放大器补偿器件进行一些小的改动。进行修改后,可以对控制环重新进行测试以保证其无条件稳定性。通常可利用频率响应分析仪(FRA)或增益-相位分析仪进行这种测量。这些仪器采用了离散傅里叶变换(DFT)技术,因为被测信号经常很小且被掩盖在噪声和电源开关台阶所产生的失真中。DFT用来从中提取出感兴趣的信号。 测试信号注入 为进行测量,FRA向控制环中注入一个已知频率的误差信号扰动。利用两个FRA通道来判断扰动要多长时间才能从误差放大器输入到达电源输出。 扰动信号应该在控制环反馈信号被限制在单条路径的地方注入,并且来自低阻抗的驱动源。连接到电源输出或误差放大器输出的反馈路径是注入扰动信号的好地方。 通过信号发生器通过一个隔离变压器连接到测试电路,以保证FRA信号发生器和被测试电路间的电气隔离。注入方法将扰动信号注入到误差放大器的输入。对于电源输出电压在FRA最大输入电压限制以内的情况,这一方法是合适的。 如果被测量电源的输出电压比FRA最大输入电压还要高,那么第一种注入方法就不适用了。扰动信号被注入到误差放大器的输出,此处的控制环对地电压比较低。如果电源电压超过FRA输入范围则应采用这种注入方法。

5.2 闭环电子控制系统的设计与应用(1)

如图所示是JN6201集成电路鸡蛋孵化温度控制器电路图,根据该原理图完成1~3题。 1.该电路图作为控制系统的控制(处理)部分是IC JN6201,当JN6201集成输出9脚长时间处于高电平,三极管V2处于截止状态,继电器释放,电热丝通电加热。 2.安装好调试时,先将温度传感器Rt1放入37℃水中,调整电位器Rp1,使继电器触点J-2吸合,再将温度传感器Rt2放入39℃水中,调整Rp2,使继电器触点J-2释放。 3.调试时发现,不管电位器Rp1和Rp2怎么调,继电器J 始终吸合,检查电路元器件安装和接线都正确,用万用表测三极管V2集电极电位,在不同的调试状态分别为2.8V 和0V ,可知电路发生故障的原因是( B ) A.二极管V6内部断路 B.三极管V3内部击穿(短路) C.电阻R4与三极管V3基极虚焊 D.继电器线圈内部短路 如图所示是运算放大器鸡蛋孵化温度控制器电路图,根据该原理完成4~6题。 4.该电路作为控制系统的输出部分是继电器J 、电热丝等,当电路中集成运放2脚的电位低于3脚的电位,三极管V3处于饱和状态,继电器J 吸合,电热丝通电加热。 上限 V2饱和导通时候Uce 电压降0.2V ,所以留下来给集电极2.8V ,截止时候0V

5.安装好后调试时,将温度传感器Rt 放入39℃水中,调R4,使电压U2=U3,集成运放输出端6脚的电压为0V ,电路实现39℃单点温度控制。 6.调试时发现,将温度传感器Rt 放入高于39℃水中,继电器吸合;将温度传感器Rt 放入低于39℃水中,继电器释放,出现该故障现象的原因可能是( A ) A.集成运放2脚与3脚接反 B.二极管V4接反 C.电阻R2断路 D.三极管V3损坏 如图所示是晶体管组成的水箱闭环电子控制系统电路,根据该原理图完成7~9题。 7.该电路作为控制系统被控对象的是水箱内的水,水箱的水位从a 点降到b 点的过程中,三极管V1处于饱和状态,三极管V2处于截止状态,继电器触点J-1处于吸合状态。 8.安装调试时,将三个水位探头按图中的高低放入空玻璃杯中,如果电路正常,电路通电后,继电器J 吸合;向玻璃杯中加水,到达a 点时,继电器J 释放;接着将玻璃杯中的水排出,水位降到b 点以上时,继电器J 释放;水位降到b 点以下时,继电器J 吸合。 9.调试时发现,玻璃杯中的水位在b 点以下时,继电器J 就吸合;水位加到b 点,继电器J 就释放。出现该故障现象的原因是( D ) A.继电器J 没用 B.三极管V1损坏 C.二极管V3接反 D.电路没接J-1触点,b 点直接接到了电阻R1 如图所示是555集成电路组成的水箱水位闭环电子控制系统电路图, (第4~6题) (第7~9题) R4 10k ?R5 4.7k R3 4.7k

闭环控制系统的干扰与反馈教案

闭环控制系统的干扰与反馈 教材:(凤凰国标教材)普通高中课程标准实验教科书通用技术(必修2) 文档内容:闭环控制系统的干扰与反馈 章节:第四单元控制与设计第三节闭环控制系统的干扰与反馈 课时:第1课时 作者:叶朝晖(海南省海南中学) 一、教学目标 1. 知识与技能目标 (1)能结合案例找出影响简单控制系统运行的主要干扰因素,并作分析。 (2)熟悉闭环控系统中反馈环节的作用。 (3)能识读和画出简单的闭环控制系统的方框图,理解其中的控制器、执行器的作用。 2. 过程与方法目标 (1)通过课堂小试验亲身体验“反馈”的作用。 (2)通过典型闭环控制系统的分析,熟悉闭环控制系统的基本组成及工作过程。 (3)逐步形成理解和分析闭环控制系统的一般方法,学会使用逆推法分析问题。 3. 情感态度与价值观目标 (1)通过“神奇”的自动控制装置,感受科技的魅力,形成和保持探究控制系统的兴趣与热情。 (2)通过对闭环控制系统的探究,形成勇于探索敢于创造优良品质。 二、教学重点 本节学习重点偏重于对闭环控制系统反馈环节的作用的体会,及学会用系统框图来帮助分析和理解闭环控制系统。 三、教学难点 分析闭环控系统的基本组成及工作过程 四、教学方法 演示法、逆推分析法、游戏法 五、设计思想: 1. 教材分析 本节是“控制与设计”第三节的内容,其内容包括“干扰因素”、“反馈”、“功能模拟方法”和“黑箱方法”。闭环控制系统相对于开环控系统要复杂些,但闭环控制系统因其控制准,自动化程度高,有着“神奇”的控制效果,对学生来说也同样具有一定的吸引力,成为学生进一步学习的动力。本节学习重点偏重于对闭环控制系统反馈环节的作用的体会,及学会用系统框图来帮助分析和理解闭环控制系统。

开关电源闭环设计详细说明书

6.4 开关电源闭环设计 从反馈基本概念知道:放大器在深度负反馈时,如输入不变,电路参数变化、负载变化或干扰对输出影响减小。反馈越深,干扰引起的输出误差越小。但是,深反馈时,反馈环路在某一频率附加相位移如达到180°,同时输出信号等于输入信号,就会产生自激振荡。 开关电源不同于一般放大器,放大器加负反馈是为了有足够的通频带,足够的稳定增益,减少干扰和减少线性和非线性失真。而开关电源,如果要等效为放大器的话,输入信号是基准(参考)电压U ref,一般说来,基准电压是不变的;反馈网络就是取样电路,一般是一个分压器,当输出电压和基准一定时,取样电路分压比(k v)也是固定的(U o=k v U ref)。开关电源不同于放大器,内部(开关频率)和外部干扰(输入电源和负载变化)非常严重,闭环设计目的不仅要求对以上的内部和外部干扰有很强抑制能力,保证静态精度,而且要有良好的动态响应。 对于恒压输出开关电源,就其反馈拓扑而言,输入信号(基准)相当于放大器的输入电压,分压器是反馈网络,这就是一个电压串联负反馈。如果恒流输出,就是电流串联负反馈。 如果是恒压输出,对电压取样,闭环稳定输出电压。因此,首先选择稳定的参考电压,通常为5~6V或2.5V,要求极小的动态电阻和温度漂移。其.次要求开环增益高,使得反馈为深度反馈,输出电压才不受电源电压和负载(干扰)影响和对开关频率纹波抑制。一般功率电路、滤波和PWM发生电路增益低,只有采用运放(误差放大器)来获得高增益。再有,由于输出滤波器有两个极点,最大相移180°,如果直接加入运放组成反馈,很容易自激振荡,因此需要相位补偿。根据不同的电路条件,可以采用Venable三种补偿放大器。补偿结果既满足稳态要求,又要获得良好的瞬态响应,同时能够抑制低频纹波和对高频分量衰减。 6.4.1 概述

开关电源反馈设计

第六章 开关电源反馈设计 除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。 开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。当负载或输入电压突变时,快速响应和较小的过冲。同时能够抑制低频脉动分量和开关纹波等等。 为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。最后对仿真作相应介绍。 6.1 频率响应 在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。 6.1.1 频率响应基本概念 电路的输出与输入比称为传递函数或增益。传递函数与频率的关系-即频率响应可以用下式表示 )()(f f G G ?∠= 其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠?(f )表示输出信号与输入信号的相位差与频率的关系,称为相频响应。 典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。图6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角?。两者一起称为波特图。 在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高 频截止频率与低频截止频率之间称为中频区。在这个区域内增益基本不变。同时定义 L H f f BW -= (6-1) 为系统的带宽。 6.1.2 基本电路的频率响应 1. 高频响应 在高频区,影响系统(电路)的高频响应的电路如图6.2所示。以图6.2a 为例,输出电压与输入电压之比随频率增高而下降,同时相位随之滞后。利用复变量s 得到 R s C sC R sC s U s U s G i o +=+== 11 /1/1)()()( (6-2) 对于实际频率,s =j ω=j 2πf ,并令 BW f H 103 103 (b) 图6.1 波特图

单闭环控制系统设计及仿真要点

单闭环控制系统设计及仿真 班级电信2014 姓名张庆迎 学号142081100079

摘要直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。 关键词直流电机直流调速系统速度调节器电流调节器双闭环系统 一、单闭环直流调速系统的工作原理 1、单闭环直流调速系统的介绍 单闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。在电动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。 2、双闭环直流调速系统的介绍 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。两者之间实行嵌套连接,如图1—1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称

开关电源纹波分析及抑制(精华)

主题: 开关电源纹波的产生与控制 开关电源输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声 1、低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。电流型控制DC / DC变换器的纹波抑制比电压型稍有提高。但其输出端的低频交流纹波仍较大。若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大DC / DC变换器闭环增益来消除。 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标。 b、采用前馈控制方法,降低低频纹波分量。 2、高频纹波噪声来源于高频功率开关变换电路,在电路中,通过功率器件对输入直流电压进行高频开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。 高频纹波抑制的目的是给高频纹波提供通路,常用的方法有以下几种: a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波 b、加大输出高频滤波器,可以抑制输出高频纹波。 C、采用多级滤波。 3、由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声。减小与控制功率器件、变压器与机壳地之间的寄生电容,并在输出侧加共模抑制电感及电容,可减小输出的共模纹波噪声。 减小输出共模纹波噪声的常用方法: a、输出采用专门设计的EMI滤波器。 b、降低开关毛刺幅度。 4、超高频谐振噪声主要来源于高频整流二极管反向恢复时二极管结电容、功率器件开关时功率器件结电容与线路寄生电感的谐振,频率一般为1-10MHz,通过选用软恢复特性二

开关电源闭环设计详细说明

开关电源闭环设计详细说明

6.4 开关电源闭环设计 从反馈基本概念知道:放大器在深度负反馈时,如输入不变,电路参数变化、负载变化或干扰对输出影响减小。反馈越深,干扰引起的输出误差越小。但是,深反馈时,反馈环路在某一频率附加相位移如达到180°,同时输出信号等于输入信号,就会产生自激振荡。 开关电源不同于一般放大器,放大器加负反馈是为了有足够的通频带,足够的稳定增益,减少干扰和减少线性和非线性失真。而开关电源,如果要等效为放大器的话,输入信号是基准(参考)电压U ref,一般说来,基准电压是不变的;反馈网络就是取样电路,一般是一个分压器,当输出电压和基准一定时,取样电路分压比(k v)也是固定的(U o=k v U ref)。开关电源不同于放大器,内部(开关频率)和外部干扰(输入电源和负载变化)非常严重,闭环设计目的不仅要求对以上的内部和外部干扰有很强抑制能力,保证静态精度,而且要有良好的动态响应。 对于恒压输出开关电源,就其反馈拓扑而言,输入信号(基准)相当于放大器的输入电压,分压器是反馈网络,这就是一个电压串联负反馈。如果恒流输出,就是电流串联负反馈。 如果是恒压输出,对电压取样,闭环稳定输出电压。因此,首先选择稳定的参考电压,通常为5~6V或2.5V,要求极小的动态电阻和温度漂移。其.次要求开

环增益高,使得反馈为深度反馈,输出电压才不受电源电压和负载(干扰)影响和对开关频率纹波抑制。一般功率电路、滤波和PWM 发生电路增益低,只有采用运放(误差放大器)来获得高增益。再有,由于输出滤波器有两个极点,最大相移180°,如果直接加入运放组成反馈,很容易自激振荡,因此需要相位补偿。根据不同的电路条件,可以采用Venable 三种补偿放大器。补偿结果既满足稳态要求,又要获得良好的瞬态响应,同时能够抑制低频纹波和对高频分量衰减。 6.4.1 概述 图6.31为一个典型的正激变换器闭环调节的例子。 可以看出是一个负反馈系统。PWM 控制芯片中包含了误差放大器和PWM 形成电路。控制芯片也提供许多其他的功能,但了解闭环稳定性问题,仅需考虑误差放大器和PWM 。 对于输出电压U o 缓慢或直流变化,闭环当然是稳定的。例如输入电网或负载变化(干扰),引起U o 的变化,经R 1和R 2取样(反馈网络), 图6.31 典型的正激变换器闭环控制 **PWM 驱动EA R1R2Resr Co Lo Us Ns Nr Np Q1Ub Udc Uref Ut A B 误差放大Uea Uo Us 3V Uea 0Ut t0t1Ub ton ton T Uy B

最详细的开关电源反馈回路设计

最详细的开关电源反馈回 路设计 Prepared on 22 November 2020

开关电源反馈回路设计 开关电源反馈回路主要由光耦(如PC817)、电压精密可调并联稳压器(如TL431)等器件组成。要研究如何设计反馈回路,首先先要了解这两个最主要元器件的基本参数。 1、光耦 PC817的基本参数如下表: 2、可调并联稳压器 由TL431的等效电路图可以看到,Uref是一个内部的基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近Uref()时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管VT的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的。 前面提到TL431的内部含有一个的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。 图2 选择不同的R1和R2的值可以得到从到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA。 了解了TL431和PC817的基本参数后,来看实际电路: 图3 反馈回路主要关注R6、R8、R13、R14、C8这几个器件的取值。 首先来看R13。R13、R14是TL431的分压电阻,首先应先确定R13的值,再根据Vo=(1+R14/R13)Vref公式来计算R14的值。 1.确定R13.、R14取值

液位闭环反馈控制系统设计

本科生课程设计(论文)工业生产过程控制课程设计(论文)题目:液位闭环反馈控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 0 学生姓名: 指导教师:(签字) 起止时间: 12.6.25--12.7.6

本科生课程设计(论文) 1 课程设计(论文)任务及评语 院(系):电气工程学院 教研室:自动化 学 号 090302091 学生姓名 专业班级 自动化093 设计题 目 液位闭环反馈控制系统设计 课程设计(论文)任务 课题完成的设计任务及功能、要求、技术参数 实现功能 设计一个液位闭环反馈控制系统 。 在工业生产中经常要对储罐、反应器等密闭容器的液位进行控制,为了能够精确控制液 位高度,保证正常生产,要求设计液位闭环反馈控制系统,能抑制流量波动,且系统无余差。 设计任务及要求 1、确定控制方案并绘制工艺P&ID 图、系统框图; 2、选择传感器、变送器、控制器、执行器,给出具体型号和参数; 3、确定控制器的控制规律以及控制器正反作用方式; 4、若设计由计算机实现的数字控制系统应给出系统硬件电气连接图及程序流程图; 5、按规定的书写格式,撰写、打印设计说明书一份;设计说明书应在4000字以上。 技术参数 测量范围:20~100cm ; 控制精度:±0.5cm ; 控制液位:80cm ; 最大偏差:1cm ; 工作计划 1、布置任务,查阅资料,理解掌握系统的控制要求。(2天,分散完成) 2、确定系统的控制方案,绘制P&ID 图、系统框图。(1天,实验室完成) 3、选择传感器、变送器、控制器、执行器,给出具体型号。(2天,分散完成) 4、确定控制器的控制规律以及控制器正反作用方式。(实验室1天) 5、仿真分析或实验测试、答辩。(3天,实验室完成) 6、撰写、打印设计说明书(1天,分散完成) 指导教师评语及成绩 平时: 论文质量: 答辩: 指导教师签字: 总成绩: 年 月 日

BUCK开关电源闭环控制的仿真研究-20V10V

CHANGZHOU INSTITUTE OF TECHNOLOGY 课程设计说明书 课程设计名称: 电力电子 题目:BUCK开关电源闭环控制的仿真研究- 20V/ 10V 电力电子课程设计任务书 二级学院(直属学部):电子信息与电气工程学院专业:电气工程及其自动化班级:所属组号2# 指导教师职称讲师

目录 一、课题背景 (1) 1、buck电路的工作原理 (1)

二、课题设计要求 (2) 三、课题设计方案 (2) 1、系统的组成 (2) 2、主电路部分的设计 (3) 3、闭环系统的设计 (4) 4、闭环系统的仿真 (8) 四、总结及心得体会 (13) 五、参考文献 (14) 附录 (15)

一、课题背景 1、buck 电路的工作原理 Buck 电路是由一个Mosfet S 与负载串联构成的,是一种降压斩波电路,其电路如图1-1, 其中R C 为电容的等效电阻(ESR)。 图1.1 buck 变换器主电路图 由驱动信号周期地控制mosfet S 的导通与截止,通过改变驱动信号的占空比D ,来改变输出电压Uo 。当电路中上管导通时,源极电压等于输入电压,因此驱动管的栅极电压=Vin+Vgs ,IC 不能直接驱动,IC 部将上管的驱动路采用浮地的方式,外接自举电容组成偏置电路来驱动上管。 根据开关管的通断状态列基尔霍夫电压方程: 当开关管导通时: IN O L ON L ON /V V V V L i T ---=? (1-1) 当开关管关断时: O L D L OFF /V V V L i T ++=? (1-2) 2.BUCK 开关电源的应用 自从20世纪70年代,用高频开关电源取代线性调节器式电源以来,高频开关电源得到了很大的发展。40多年来,高频开关电源的技术进步和发展历程有三大标志:①功率半导体开关器件用功率场效应晶体管(MOSFET)和绝缘栅双极型晶体管(IGBT)取代了70年代使用的普通功率晶体管;②高频化PWM 与PFM 控制技术的应用和软开关技术的应用;③开关电源系统集成技术的应用。现代的高频开关电源技术是发展最快、应用最广泛的一种电力电子电源技术。 可以说,凡是用电的电子设备没有不用开关电源的,如家用电器中的电视机、个人计算机、音响设备、日光灯镇流器、医院的医疗设备、通信电源、航空航天电源、UPS 电源、变频器电源、交流电动机的变频调速电源、便携式电子设备的电源等,都要使用高频开关电源。这些电源功率通常仅有几十瓦至几百瓦。手机等移动电子设备的充电器也是开关电源,但功率仅有几瓦。通信交换机、巨型计算机等大型设备的电源也是开关电源,但功率较大,可达数千瓦至数百千瓦。工业上也大量应用开关电源,如数控机床、自动化流水线中,采用各种规格的开关电源为其控制电路供电。

转速单闭环调速系统设计说明

目录 第1章概述 (1) 1.1 转速单闭环调速系统设计意义 (1) 1.2 转速单闭环调速系统的设计要求 (1) 第2章原系统的动态结构图及稳定性的分析 (2) 2.1 原系统的工作原理 (2) 2.2 原系统的动态结构图 (3) 2.3 闭环系统的开环放大系数的判断 (3) 2.4 相角稳定裕度γ的判断 (4) 第3章调节器的设计及仿真 (5) 3.1 调节器的选择 (5) 3.2 PI调节器的设计 (5) 3.3 校正后系统的动态结构图 (8) 3.4 系统的仿真结构图及测试结果 (8) 第4章课程设计总结 (9) 参考文献 (10)

转速单闭环调速系统设计 1、概述 1.1 转速单闭环调速系统设计意义 为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。在对调速性能有较高要求的领域常利用直流电动机作动力,但直流电动机开环系统稳态性能不能满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可用积分调节器代替比例调节器. 反馈控制系统的规律是要想维持系统中的某个物理量基本不变,就引用该量的负 反馈信号去与恒值给定相比较,构成闭环系统。对调速系统来说,若想提高静态指标, 就得提高静特性硬度,也就是希望转速在负载电流变化时或受到扰动时基本不变。要 想维持转速这一物理量不变,最直接和有效的方发就是采用转速负反馈构成转速闭环 调节系统。 1.2 转速单闭环调速系统的设计要求 n=1500rpm,U N=220V,I N=17.5A,Ra=1.25Ω。主回路总电阻电动机参数:P N=3KW, N R=2.5Ω,电磁时间常数T l=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数α=0.07。调速指标:D=30,S=10%。 设计要求: (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 设计任务: (1)绘制原系统的动态结构图; (2)调节器设计;

一种24V开关电源的反馈控制及过压保护电路的设计与应用

一种24V开关电源的反馈控制及过压保护电路的设计与应用 发表时间:2019-03-12T16:30:12.327Z 来源:《电力设备》2018年第27期作者:刘华美[导读] 摘要:开关电源的可靠性直接影响到电子产品系统的可靠性,为了使开关电源安全可靠的工作,必须设计相关的反馈控制及过压保护。 (西藏自治区广电局032台) 摘要:开关电源的可靠性直接影响到电子产品系统的可靠性,为了使开关电源安全可靠的工作,必须设计相关的反馈控制及过压保护。本文采用光耦PC817和TL431结合设计出反馈控制及保护电路。理论和实践证明:该设计方案具有可靠的稳定性和可靠性。 关键词:开关电源;反馈控制;过压保护 The reliability of the switching power supply has a direct impact on the reliability of the electronic product system. In order to make the switching power supply work safely and reliably, relevant feedback control and over-voltage protection must be designed. In this paper, a feedback control and protection circuit is designed by using optocoupler PC817 and TL431. Theory and practice have proved that the design has reliable stability and reliability. Key words: switching power supply; feedback control; overvoltage protection 引言 目前,在各个电子通信系统中,反馈控制及保护电路已经得到广泛的应用。作为一种自动调节,反馈控制及保护电路就是当系统受到一定干扰后,能通过自身反馈控制及保护电路的调节作用使系统参数得到修正和保护。 开关电源中的反馈控制及过压保护电路是用来调整开关电源输出电压及电流稳定,保证开关电源所带负载能稳定工作。 图反馈控制及保护电路图 1、反馈控制及过压保护电路 本文设计的反馈控制及保护电路如下图所示,其基本原理为:在24V开关电源电路中,24V输出与控制芯片是相互隔离的,因此反馈采用光耦隔离形式,R4、RP1、R9是采样电阻,经分压后送至N1的输入端。当某种原因使24V升高时,TL431输入端的电压相应升高,当此电压超过TL431的内部基准电压(2.5V)时,光耦的初级导通,因此次级也导通,A点电压随之降低,从而使输出脉冲变窄,使输出的24V电压降低,达到调整目的。 保护电路同理,当输出电压超过28V时,R6、RP2、R11对电压采样,在N2的输入端的检测电压超过2.5V,使N2导通,光耦N4导通,不导通时B点电压为低,N4导通使B点电压升高,而B点电压经过V13送至SG1525的10脚,从而关闭输出脉冲。 2、电路实验结果 通过电路在实验中的实现,当24V电压升高时,通过反馈控制可以使24V输出电压降低,达到调整目的。在过压保护电路中24V电压达到28V时,能起到保护作用。 3、结束语 本文采用光耦PC817和TL431结合设计出反馈控制及保护电路。实验证明:电源具有更好的稳定性和可靠性。更重要的是,输入电压的正常与否直接影响开关电源的输出,这样直接关系到与开关电源相关设备是否能正常工作,及时给予保护。 参考文献: [1] 陈治明等. 电力电子技术的回顾与前瞻[J]. 电源技术应用, 1999.2:1-3. [2]催东风,王晓梅等.一种小型直流电源的反馈控制设计 [M]. 科技信息,2012.24:235-236. [3] 张勇虎,欧刚.电源保护电路的设计 [J]. 电子测量技术,2006.29(4):129-130.

开关电源反馈电路

电流型开关电源中电压反馈电路的设计 2007-11-29 09:35:15| 分类:电源| 标签:|字号大中小订阅 尚修香侯振义空军工程大学电讯工程学院 在传统的电压型控制中,只有一个环路,动态性能差。当输入电压有扰动时,通过电压环反馈引起占空比的改变速度比较慢。因此,在要求输出电压的瞬态误差较小的场合,电压型控制模式是不理想的。为了解决这个问题,可以采用电流型控制模式。电流型控制既保留了电压型控制的输出电压反馈,又增加了电感电流反馈,而且这个电流反馈就作为PWM控制变换器的斜坡函数,从而不再需要锯齿波发生器,使系统的性能具有明显的优越性。电流型控制方法的特点如下: 1、系统具有快速的输入、输出动态响应和高度的稳定性; 2、很高的输出电压精度; 3、具有内在对功率开关电流的控制能力; 4、良好的并联运行能力。 由于反馈电感电流的变化率直接跟随输入电压和输出电压的变化而变化。电压反馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。 一、uc3842简介 图1为UC3842PWM控制器的内部结构框图。其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R与接在4脚与地之间的电容C共同决定了振荡器的振荡频率,f=1.8/RC。反馈电压由2脚接误差放大器反相端。1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。UC3842PWM 控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V。正因如此,可有效地防止电路在阈值电压附近工作时的振荡。 图1UC3842的内部结构框图如下: UC3842具有以下特点: 1、管脚数量少,外围电路简单,价格低廉; 2、电压调整率很好; 3、负载调整率明显改善; 4、频响特性好,稳定幅度大; 5、具有过流限制、过压保护和欠压锁定功能。 UC3842具有良好的线性调整率,因为输入电压Vi 的变化立即反应为电感电流的变化,它不经过任何误差放大器就能在比较器中改变输出脉冲宽度,再增加一级输出电压Vo至误差放大器的控制,能使线性调整率更好;可明显地改善负载调整率,因为误差放大器可专门用于控制由于负载变化造成的输出电压

开关电源环路设计过程

1. 绪论 在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。测试结果和测量方法也包含在其中。 2. 基本控制环概念 2.1 传输函数和博得图 系统的传输函数定义为输出除以输入。它由增益和相位因素组成并可以在博得图上分别用图形表示。整个系统的闭环增益是环路里各个部分增益的乘积。在博得图中,增益用对数图表示。因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。系统的相位是整个环路相移之和。 2.2 极点 数学上,在传输方程式中,当分母为零时会产生一个极点。在图形上,当增益以20dB每十倍频的斜率开始递减时,在博得图上会产生一个极点。图1举例说明一个低通滤波器通常在系统中产生一个极点。其传输函数和博得图也一并给出。 2.3 零点 零点是频域范围内的传输函数当分子等于零时产生的。在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。图2 描述一个由高通滤波器电路引起的零点。 存在第二种零点,即右半平面零点,它引起相位滞后而非超前。伴随着增益递增,右半平面零点引起90度的相位滞后。右半平面零点经常出现于BOOST和

BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。右半平面零点的博得图见图3。 3.0 开关电源的理想增益相位图 设计任何控制系统首先必须清楚地定义出目标。通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。高的相位裕量能阻尼振荡并缩短瞬态调节时间。宽的带宽允许电源系统快速响应线性和负载的突变。高的增益保证良好的线性和负载调节率。 3.1 相位裕量 参看图4,相位裕量是在穿越频率处相位高于0度的数量。这不同于大多数控制系统教科书里提出的从-180度开始测量相位裕量。其中包括DC负反馈所提供的180度初始相移。在实际测量中,这180度相移在DC处被补偿并允许相位裕量从0度开始测量。 根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。然而,有一个边界稳定区域存在,此处(指边界稳定区,译注),系统由于瞬态响应引起振荡到经过一个长的调节时间最终稳定下来。如果相位裕量小于45度,

状态反馈控制系统的设计与实现

控制工程学院课程实验报告: 现代控制理论课程实验报告 实验题目:状态反馈控制系统的设计与实现 班级自动化(工控)姓名曾晓波学号2009021178 日期2013-1-6 一、实验目的及内容 实验目的: (1 )掌握极点配置定理及状态反馈控制系统的设计方法; (2 )比较输出反馈与状态反馈的优缺点; (3 )训练程序设计能力。 实验内容: (1 )针对一个二阶系统,分别设计输出反馈和状态反馈控制器;(2 )分别测出两种情况下系统的阶跃响应; (3 )对实验结果进行对比分析。 二、实验设备 装有的机一台 三、实验原理 一个控制系统的性能是否满足要求,要通过解的特征来评价,也就是说当传递函数是有理函数时,它的全部信息几乎都集中表现为它的极点、零点及传递函数。因此若被控系统完全能控,则可以通过状态反馈任意配置极点,使被控系统达到期望的时域性能指标。

闭环系统性能与闭环极点(特征值)密切相关,在状态空间的分析和综合中,除了利用输出反馈以外,主要利用状态反馈来配置极点,它能提供更多的校正信息。 (一) 利用状态反馈任意配置闭环极点的充要条件是:受控系统可控。 设( )受控系统的动态方程为 状态向量x 通过状态反馈矩阵k ,负反馈至系统参考输入v ,于是有 这样便构成了状态反馈系统,其结构图如图1-1所示 图1-1 状态反馈系统结构图 状态反馈系统动态方程为 闭环系统特征多项式为 ()()f I A bk λλ=-+ (1-2) 设闭环系统的期望极点为1λ,2λ,…,n λ,则系统的期望特征多项式 x b v u 1 s C A k - y x &

为 )())(()(21*n f λλλλλλλ---=Λ (1-3) 欲使闭环系统的极点取期望值,只需令式(1-2)和式(1-3)相等,即 )()(* λλf f = (1-4) 利用式(1-4)左右两边对应λ的同次项系数相等,可以求出状态反馈矩阵 []n k k k Λ 2 1 =k (二) 对线性定常连续系统∑(),若取系统的输出变量来构成反馈,则所得到的闭环控制系统称为输出反馈控制系统。输出反馈控制系统的结构图如图所示。 开环系统状态空间模型和输出反馈律分别为 H 为r *m 维的实矩阵,称为输出反馈矩阵。 则可得如下输出反馈闭环控制系统的状态空间模型: 输出反馈闭环系统可简记为H(),其传递函数阵为: (s)()-1B B ? A C H y - x u v + + + x ' 开环系统 A B C H '=+?? =?=-+x x u y x u y v ()A BHC B C '=-+??=? x x v y x

BUCK开关电源闭环控制的仿真研究- 28V15V

课程设计说明书 课程设计名称:电力电子技术 题目:BUCK开关电源闭环控制的仿真研究- 28V/15V

目录 一、引言 (1) 二、课题简介 (1) 2.1 BUCK变换器PID控制的参数设计 (1) 2.2 BUCK电路的工作原理 (1) 2.3 BUCK开关电源的应用 (3) 三、课题设计要求 (3) 3.1 课题内容 (3) 3.2 参数要求 (3) 四、课题设计方案 (4) 4.1 系统的组成: (4) 4.2 主电路部分的设计 (5) 4.3 闭环系统的设计 (5) 4.4 闭环系统仿真 (10) 五、总结及心得体会 (13) 六、参考文献 (13) 七、附录 (14)

一、引言 随着电力电子技术的快速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。电子设备的小型化和低成本化使电源向轻、薄、小和高效率方向发展。开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。伴随着人们对开关电源的进一步升级,低电压、大电流和高效率的开关电源成为研究趋势。 开关电源分为AC/DC和DC/DC,其中DC/DC 变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。 IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用IGBT作为全控型器件的降压斩波电路就有了IGBT 易驱动,电压、电流容量大的优点。IGBT降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT降压斩波电路的发展。 二、课题简介 BUCK电路是一种降压斩波器,降压变换器输出电压平均值Uo总是小于输入电压Ui。通常电感中的电流是否连续,取决于开关频率、滤波电感L和电容C 的数值。简单的BUCK电路输出的电压不稳定,会受到负载和外部的干扰,当加入PID控制器,实现闭环控制。可通过采样环节得到PWM调制波,再与基准电压进行比较,通过PID控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK电路闭环PID控制系统。 2.1 BUCK变换器PID控制的参数设计 PID控制是根据偏差的比例P、积分I、微分D进行控制,是控制系统中应用最为广泛的一种控制规律。通过调整比例、积分和微分三项参数,使得大多数工业控制系统获得良好的闭环控制性能。PID控制的本质是一个二阶线性控制器,其优点:1、技术纯熟;2、易被人们熟悉和掌握;3、不需要建立数学模型;4、控制效果好;5、消除系统稳定误差 2.2 BUCK电路的工作原理 Buck变换器主电路如图下所示,其中RC为电容的等效电阻(ESR)。

相关主题
文本预览
相关文档 最新文档