当前位置:文档之家› 圆弧圆柱蜗杆传设计计算

圆弧圆柱蜗杆传设计计算

圆弧圆柱蜗杆传设计计算
圆弧圆柱蜗杆传设计计算

圆弧圆柱蜗杆传动设计计算

(一)概述

圆弧圆柱蜗杆(ZC蜗杆)传动是一种新型的蜗杆传动。实践证明,该蜗杆传动比普通圆柱蜗杆传动的承载能力大,传动效率高、寿命长。因此圆弧圆柱蜗杆传动有逐渐代替普通圆柱蜗杆传动的趋势。

1.圆弧圆柱蜗杆传动的特点

这种蜗杆传动和其它蜗杆传动一佯,可以实现交错轴之间的传动,蜗杆能安装在蜗轮的上、下方或侧面。它的主要特点有: 1)传动比范围大,可实现1:100的大传动比传动;

2)蜗杆与蜗轮的齿廓呈凸凹啮合,接触线与相对滑动速度方向间夹角大,有利于润滑油膜的形成;

3)当蜗杆主动时,啮合效率可达95%以上,比普通圆柱蜗杆传动的啮合效率提高10%~20%;

4)传动的中心距难以调整,对中心距误差的敏感性较强。2.圆弧圆柱蜗杆传动的主要参数及其选择

圆弧圆柱蜗杆传动的主要参数有齿形角α0、变位系数x2及齿廓圆弧半径ρ(<圆弧圆柱蜗杆传动>)。

1)齿形角α0依据啮合分析,推荐选取齿形角α0=23°±2°。

2)变位系数x2一般推荐x2=~。代替普通圆柱蜗杆传动时,一般选x2=~1。当传动的转速较高时,应尽量选取较大的变位

图<圆弧圆柱蜗杆传动> 表<圆弧圆柱蜗杆齿形参数及几何尺寸计算>

名称符

计算公式备注

齿型角α0常用α0=23°

蜗杆齿厚 s s=πm

m为模数,下同

蜗杆齿间宽 e e=πm 蜗杆轴间齿距 pa pa=πm 齿廓圆弧半径ρρ=(5~m 齿廓圆弧中心到蜗 l' l'=ρsinα0+

杆轴线的距离

齿廓圆弧中心到蜗

L' L'=ρcosα0+=ρcosα0+πm

杆齿对称线的距离

齿顶高 ha ha=m

齿根高 hf hf=

齿全高 h h=

顶隙 c c=

蜗杆齿顶厚度 sa

蜗杆齿根厚度 sf

蜗杆分度圆柱螺旋

γγ=arctg(z1/q)

升角

法面模数 mn mn=mcosγ

蜗杆法面齿厚 sn sn=scosγ

齿廓圆弧半径

最小界限值ρminρmin≥

(二)圆弧圆柱蜗杆传动强度计算

圆弧圆柱蜗杆传动的受力情况与普通圆柱蜗杆传动相同,因此,其主要失效形式及设计准则也大体相同。由于蜗轮的强度相对较弱,因此主要对蜗轮进行强度计算。

在进行计算前,应具备的已知条件为输入功率P1,输入轴的转速n1,传动比i(或输出轴的转速n2)以及载荷的变化规律等。

根据功率P1、转速n1和传动比i,按图<齿面疲劳强度承载能力的线图>可以初步确定蜗杆传动的中心距a(用法举例:已知P1=53kW,i=10,n1=1000r/min,可按箭头方向沿虚线查得中心距a=200mm。),参考<圆弧圆柱蜗杆减速器参数匹配>

图<齿面疲劳强度承载能力的线图> 普通圆柱蜗杆基本尺寸和参数及其与蜗轮参数的匹配

中心距

a(mm) 模数

m(mm)

分度圆直

d1(mm) ()

蜗杆头

z1

直径系

q

分度圆导程

γ(°)

蜗轮齿

z2

变位系

x2

40

1 18 18 1 3°10′47″6

2 0

50 82 0

40 20

1 3°34′35″49

50

35 3°11′38″62 +

63 82 +

50 20 1 4°34′26″

51 2 9°05′25″

4 17°44′41″

63

28 1 3°16′14″61 +

80 82 + 40

(50) (63) 2

1 5°06′08″29

(39)

(51) (+

2 10°07′29″

4 19°39′14″

蜗杆分度圆直径d1 d1=mq q=2a/m-(z2+2x2)

蜗轮分度圆直径d2 d2=mz2 d2=2a-d1-2x2m(变位后) 蜗杆节圆直径d1' d1'=d1 d1'=d1+x2m=2a'-mz2

蜗杆齿顶圆直径da1 da1=d1+2m

蜗轮齿顶圆直径(中间平

面)

da2 da2=d2+2m

da2=d2+2m+2x2m(变位

后)

蜗杆齿根圆直径df1 df1=

蜗轮齿根圆直径(中间平

面)

df2 df2= df2=+2x2m(变位后)

蜗轮顶圆直径de2 de2≤da2+m取整数值

蜗轮宽度 B B= 取整数值

蜗杆齿宽b1

z1=1-2

x<1,b1≥+m对磨削蜗杆b1的加长量:

m≤6,加长20mm

m=7~9,加长30mm

m=10~14,加长40mm

m=16~25,加长50mm

x≥1,b1≥(13+m

z1=3-4

x<1,b1≥+m

x≥1,b1≥(14+m

图<齿面疲劳强度承载能力的线图>是按磨削的淬火钢蜗

杆与锡青铜蜗轮制定的,在其它情况下,可传递的功率P1,随增减而增减。

1.校核蜗轮齿面接触疲劳强度的安全系数

在初步确定蜗杆传动的主要几何尺寸后,可按下式校核

蜗轮齿面接触疲劳强度的安全系数SH:

式中:σH--蜗轮齿面接触应力,MPa;

σHlim--蜗轮齿面接触疲劳极限;

SHmin--最小安全系数,见下表;

最小安全系数SHmin

蜗杆的圆周速度/(m/s) >10 ≤10≤≤5

精度等级GB10089-88 5 6 7 8

SHlim

Zm—系数,;

bm2—蜗轮平均齿宽,bm2≈(d1+6m);

Yz—蜗杆齿的齿形系数,见下表;

蜗杆齿的齿形系数YZ

tgγ 0 1

YZ

蜗轮齿面接触疲劳极限

式中:K0—蜗轮与蜗杆的配对材料系数,见下表<蜗轮与蜗杆的配对材料系数K0>;

fh—寿命系数,见下面<寿命系数fh表>,,其中Lh是设计时所要求的以小时为

单位的工作寿命;

fn—速度系数,当转速不变时,见下面<速度系数fn表>,当转速有变化时;

fw—载荷系数,当载荷平稳时,fw =l;当载荷有变化时。

蜗轮与蜗杆的配对材料系数K0(MPa)

蜗杆材料蜗轮齿圈材料K0 蜗杆材料蜗杆齿圈材料 K0

钢经淬火、磨削锡青铜

钢经调质、不磨削

锡青铜铜铝合金铜铝合金珠光体铸铁铜锌合金

寿命系数fh

Lh/1000 3 6 12 24 48 96 190

fh

速度系数fn

vs/(m/s) 12 16 24 32 46 64

fn

注:表中滑动速度vs参看普通圆柱蜗杆传动、润滑及热平衡计算的图<蜗杆传动的滑动速度>。

2.校核蜗轮齿根弯曲疲劳强度的安全系数

式中:CFlim--蜗轮齿根应力系数极限值,下表<蜗轮齿根应力系数极限值>;

CFmax--蜗轮齿根最大应力系数

式中:Ft2max--蜗轮平均圆(以蜗轮的齿顶圆直径和喉圆直径的平均值为直径所作的圆)上的最大圆周力;

--蜗轮齿弧长,蜗轮齿圈为锡青铜时,≈;为铜铝合金时,≈。

蜗轮齿根应力系数极限值CFlim

机械设计课程设计蜗轮蜗杆传动

目录 第一章总论......................................................... - 2 - 一、机械设计课程设计的容......................................... - 2 - 二、设计任务..................................................... - 2 - 三、设计要求..................................................... - 3 - 第二章机械传动装置总体设计......................................... - 3 - 一、电动机的选择................................................. - 4 - 二、传动比及其分配............................................... - 4 - 三、校核转速..................................................... - 5 - 四、传动装置各参数的计算......................................... - 5 - 第三章传动零件—蜗杆蜗轮传动的设计计算............................. - 5 - 一、蜗轮蜗杆材料及类型选择....................................... - 6 - 二、设计计算..................................................... - 6 - 第四章轴的结构设计及计算.......................................... - 10 - 一、安装蜗轮的轴设计计算........................................ - 10 - 二、蜗杆轴设计计算.............................................. - 15 - 第五章滚动轴承计算................................................ - 17 - 一、安装蜗轮的轴的轴承计算...................................... - 18 - 二、蜗杆轴轴承的校核............................................ - 18 - 第六章键的选择计算................................................ - 19 - 第七章联轴器...................................................... - 20 - 第八章润滑及密封说明.............................................. - 20 - 第九章拆装和调整的说明............................................ - 20 - 第十章减速箱体的附件说明.......................................... - 20 - 课程设计小结........................................................ - 21 - 参考文献............................................................ - 22 -

普通圆柱蜗杆传动基本几何尺寸计算关系式.

普通圆柱蜗杆传动基本几何尺寸计算关系式 名称代号计算关系式说明 中心距a a=(d1+d2+2x2m)/2 按规定选取 蜗杆头数z1按规定选取 蜗杆齿数z2按传动比确定齿形角ααa=20°或αn=20°按蜗杆类型确定模数m m=m a=m n/cosγ按规定选取 传动比i i=n1/n2蜗杆为主动,按规定选取 齿数比u u=z2/z1当蜗杆主动时,i=u 蜗轮变位系数x2 蜗杆直径系数q q=d1/m 蜗杆轴向齿距p a p a=πm 蜗杆导程p z p z=πmz1 蜗杆分度圆直 径 d1d1=mq按规定选取 蜗杆齿顶圆直径d a1d a1=d1+2h a1=d1+2m 蜗杆齿根圆直径d f1d f1=d1-2h f1=d 1-2(m+c) 顶隙 c c=m 按规定 渐开线蜗杆基 圆直径 d b1d b1=d1·tanγ/tanγb=mz1/tanγb 蜗杆齿顶高h a1h a1=·m=0.5(d a1-d1) 按规定蜗杆齿根高h f1h f1=(+)m=0.5(d1-d f1) 蜗杆齿高h1h1=h a1+h f1=0.5(d a1-d f1)

蜗杆导程角γtgγ=mz1/d1=z1/q 渐开线蜗杆基 γb cosγb=cosγcosαn 圆导程角 蜗杆齿宽b1见下表由设计确定 蜗轮分度圆直 d2d2=mz2=2a-d1-2x2m 径 蜗轮喉圆直径d a2d a2=d2+2h a2 蜗轮齿根圆直 d f2d f2=d2-2h f2 径 蜗轮齿顶高h a2h a 2=0.5(d a2-d2)=m(+x2) 蜗轮齿根高h f2h f 2=0.5(d2-d f2)=m(-x2+) 蜗轮齿高h2h2=h a2+h f2=0.5(d a2-d f2) 蜗轮咽喉母圆 r g2r g2=a-0.5d a2 半径 蜗轮齿宽b2由设计确定蜗轮齿宽角θθ=2arcsin(b2/d1) 蜗杆轴向齿厚s a s a=0.5πm 蜗杆法向齿厚s n s n=s a·cosγ 蜗轮齿厚s t按蜗杆节圆处轴向齿槽宽e a'确定 蜗杆节圆直径d1' d1'=d1+2x2m=m(q+2x2) 蜗轮节圆直径d2' d2'=d2 蜗轮宽度B、顶圆直径d e2及蜗杆齿宽b1的计算公式 z1 B d e2x2b1

机械设计蜗杆传动复习题

蜗杆传动 一 选择题 (1) 对于传递动力的蜗杆传动,为了提高传动效率,在一定限速可采用 B 。 A. 较大的蜗杆直径系数 B. 较大的蜗杆分度圆导程角 C. 较小的模数 D. 较少的蜗杆头数 (2) 蜗杆传动中,是以蜗杆的 B 参数、蜗轮的 A 参数为标准值。 A. 端面 B. 轴向 C. 法向 (3) 蜗杆传动的正确啮合条件中,应除去 C 。 A. t21m m =a B. t21αα=a C. 21ββ= D. 21βγ=,螺旋相同 (4) 设计蜗杆传动时,通常选择蜗杆材料为 A ,蜗轮材料为 C ,以减小摩擦力。 A. 钢 B. 铸铁 C. 青铜 D. 非金属材料 (5) 闭式蜗杆传动失效的主要形式是 B 。 A. 点蚀 B. 胶合 C. 轮齿折断 D. 磨损 (7) 在标准蜗轮传动中,蜗杆头数一定,加大蜗杆特性系数q 将使传动效率 B 。 A. 增加 B. 减小 C. 不变 D. 增加或减小 (8) 在蜗杆传动中,对于滑动速度s m v s /4≥的重要传动,应该采用 D 作为蜗轮齿圈的材料。 A. HT200 B. 18CrMnTi 渗碳淬火 C. 45钢调质 D. ZCuSnl0Pb1 (9) 在蜗杆传动中,轮齿承载能力计算,主要是针对 D 来进行的。 A. 蜗杆齿面接触强度和蜗轮齿根弯曲强度 B. 蜗轮齿面接触强度和蜗杆齿根弯曲强度 C. 蜗杆齿面接触强度和蜗杆齿根弯曲强度 D. 蜗轮齿面接触强度和蜗轮齿根弯曲强度 (10) 对闭式蜗杆传动进行热平衡计算,其主要目的是 B 。 A. 防止润滑油受热后外溢,造成环境污染 B. 防止润滑油温度过高使润滑条件恶化 C. 防止蜗轮材料在高温下力学性能下降 D. 防止蜗轮蜗杆发生热变形后正确啮合受到破坏 (11) 图11-1所示蜗杆传动简图中,图 C 转向是正确的。

减速器斜齿圆柱齿轮传动的设计计算

减速器斜齿圆柱齿轮传动的设计计算 一、高速级齿轮 1、选定齿轮类型、精度等级、材料及齿数 (1)按图所示的传动方案,选用斜齿圆柱齿轮传动。 (2)运输装置为一般工作机器,速度不高,故选用7级精度。 (3)材料选择:查表可选择小齿轮材料为40Cr (调质),硬度为280HBS ;大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。 (4)选小齿轮齿数120Z =,大齿轮齿数2 4.2432085Z =?=,取285Z = (5)选取螺旋角,初选螺旋角14β= 2、按齿面接触强度设计,按计算式试算即 1t d ≥(1)确定公式内的各计算数值 ①试选 1.6t k =,由图10-2610.740αε=,20.820αε=则有12 1.560αααεεε=+= ②小齿轮传递转矩187.542T N m = ③查图10-30可选取区域系数 2.433H Z = 查表10-7可选取齿宽系数1d Φ= ④查表10-6可得材料的弹性影响系数12 189.8E Z MP =。 ⑤查图10-21d 得按齿面硬度选取小齿轮的接触疲劳强度极限 lim1600H a MP σ=,大齿轮的接触疲劳强度极限lim2550H a MP σ=。 ⑥按计算式计算应力循环次数 ()811606057612830058.29410h N n jL ==??????=? 8 828.29410 1.95104.243 N ?==? ⑦查图可选取接触疲劳寿命系数1 1.02HN k =,2 1.12HN k =。 ⑧计算接触疲劳许用应力 取失效概率为1%,安全系数1S =,按计算式(10-12)得

机械设计课程设计蜗杆

机械设计课程设计蜗杆 The Standardization Office was revised on the afternoon of December 13, 2020

机械设计课程设计 计算说明书 设计题目链式运输机传动装置 专业班级 设计者 指导教师

目录 一设计任务书 (3) 二传动方案的拟定 (4) 三电动机的选择及传动装置的运动和动力参数计算 (6) 四传动零件的设计计算 (11) 1. 蜗杆及蜗轮的设计计算 (11) 2. 开式齿轮的设计计算 (15) 五蜗轮轴的设计计算及校核 (20) 六轴承及键的设计计算及校核 (28) 七箱体的设计计算 (33) 八减速器结构与附件及润滑和密封的概要说明 (35) 九设计小结 (38) 十参考文献 (39)

一.设计任务书 (1)设计题目:链式运输机传动装置 设计链式运输机的动装置,如图所示。工作条件为:链式输送机在常温下工作,负荷基本平稳,输送链工作速度V的允许误差为±5%;两班连续工作制(每班工作8h),要求减速器设计寿命为5年,每年280个工作日。 (2)原始数据 二. 传动方案的拟定 运输机牵引力 F(KN) 鼓轮圆周速度(允许误差 ±%5)V(m/s) 鼓轮直径D (mm) 350

(1)传动简图 (2)传动方案分析 机器一般是由原动机、传动装置和工作机三部分组成。 传动装置在原动机与工作机之间传递运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。本设计中原动机为电动机,工作机为链轮输送机。本传动方案采用了三级传动,第一级传动为单级蜗轮蜗杆减速器,第二级传动为开式齿轮传动,第三极为链轮传动。蜗轮蜗杆传动可以实现较大的传动比,结构尺寸紧凑,传动平稳,但效率较低,应布置在高速级;开式齿轮传动的工作环境较差,润滑条件不好,磨损较严重,应布置在低速级;链传动的运动不均匀,有冲击,不适于高速传动,故布置在传动的低速级。减速器的箱体采用水平剖分式结构,用HT100灰铸铁铸造而成。 该工作机采用的是原动机为Y系列三相笼型异步电动机,电压380 V,其结构简单、工作可靠、价格低廉、维护方便,另外其传动功率大,传动转矩也比较大,噪声小,在室内使用比较环保。由于三相电动机及输送带工作时都有轻微振动,所以采用弹性联轴器能缓冲各吸振作用,以减少振动带来的不必要的机械损

蜗轮蜗杆的计算

蜗轮、蜗杆的计算公式: 1,传动比=蜗轮齿数÷蜗杆头数 2,中心距=(蜗轮节径+蜗杆节径)÷2 3,蜗轮吼径=(齿数+2)×模数 4,蜗轮节径=模数×齿数 5,蜗杆节径=蜗杆外径-2×模数 6,蜗杆导程=π×模数×头数 7,螺旋角(导程角)tgβ=(模数×头数)÷蜗杆节径 一.基本参数: (1)模数m和压力角α: 在中间平面中,为保证蜗杆蜗轮传动的正确啮合,蜗杆的轴向模数m a1和压力角αa1应分别相等于蜗轮的法面模数m t2和压力角αt2,即m a1=m t2=m αa1=αt2 蜗杆轴向压力角与法向压力角的关系为: tgαa=tgαn/cosγ 式中:γ-导程角。 (2)蜗杆的分度圆直径d1和直径系数q 为了保证蜗杆与蜗轮的正确啮合,要用与蜗杆尺寸相同的蜗杆滚刀来加工蜗轮。由于相同的模数,可以有许多不同的蜗杆直径,这样就造成要配备很多的蜗轮滚刀,以适应不同的蜗杆直径。显然,这样很不经济。 为了减少蜗轮滚刀的个数和便于滚刀的标准化,就对每一标准的模数

规定了一定数量的蜗杆分度圆直径d1,而把及分度圆直径和模数的比称为蜗杆直径系数q,即: q=d1/m 常用的标准模数m和蜗杆分度圆直径d1及直径系数q,见匹配表。(3)蜗杆头数z1和蜗轮齿数z2 蜗杆头数可根据要求的传动比和效率来选择,一般取z1=1-10,推荐 z1=1,2,4,6。 选择的原则是:当要求传动比较大,或要求传递大的转矩时,则z1取小值;要求传动自锁时取z1=1;要求具有高的传动效率,或高速传动时,则z1取较大值。 蜗轮齿数的多少,影响运转的平稳性,并受到两个限制:最少齿数应避免发生根切与干涉,理论上应使z2min≥17,但z2<26时,啮合区显着减小,影响平稳性,而在z2≥30时,则可始终保持有两对齿以上啮合,因之通常规定z2>28。另一方面z2也不能过多,当z2>80时(对于动力传动),蜗轮直径将增大过多,在结构上相应就须增大蜗杆两支承点间的跨距,影响蜗杆轴的刚度和啮合精度;对一定直径的蜗轮,如z2取得过多,模数m就减小甚多,将影响轮齿的弯曲强度;故对于动力传动,常用的范围为z2≈28-70。对于传递运动的传动,z2可达200、300,甚至可到1000。z1和z2的推荐值见下表

普通圆柱蜗杆传动

普通圆柱蜗杆传动 普通圆柱蜗杆的齿面(除ZK型蜗杆外)一般是在车床上用直线刀刃的车刀车制的。根据车刀安装位置的不同,所加工出的蜗杆齿面在不同截面中的齿廓曲线也不同。根据不同的齿廓曲线,普通圆柱蜗杆可分为阿基米德蜗杆(ZA蜗杆)、渐开线蜗杆(ZI蜗杆)、法向直廓蜗杆(ZN蜗杆)和锥面包络圆柱蜗杆(ZK蜗杆)等四种。GB10085-88推荐采用ZI蜗杆和ZK蜗杆两种。现将上述四种普通圆柱蜗杆传动所用的蜗杆及配对的蜗轮齿形分别介绍于后: 阿基米德蜗杆(ZA蜗杆)这种蜗杆,在垂直于蜗杆轴线的平面(即端面)上,齿廓为阿基米德螺旋线(图阿基米德蜗杆),在包含轴线的平面上的齿廓(即轴向齿廓)为直线,其齿形角α0=20°。它可在车床上用直线刀刃的单刀(当导程角γ≤3°时)或双刀(当γ>3°时)车削加工。安装刀具时,切削刃的顶面必须通过蜗杆的轴线,如图阿基米德蜗杆所示。这种蜗杆磨削困难,当导程角较大时加工不便。见动画法向直廓蜗杆(ZN蜗杆)这种蜗杆的端面齿廓为延伸渐开线(图<法向直廓蜗杆>),法面(N-N)齿廓为直线。ZN蜗杆也是用直线刀刃的单刀或双刀在车床上车削加工。刀具的安装形式如图<法向直廓蜗杆>所示。这种蜗杆磨削起来也比较困难。见动画 渐开线蜗杆(ZI蜗杆)这种蜗杆的端面齿廓为渐开线(图<渐开线蜗杆>),所以它相当于一个少齿数(齿数等于蜗杆头数)、大螺旋角的渐开线圆柱斜齿轮。ZI蜗杆可用两把直线刀刃的车刀在车床上车削加工。刀刃顶面应与基圆柱相切,其中一把刀具高于蜗杆轴线,另一把刀具则低于蜗杆轴线,如图<渐开线蜗杆>所示。刀具的齿形角应等于蜗杆的基圆柱螺旋角。这种蜗杆可以在专用机床上磨削。见动画锥面包络圆柱蜗杆(ZK蜗杆)这是一种非线性螺旋曲面蜗杆。它不能在车床上加工,只能在铣床上铣制并在磨床上磨削。加工时,除工件作螺旋运动外,刀具同时绕其自身的轴线作回转运动。这时,铣刀(或砂轮)回转曲面的包络面即为蜗杆的螺旋齿面(图<锥面包络圆柱蜗杆>),在I-I及N-N截面上的齿廓均为曲线(图<锥面包络圆柱蜗杆>)。这种蜗杆便于磨削,蜗杆的精度较高,应用日渐广泛。 至于与上述各类蜗杆配对的蜗轮齿廓,则完全随蜗杆的齿廓而异。蜗轮一般是在滚齿机上用滚刀或飞刀加工的。为了保证蜗杆和蜗轮能正确啮合,切削蜗轮的滚刀齿廓,应与蜗杆的齿廓一致;深切时的中心距,也应与蜗杆传动的中心距相同。 蜗杆的头数选择 选择蜗杆头数z1时,主要考虑传动比、效率和制造三个方面

蜗轮蜗杆的设计计算

蜗轮蜗杆的设计计算 1、根据GB/10085-1988推荐采用渐开线蜗杆(ZI )。 2、根据传动功率不大,速度中等,蜗杆45钢,因为希望效率高些,耐磨性好,故蜗杆螺旋 齿面要求淬火,硬度45-55HRC ,蜗轮用铸锡磷青铜ZCuSn10P1金属铸造,为节约贵重金的有色金属。仅齿圈用青铜制造,而轮芯用灰铸铁HT100铸造。 3、按持卖你接触疲劳强度进行设计 a ≥32H 2])] [(σP E z z KT (1)作用在蜗轮上的转矩2T (2) 按1Z =2 ,η= 2T =?610?2p 2n =?610??mm ?N 确定载荷系数K , 取A K = βK =1 v K = 所以得K= A K ? βK ?v K =?? (3)确定弹性影响系数E Z =16021MPa (铸锡青铜蜗轮与钢蜗杆相配) (4)确定接触系数p Z 假设a d 1= 从表11-18查得p Z = (5)确定接触应力[H σ] 根据材料ZCuSn10P1,蜗杆螺旋齿面硬度>45HRC ,从表11-7查得蜗轮许用应力 '][H σ=268MPa N=60j 2n h L =???20=?8 10 寿命系数HN K =8871074.110?=067则 [H σ] =HN K ?'][H σ=?= (6)计算中心距 a ≥32])56 .1799.2160(8625821.1??? = 取a=100.因为i-15 故从表11-15中取模数m=5 1d =50mm

这时 a d 1=100 50= 从图11-18,可查的接触系数'Z ρ=<,所以计算结果可用。 4、蜗杆蜗轮的主要参数 (1)蜗杆:轴向齿距Pa=得直径系数q=10 齿顶园直径a1d =60,齿根圆f1d =38,分度圆导角r=11 18 36 ,蜗杆轴向齿厚Sa=5π/2= (2)蜗轮 齿数2Z =31 变位系数2x = 验算传动比i=2Z /1Z =31/2= 误差为15 155.15-=%,在允许范围内,所以可行。 蜗轮分度圆直径2d =m ?2Z =5?31=155mm 蜗轮喉圆直径a2d =2d +2a2h =155+2?5=165mm 蜗轮齿根圆直径f2d =2d +2f2h =??=143mm 蜗轮喉母圆半径g2r =a-a2d 21=100-1552 1?= 5、校核齿根弯曲疲劳强度 F σ=m d d KT 53.12122Fa Y βY ≤][F σ 当量齿数v2Z = 31.11cos 2 Z =31/ = 根据2x = v2Z =从图11-19查得齿形系数2Fa Y = βY =1-r/140=140= F σ=][F σFN K ,2从11-8查得ZCuSn10P1制造蜗轮时许用弯曲应力][F σ=56MPa 寿命系数 FN K =98 61074.110?= F σ=5 501558625821.153.1??????,弯曲强度满足要求。 6、验算效率

蜗轮蜗杆设计计算书A

蜗轮蜗杆设计计算书 2005年2月1日

基本参数: 中心距:a=270mm 蜗杆轴面模数(蜗轮端面模数):m x =9 蜗杆头数:Z 1=1 蜗轮齿数:Z 2=47 蜗杆分度圆直径:d 1=φ112.859mm 蜗轮分度圆直径:d2=φ427mm 蜗杆顶圆修形后直径:φ130mm 圆柱蜗杆传动几何计算: 蜗杆轴面模数(蜗轮端面模数):9 传动比:471 471221====Z Z n n i 蜗杆直径系数(蜗杆特性系数): 5399.129 859.1121=== x m d q 变位系数: ()()23005.0475399.125.092705.02=+-=+-=Z q m a x x 蜗杆分度圆柱上螺旋线升角: "34'3345399 .1211?===arctg q Z arctg γ 蜗杆节圆柱上螺旋线升角: "55'23423005.025399.1212'1?=??? ???+=??? ? ??+=arctg x q Z arctg γ 蜗杆轴面齿形角(阿基米德螺线蜗杆):?=20α

蜗杆(蜗轮)法面齿形角: ()()"30'5619"34'334cos 20cos ?=??==tg arctg tg arctg n γαα 径向间隙:8.192.02.0=?==x m c 蜗杆、蜗轮齿顶高:h a1=m x =9 h a2=(1+x)m x =(1+0.23005)×9=11.07045 蜗杆、蜗轮齿根高:h f1=1.2m x =1.2×9=10.8 h f2=(1.2-x)m x =(1.2-0.23005) ×9=8.72955 蜗杆、蜗轮分度圆直径:d 1=112.859mm d2=423mm 蜗杆、蜗轮节圆直径: d w1=(q+2x)m x =(12.5399+2×0.23005 ) ×9=117 d w2=d 2=423 蜗杆、蜗轮顶圆直径: d a1=(q+2)m x =(12.5399+2) ×9=130.8591 d a2=(Z2+2+2x)m x =(47+2+2×0.23005) ×9=445.1409 蜗杆、蜗轮齿根圆直径: d f1=(q-2.4)m x =(12.5399-2.4)×9=91.2591 d f2=(Z2+2x-2.4)m x =(47+2×0.23005-2.4) ×9=405.5409 蜗杆轴向齿距:p x =πm x =π9=28.2743 蜗杆沿分度圆柱上的轴向齿厚: s 1=0.5πm x =0.5×28.2743=14.1372 当采用加厚蜗轮时:

普通圆柱蜗杆传动的基本参数及几何尺寸计算

普通圆柱蜗杆传动的基本参数及几何尺寸计算 1.基本参数: (1)模数m和压力角α: 在中间平面中,为保证蜗杆蜗轮传动的正确啮合,蜗杆的轴向模数m a1和压力角αa1应分别相等于蜗轮的法面模数m t2和压力角αt2,即 m a1=m t2=mαa1=αt2 蜗杆轴向压力角与法向压力角的关系为: tgαa=tgαn/cosγ 式中:γ-导程角。 (2)蜗杆的分度圆直径d1和直径系数q 为了保证蜗杆与蜗轮的正确啮合,要用与蜗杆尺寸相同的蜗杆滚刀来加工蜗轮。由于相同的模数,可以有许多不同的蜗杆直径,这样就造成要配备很多的蜗轮滚刀,以适应不同的蜗杆直径。显然,这样很不经济。 为了减少蜗轮滚刀的个数和便于滚刀的标准化,就对每一标准的模数规定了一定数量的蜗杆分度圆直径d1,而把及分度圆直径和模数的比称为蜗杆直径系数q,即: q=d1/m 常用的标准模数m和蜗杆分度圆直径d1及直径系数q,见匹配表。 (3)蜗杆头数z1和蜗轮齿数z2 蜗杆头数可根据要求的传动比和效率来选择,一般取z1=1-10,推荐z1=1,2,4,6。 选择的原则是:当要求传动比较大,或要求传递大的转矩时,则z1取小值;要求传动自锁时取z1=1;要求具有高的传动效率,或高速传动时,则z1取较大值。

蜗轮齿数的多少,影响运转的平稳性,并受到两个限制:最少齿数应避免发生根切与干涉,理论上应使z2min≥17,但z2<26时,啮合区显著减小,影响平稳性,而在z2≥30时,则可始终保持有两对齿以上啮合,因之通常规定z2>28。另一方面z2也不能过多,当z2>80时(对于动力传动),蜗轮直径将增大过多,在结构上相应就须增大蜗杆两支承点间的跨距,影响蜗杆轴的刚度和啮合精度;对一定直径的蜗轮,如z2取得过多,模数m就减小甚多,将影响轮齿的弯曲强度;故对于动力传动,常用的范围为z2≈28-70。对于传递运动的传动,z2可达200、300,甚至可到1000。z1和z2的推荐值见下表 (4)导程角γ 蜗杆的形成原理与螺旋相同,所以蜗杆轴向齿距p a与蜗杆导程p z的关系为p z=z1p a,由下图可知: tanγ=p z/πd1=z1p a/πd1=z1m/d1=z1/q 导程角γ的范围为3.5°一33°。导程角的大小与效率有关。导程角大时,效率高,通常γ=15°-30°。并多采用多头蜗杆。但导程角过大,蜗杆车削困难。导程角小时,效率低,但可以自锁,通常γ=3.5°一4.5° 5)传动比I 传动比i=n主动1/n从动2 蜗杆为主动的减速运动中

第七章蜗杆传动_题目及答案

第七章 蜗杆传动 一、简答题: (1) 在材料铸铁或MPa b 300>σ的蜗轮齿面接触强度计算中,为什么许用应力 与齿面相对滑动速度有关? (2) 说明蜗杆头数1z 及蜗轮齿数2z 的多少对蜗杆传动性能的影响? (3) 闭式蜗杆传动为什么要进行热平衡计算? (4) 蜗杆传动有哪些特点?应用于什么场合? (5) 蜗杆导程角γ大小不同时,其相应的蜗杆加工方法有何特点?蜗杆传动以 什么面定义标准模数? (6) 为什么要引入蜗杆直径系数?如何选用?它对蜗杆传动的强度、刚度、 啮合效率及尺寸有何影响? (7) 蜗杆传动的正确啮合条件是什么?自锁条件是什么? (8) 影响蜗杆传动效率的主要因素有哪些?导程角γ的大小对效率有何影 响? (9) 为什么蜗杆传动只计算蜗轮齿的强度,而不计算蜗杆齿的强度?在什么 情况下需要进行蜗杆的刚度计算?许用应力如何确定? (10)蜗杆传动的热平衡如何计算?可采用哪些措施来改善散热条件? 二、填空题: (1) 减速蜗杆传动中,主要的失效形式为 、 、 ,常发生 在 。 (2) 普通圆柱蜗杆传动变位的主要目的是 和 。 (3) 有一标准普通圆柱蜗杆传动,已知21=z ,8=q ,422=z ,中间平面上 模数mm m 8=,压力角020=α,蜗杆为左旋,则蜗杆分度圆直径=1d mm ,传动中心距=a mm ,传动比=i 。蜗杆分度圆柱上的 螺旋线角升γ=arctan 蜗轮为 旋,蜗轮分度圆柱上的螺旋角

β= 。 (4) 蜗杆传动中,蜗杆导程角为γ,分度圆圆周速度为1v ,则其滑动速度s v 为 ,它使蜗杆蜗轮的齿面更容易发生 和 。 (5) 两轴交错角为090的蜗杆传动中,其正确的啮合条件是 , 和 (等值同向)。 (6) 闭式蜗杆传动的功率损耗,一般包括三个部分: , 和 。 (7) 在蜗杆传动中,蜗杆头数越少,则传动效率越低,自锁性越好,一般蜗 杆头数取=1z 。 (8) 阿基米德蜗杆传动在中间平面相当于 与 相啮合。 (9) 变位蜗杆传动只改变 的尺寸,而 尺寸不变。 (10) 在标准蜗杆传动中,当蜗杆为主动时,若蜗杆头数1z 和模数m 一定时, 增大直径系数q ,则蜗杆刚度 ;若增大导程角γ,则传动效率 。 (11) 蜗杆传动发热计算的目的是防止 而产生齿面 失效,热平衡计 算的条件是单位时间内 等于同时间内的 。 (12) 蜗杆传动设计中,通常选择蜗轮齿数262>z 是为了 ;802

机械设计课程设计(蜗杆)

机械设计课程设计 计算说明书 设计题目链式运输机传动装置 专业班级 设计者 指导教师

目录 一设计任务书 (3) 二传动方案的拟定 (4) 三电动机的选择及传动装置的运动和动力参数计算 (6) 四传动零件的设计计算 (11) 1. 蜗杆及蜗轮的设计计算 (11) 2. 开式齿轮的设计计算 (15) 五蜗轮轴的设计计算及校核 (20) 六轴承及键的设计计算及校核 (28) 七箱体的设计计算 (33) 八减速器结构与附件及润滑和密封的概要说明 (35) 九设计小结 (38) 十参考文献 (39)

一.设计任务书 (1)设计题目:链式运输机传动装置 设计链式运输机的动装置,如图所示。工作条件为:链式输送机在常温下工作,负荷基本平稳,输送链工作速度V的允许误差为±5%;两班连续工作制(每班工作8h),要求减速器设计寿命为5年,每年280个工作日。 (2)原始数据 运输机牵引力 F(KN) 鼓轮圆周速度(允许误差±%5) V(m/s) 鼓轮直径D (mm) 0.95 0.31 350

二. 传动方案的拟定 (1)传动简图 (2)传动方案分析 机器一般是由原动机、传动装置和工作机三部分组成。 传动装置在原动机与工作机之间传递运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。本设计中原动机为电动机,工作机为链轮输送机。本传动方案采用了三级传动,第一级传动为单级蜗轮蜗杆减速器,第二级传动为开式齿轮传动,第三极为链轮传动。蜗轮蜗杆传动可以实现较大的传动比,结构尺寸紧凑,传动平稳,但效率较低,应布置在高速级;开式齿轮传动的工作环境较差,润滑条件不好,磨损较严重,应布置在低速级;链传动的运动不均匀,有冲击,不适于高速传动,故布置在传动的低速级。减速器的箱体采用水平剖分式结构,用HT100灰铸铁铸造而成。 该工作机采用的是原动机为Y系列三相笼型异步电动机,电压380 V,其结构简单、工作可靠、价格低廉、维护方便,另外

机械设计习题与答案19蜗杆传动

十九蜗杆传动习题与参考答案 一、选择题 1 与齿轮传动相比较,不能作为蜗杆传动的优点。 A. 传动平稳,噪声小 B. 传动效率高 C. 可产生自锁 D. 传动比大 2 阿基米德圆柱蜗杆与蜗轮传动的模数,应符合标准值。 A. 法面 B. 端面 C. 中间平面 3 蜗杆直径系数q=。 A. q=d l/m B. q=d l m C. q=a/d l D. q=a/m 4 在蜗杆传动中,当其他条件相同时,增加蜗杆直径系数q,将使传动效率。 A. 提高 B. 减小 C. 不变 D. 增大也可能减小 z,则传动效率。 5 在蜗杆传动中,当其他条件相同时,增加蜗杆头数 1 A. 提高 B. 降低 C. 不变 D. 提高,也可能降低 z,则滑动速度。 6 在蜗杆传动中,当其他条件相同时,增加蜗杆头数 1 A. 增大 B. 减小 C. 不变 D. 增大也可能减小 z,则。 7 在蜗杆传动中,当其他条件相同时,减少蜗杆头数 1 A. 有利于蜗杆加工 B. 有利于提高蜗杆刚度 C. 有利于实现自锁 D. 有利于提高传动效率 8 起吊重物用的手动蜗杆传动,宜采用的蜗杆。 A. 单头、小导程角 B. 单头、大导程角 C. 多头、小导程角 D. 多头、大导程角 9 蜗杆直径d1的标准化,是为了。 A. 有利于测量 B. 有利于蜗杆加工 C. 有利于实现自锁 D. 有利于蜗轮滚刀的标准化 10 蜗杆常用材料是。 A. 40Cr B. GCrl5 C. ZCuSnl0P1 D. LY12 11 蜗轮常用材料是。 A. 40Cr B.GCrl5 C. ZCuSnl0P1 D. LYl2 12 采用变位蜗杆传动时。 A. 仅对蜗杆进行变位 B. 仅对蜗轮进行变位

蜗轮蜗杆设计汇总

蜗轮蜗杆设计 摘要 蜗杆传动从属齿轮传动,在现代工业中应用非常广泛。蜗轮蜗杆包含两个部分:蜗杆和蜗轮,其齿形大多数由直线、平面或者平面上的曲线经过一次或两次展成运动形成。由于蜗轮蜗杆结构性特点,它用于传递空间两相错轴间的运动和动力。蜗杆传动机构多数情况下蜗杆为主动件,蜗轮为被动件。蜗杆传动具有传动比大、体积小、运转平稳、噪音小等特点。在机床制造业中,普通圆柱蜗杆传动的应用尤为普遍,并且几乎成了一般低速传动工作台和连续分度机构的唯一传动形式;冶金工业轧机压下机构都采用大型蜗杆传动;煤矿设备中的各种类型的绞车及采煤机组牵引传动;起重运输业中各种提升 设备及无轨电车等都采用蜗杆传动。其他,在精密仪器设备、军工、宇宙观测仪器中,蜗杆传动常用作分度机构、操纵机构、计算机构、测距机构等等,大型天文望远镜、雷达等也离不开蜗杆传动。 关键词:蜗轮蜗杆

目录 第一章蜗杆传动的类型和特点 (1) 1.1 蜗杆传动的类型 (1) 1.2 蜗杆传动的特点 (2) 第二章蜗轮传动的基本参数和几何尺寸计算 (3) 2.1 蜗杆传动的基本参数 (3) 2.2 蜗杆传动的几何尺寸计算 (6) 第三章蜗轮传动的失效形式、设计准则、材料和结构 (7) 3.1 蜗杆传动的失效形式和设计准则 (7) 3.2 蜗杆、蜗轮的材料和结构 (8) 第四章蜗轮传动的强度计算 (10) 4.1蜗杆传动的受力分析 (10) 4.2 蜗轮齿面接触疲劳强度计算 (11) 4.3 蜗轮轮齿的齿根弯曲疲劳强度计算 (12) 第五章蜗轮传动的效率、润滑和热平衡计算 (13) 5.1蜗杆传动的效率 (13) 5.2 蜗杆传动的润滑 (13) 5.3 蜗杆传动的热平衡计算 (15) 结论 (17) 致谢 (18) 参考文献 (19)

圆弧圆柱蜗杆

圆弧圆柱蜗杆(ZC蜗杆)传动是一种非直纹面圆柱蜗杆,在中间平面上蜗杆的齿廓为凹圆弧,与之相配的涡轮齿廓为凸圆弧,如图7-6所示。 这种蜗杆的传动特点是: a.蜗杆与蜗轮两共轭齿面是凹凸啮合,增大了综合曲率半径,因而单位齿面接触应力减小,接触强度得以提高。 b.瞬时啮合时的接触线方向与相对滑动速度方向的夹角(润滑角)大,易于形成和保持共轭齿面间的动压油膜,使摩擦系数减小,齿面磨损小,传动效率可达95%以上。 c.在蜗杆强度不削弱的情况下,能增大涡轮的齿根厚度,使涡轮轮齿的弯曲强度增大。 d.传动比范围大(最大可以达到100),制造工艺简单,重量轻。 e.传动中心距难以调整,对中心距误差的敏感性强。

§7.2 普通圆柱蜗杆传动的主要参数和几何尺寸 如图6-1所示,在中间平面上,普通圆柱蜗杆传动就相当于齿条与齿轮的啮合传动。故此,在设计蜗杆传动 时,均取中间平面上的参数(如模数、压力角)和尺寸(如齿顶圆、分度圆等)为基准,并沿用齿轮传动的计算关系,其主要依据是国家标准GB10087-88和GB10088-88。 一、普通圆柱蜗杆传动的主要参数及选择 普通圆柱蜗杆传动的主要参数有:模数m、压力角 a 、蜗杆头数z1和涡轮齿数z2及蜗杆的直径d1 等。进行蜗杆传动设计时,首先要正确地选择参数。这些参数之间是相互联系地,不能孤立地去确定,而应该根据蜗杆传动地工作条件和加工条件,考虑参数之间地相互影响,综合分析,合理选定。 1、模数m和压力角 蜗杆传动的尺寸计算与齿轮传动一样,也是以模数m作为计算的主要参数。在中

间平面内蜗杆传动相当于齿轮和齿条传动,蜗杆的轴向模数和轴向压力角分别与涡轮的端面模数和端面压力角相等,为此将此平面内的模数和压力角规定为标准值,标准模数见书中所附表格,标准压力角为 a =20° 。 2、蜗杆的分度圆直径d1 在蜗杆传动中,为了保证蜗杆与配对蜗轮的正确啮合,常用与蜗杆相同尺寸的蜗轮滚刀来加工与其配对的涡轮。这样,只要有一种尺寸的蜗杆,就需要一种对应的涡轮滚刀。对同一模数,可以有很多不同直径的蜗杆,因而对每一模数就要配备很多蜗轮滚刀。显然,这样很不经济。 为了限制涡轮滚刀的数目及便于滚刀的标准化,就对每一标准模数规定了一定数量的蜗杆分度圆直径d1 ,而把比值 称为蜗杆直径系数。 由于d1与m 均已取为标准值,故q 就不是整数,见表格所示。 3、蜗杆头数z1 蜗杆头数z1可根据要求的传动比和效率来选定。单头蜗杆传动的传动比可以较大,但效率较低。如果要提高效率,应增加蜗杆的头数。但蜗杆头数过多,又会给加工带来困难。所以,通常蜗杆头数取为1、2、4、6。 4、导程角γ 蜗杆的直径系数q 和蜗杆头数z1选定之后,蜗杆分度圆柱上的导程角γ也就确定了,如图7-8所示。 显然有: 其中: Pz 为蜗杆的导程,Pa 为蜗杆的轴向齿距 由上面的公式 m d q 1

蜗杆蜗轮的设计计算

蜗杆蜗轮的设计计算 一、选择蜗杆传动类型、精度等级 由于传动的功率不大,速度也不高,故选用阿基米德圆柱蜗杆传动,精度为:8C-GB10089-88。 二、选择蜗杆蜗轮材料 考虑到蜗杆传动功率不大,速度中等,故蜗杆用45号钢表面淬火,硬度为45~55HRC,蜗轮边缘采用ZCuSn10P1,金属模铸造。 三、初选几何参数 查参考文献[2]表8-4-4,初定中心距,传动比时, r=4°34′26″ 四、确定许用接触应力 查参考文献[2]表8-4-9知,当蜗轮材料为铸青铜时, 由表8-4-10查得 滑动速度: 采用浸油润滑,由参考文献[2]图8-4-2查得: 根据参考文献[2]表8-4-4,,设计工作寿命t=12000小时,求得 根据,由图8-4-4查得,许用接触应力为 五、计算蜗轮输出转矩T2 估算传动效率 六、确定模数m和蜗杆分度圆直径d1 由公式可得:

因载荷较平稳,取载荷系数k=1.1,则 查参考文献[2]表8-4-2得,,取m=2mm,d1=22.4mm,q=11.2,r=5°6′8″。 七、主要尺寸计算 蜗杆: 分度圆直径:d1=22.4mm; 齿顶圆直径:; 齿根圆直径: ; 蜗轮: 分度圆直径:; 齿顶圆直径:; 齿根圆直径 :; 蜗轮外圆直径:,取de2=108mm 蜗轮齿宽:,取b2=18mm 中心距: 八、蜗轮齿面接触强度校核 由参考文献[2]表8-4-9,可得 由于几何参数已经确定,故k与T2可按已知的几何参数重新计算 由参考文献[2]表8-4-15用插值法查得,则蜗轮副啮合效率为 取轴承效率,搅油及溅油效率,则蜗杆传动的总效率为:

由此可得: 由于,由参考文献[2]表8-4-9取k1=1,k2=1,k3=1,k4=1.52,k5=1.15, k6=0.75,则 将此时的k与T2代入蜗轮齿面接触强度校核公式,得: 显然,所以满足接触强度要求。 九、散热计算 由公式得,传动损耗的功率为: 由公式和设计要求可推出: 考虑到通风良好,取,t1=95℃,t2=20℃,则 若蜗杆减速部分散热的计算面积A不满足以上条件,可以采用强迫冷却方法或增加散热计算面积的方法来满足散热要求。 蜗杆轴的设计 一、蜗杆轴的材料选择及确定许用应力 考虑蜗杆轴主要传递我轮的转矩,为普通用途中小功率减速传动装置。因此,蜗杆材料选用45钢,正火处理,,。 二、初步估算轴的最小直径 由公式得: 取dmin=6mm 三、确定各轴段的直径和长度 根据各个零件在轴上的定位和装拆方案确定轴的形状及直径和长度,如图4-1所示。

蜗杆传动题目及答案

第七章 蜗杆传动 (1) 说明蜗杆头数1z 及蜗轮齿数2z 的多少对蜗杆传动性能的影响? (2) 闭式蜗杆传动为什么要进行热平衡计算? (3) 蜗杆传动有哪些特点?应用于什么场合? (4) 蜗杆导程角γ大小不同时,其相应的蜗杆加工方法有何特点?蜗杆传动以 什么面定义标准模数? (5) 为什么要引入蜗杆直径系数?如何选用?它对蜗杆传动的强度、刚度、 啮合效率及尺寸有何影响? (6) 蜗杆传动的正确啮合条件是什么?自锁条件是什么? (7) 影响蜗杆传动效率的主要因素有哪些?导程角γ的大小对效率有何影 响? (8) 为什么蜗杆传动只计算蜗轮齿的强度,而不计算蜗杆齿的强度?在什么 情况下需要进行蜗杆的刚度计算?许用应力如何确定? (9) 蜗杆传动的热平衡如何计算?可采用哪些措施来改善散热条件? 二、填空题: (1) 减速蜗杆传动中,主要的失效形式为 、 、 ,常发生 在 。 (2) 普通圆柱蜗杆传动变位的主要目的是 和 。 (3) 有一标准普通圆柱蜗杆传动,已知21=z ,8=q ,422=z ,中间平面上 模数mm m 8=,压力角020=α,蜗杆为左旋,则蜗杆分度圆直径=1d mm ,传动中心距=a mm ,传动比=i 。蜗杆分度圆柱上的螺 旋线角升γ=arctan 蜗轮为 旋,蜗轮分度圆柱上的螺旋角 β= 。 (4) 蜗杆传动中,蜗杆导程角为γ,分度圆圆周速度为1v ,则其滑动速度s v 为 ,它使蜗杆蜗轮的齿面更容易发生 和 。

(5) 两轴交错角为090的蜗杆传动中,其正确的啮合条件是 , 和 (等值同向)。 (6) 闭式蜗杆传动的功率损耗,一般包括三个部分: , 和 。 (7) 在蜗杆传动中,蜗杆头数越少,则传动效率越低,自锁性越好,一般蜗 杆头数取=1z 。 (8) 阿基米德蜗杆传动在中间平面相当于 与 相啮合。 (9) 变位蜗杆传动只改变 的尺寸,而 尺寸不变。 (10) 在标准蜗杆传动中,当蜗杆为主动时,若蜗杆头数1z 和模数m 一定时, 增大直径系数q ,则蜗杆刚度 ;若增大导程角γ,则传动效率 。 (11) 蜗杆传动发热计算的目的是防止 而产生齿面 失效,热平衡计 算的条件是单位时间内 等于同时间内的 。 (12) 蜗杆传动设计中,通常选择蜗轮齿数262>z 是为了 ;802

圆柱蜗杆传动主要参数和几何尺寸计算

圆柱蜗杆传动主要参数和几何尺寸计算 如下图所示,在中间平面上,普通圆柱蜗杆传动就相当于齿条与齿轮的啮合传动。故在设计蜗杆传动时,均取中间平面上的参数(如模数、压力角等)和尺寸(如齿顶圆、分度圆等)为基准,并沿用齿轮传动的计算关系。 (一)普通圆柱蜗杆传动 模数m和压力角α 蜗杆的分度圆直径d1 蜗杆头数z1 导程角γ 传动比i和齿数比u 蜗轮齿数z2 蜗杆传动的标准中心距a (二)蜗杆传动变位的特点 为了配凑中心距或提高蜗杆传动的承载能力及传动效率,常采用变位蜗杆传动。变位方法与齿轮传动的变位方法相似,也是在切削时,利用刀具相对于蜗轮毛坯的径向位移来实现变位。但是在蜗杆传动中,由于蜗杆的齿廓形状和尺寸要与加工蜗轮的滚刀形状和尺寸相同,所以为了保持刀具尺寸不变,蜗杆尺寸是不能变动的,因而只能对蜗轮进行变位。图蜗杆传动的变位表示了几种变位情况(图中a′、z2′分别为变位后的中心距及蜗轮齿数,x2为蜗轮变位系数)。变位后,蜗轮的分度圆和节圆仍旧重合,只是蜗杆在中间平面上的节线有所改变,不再与其分度线重合。

变位蜗杆传动根据使用场合的不同,可在下述两种变位方式中选取一种。 1)变位前后,蜗轮的齿数不变(z2′=z2),蜗杆传动的中心距改变(a′≠a),其中心距的计算式如下:a′=a+x2m=(d1+d2+2x2m)/2 2)变位前后,蜗杆传动中心距不变(a′=a),蜗轮齿数发生变化(z2′≠z2),可计算如下: 因 故 则 (三)蜗杆传动的几何尺寸计算 蜗杆传动的几何尺寸及计算公式见下图及表<普通圆柱蜗杆传动基本几何尺寸计算关系式>、表<蜗轮宽度顶圆直径及蜗杆齿宽的计算公式>。

相关主题
文本预览
相关文档 最新文档