当前位置:文档之家› 实验3质粒DNA的酶切鉴定

实验3质粒DNA的酶切鉴定

实验3质粒DNA的酶切鉴定
实验3质粒DNA的酶切鉴定

实验三质粒DNA的酶切鉴定

南京大学生命科学院

一、实验目的

1、学习和掌握限制性内切酶的特性

2、学习酶解的操作方法,初步理解限制性内切酶是DNA重组技术的关键工具

3、进一步熟练掌握琼脂糖凝胶电泳的方法

二、实验原理

限制性核酸内切酶是一种工具酶,这类酶的特点是能够识别双链DNA分子特异性核酸序列,并能在这个特异性核苷酸序列内切断DNA双链,形成一定长度和顺序的DNA 片段。限制性核酸内切酶是体外剪切基因片段的重要工具,与核酸聚合酶、连接酶以及末端修饰酶等一起称为工具酶。限制性核酸内切酶不仅是DNA重组中重要的工具,而且还可以用于基因组酶切图谱的鉴定。

寄主控制的限制与修饰现象

限制与修饰系统是细胞的一种防卫手段。各种细菌都能合成一种或几种能够切割DNA双链的核酸内切酶,它们以此来限制外源DNA存在于自身细胞内,但合成这种酶的细胞自身的DNA不受影响,因为这种细胞还合成了一种修饰酶,对自身的DNA进行了修饰,限制性酶对修饰过的DNA不能起作用。这种现象被称为寄主控制的限制与修饰现象。

限制性核酸内切酶的类型及特性

按限制酶的组成、与修饰酶活性关系以及切断核酸的情况不同,分为三类:

第一类(I型)限制性内切酶能识别专一的核苷酸顺序,并在识别点附近的一些核苷酸上切割DNA分子中的双链,但是切割的核苷酸顺序没有专一性,是随机的。这类限制性内切酶在DNA重组技术或基因工程中用处不大,无法用于分析DNA结构或克隆基因。这类酶如EcoB、EcoK等。

第二类(II型)限制性内切酶能识别专一的核苷酸顺序,并在该顺序内的固定位置上切割双链。由于这类限制性内切酶的识别和切割的核苷酸都是专一的。因此,这种限制性内切酶是DNA重组技术中最常用的工具酶之一。这种酶识别的专一核苷酸顺序最常见的是4个或6个核苷酸,少数也有识别5个核苷酸以及7个、8个、9个、10

个和11个核苷酸的。 II 型限制性内切酶的识别顺序是一个回文对称顺序,即有一个中心对称轴,从这个轴朝二个方向“读”都完全相同。这种酶的切割可以有两种方式:

○1粘性末端;是交错切割,结果形成两条单链末端,这种末端的核苷酸顺序是互补的,可形成氢键,所以称为粘性末端。

○2平头末端:II型酶切割方式的另一种是在同一位置上切割双链,产生平头末端。

第三类( III型)限制性内切酶也有专一的识别顺序,但不是对称的回文顺序。在识别顺序旁边几个核苷酸对的固定位置上切割双链,这几个核苷酸对不是特异性的。因此,这种限制性内切酶切割后产生的一定长度DNA片段,具有各种单链末端。因此不能应用于基因克隆。

限制性核酸内切酶的命名法

用属名的头一个字母和种名的头两个字母表示寄主菌的物种名称,如E. coli 用Eco表示,所以用斜体字。

用一个字母代表菌株或型,如流感嗜血菌Rd菌株用d,即Hind。

如果一种特殊的寄主菌株,具有几个不同的限制与修饰体,则以罗马数字表示,如HindⅠ, HindⅡ,HindⅢ等。

在实验中,因为不同的酶所要求的最适反应条件不同,所以一定要使用与酶相匹配的缓冲系统。一般按照销售酶的公司所提供的相应缓冲液。双酶切或多酶切时要考虑相容性缓冲液问题,一般公司会给用户提供这方面的信息。

三、实验仪器和试剂

一)仪器:

1、低压电泳仪

2、水平电泳槽及梳齿

3、紫外投射仪

4、水浴槽

5、塑料离心管1.5ml*3

6、冰槽

二)药品:

ddH2O : 8.4ul

10XBuffer: 2 ul

Plasmid: 10 ul

EcoRI : 0.5 ul

HindIII : 0.5 ul

上述药品配成混合液。

四、操作步骤

质粒酶切

1、取上次柱离心法纯化所得质粒DNA。

2、将质粒DNA置于上述混合液中,37℃保温2小时。

3、取20 ul反应产物电泳观察酶切结果。

琼脂糖凝胶电泳

1. 称取1g琼脂糖于锥形瓶中,加入100ml 1×TAE溶液,加热至熔化均匀;

2. 将凝胶溶液冷却至50℃左右;

3. 将制胶板的两端用胶布封住,倒入凝胶溶液(5~8cm),插入梳齿;

4.待凝胶凝固后小心拔出梳齿,将凝胶板置于水平电泳槽至,加入足量的1×TAE 溶液使液面略高于凝胶面2mm;

5. 将DNA样品与溴酚蓝以10 : 1混匀后小心加入凝胶的加样孔中;

6. 将电泳槽与电泳仪正确连接,稳压电泳,电场强度约5V/cm;

7. 待溴酚蓝指示剂走到适当位置后停止电泳;

8. 将凝胶取出,放入染料中染色10min;

9. 取出凝胶,用水冲洗后于紫外灯下观察电泳结果。

五、实验结果

结果分析:

在琼脂糖凝胶电泳结果中出现2条橙黄色的条带,其中的第一条带是2.7kb左右的一条线性质粒DNA的条带;第二条是0.6kb左右的另一条线性质粒DNA的条带,较前一条细,且其中隐约可见溴酚蓝的条带。这两条带越亮表明实验结果越好。Marker

的标记范围在第一条带的后面,说明前一段条带的分子量大于1000kb,后一段条带的分子量为0.6kb。

3.3 2.7 0.6kb

图1 酶切鉴定电泳结果

七、实验讨论

1、影响核酸限制性内切酶活性的因素

(1) DNA的纯度;

(2) 酶切消化反应的温度;

(3) 溶液中离子浓度及种类;

(4) 缓冲液的 pH值;

(5) DNA甲基化的程度

(6) DNA的分子结构

2、限制性内切酶反应的终止

消化样品后,在进一步处理DNA样品前往往需要钝化内切酶的活性,钝化大多数限制性内切酶的方法是65℃温浴5min。

此外,还可以用等体积的酚抽提酶解产物,提取DNA。

若用限制性内切酶消化DNA分子后,为了进行凝胶电泳分析,则可直接加入凝胶电泳加样缓冲液,振荡混合后,直接上样进行凝胶电泳。

3、利用限制酶对DNA进行消化的具体步骤:

不同的限制酶缓冲液主要差别在于其中所含NaCl的浓度。当要用两种或两种以上限制酶切割DNA时,若这些酶可以在同种缓冲中作用良好,则两种酶可同时切割。若所要求的缓冲液不同,则可采用以下方法:

1)先用在低离子强度的缓冲液中活性最高的酶切割DNA,然后加入适量NaCl及第二种酶,继续温浴。

2)使用缓冲液:谷氨酸钾缓冲液(KGB)。

食品中蛋白质的测定实验报告

1.目的 掌握凯氏定氮法测蛋白质的原理、操作、条件、注意事项。 2.原理 蛋白质是含氮有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解。分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后在以硫酸或盐酸标准溶液滴定,根据酸的消耗量计算含氮量再乘以换算系数,即为蛋白质含量。 3.试剂 3.1浓硫酸、硫酸铜、硫酸钾,所有试剂均用不含氮的蒸馏水配制 3.2混合指示液 1份(1g/L)甲基红乙醇溶液与5份1g/L溴甲酚氯乙醇溶液临用时混合。 也可用2份甲基红乙醇溶液与1份1g/L次甲基蓝乙醇溶液临用时混合。 3.3氢氧化钠溶液(400g/L) 3.4标准滴定溶液 硫酸标准溶液[c(1/2H2SO4)=0.0500mol/L]或盐酸标准溶液[c(HCl) 0.0500mol/L] 3.5硼酸溶液(20g/L) 4.仪器 定氮蒸馏装置 5.样品 全蛋(2.47g) 6.操作 6.1样品处理 准确称取2—5g半固体样品,小心移入干燥洁净的500mL凯氏烧瓶中,然后加入研细的硫酸铜0.5g,硫酸钾10g和浓硫酸20mL,轻轻摇匀后于瓶口放一小漏斗,将瓶以45°角斜放于加有石棉网的电炉上,小火加热,待内容物全部炭化后,泡沫完全消失后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色呈请透明后,再继续加热0.5h,取下放冷,慢慢加入20mL水。 放冷后,移入100mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验。 6.2连接装置 装好定氮装置,于水蒸气发生器内装水至2/3处,加甲基红指示剂数滴及少量硫酸,以保持水呈酸性,加入数滴玻璃珠以防暴沸,用调压器控制,

双酶切实验

双酶切概述 双酶切反应(Double Digests) 1、同步双酶切 同步双酶切是一种省时省力的常用方法。选择能让两种酶同时作用的最佳缓冲液是非常重要的一步。NEB每一种酶都随酶提供相应的最佳NEBuffer,以保证100%的酶活性。NEBuffer的组成及内切酶在不同缓冲液中的活性见《内切酶在不同缓冲液里的活性表》及每支酶的说明书。能在最大程度上保证两种酶活性的缓冲液即可用于双酶切。由于内切酶在非最佳缓冲液条件下的切割速率会减缓,因此使用时可根据每种酶在非最优缓冲液中的具体活性相应调整酶量和反应时间。 2、分步酶切 如果找不到一种可以同时适合两种酶的缓冲液,就只能采用分步酶切。分步酶切应从反应要求盐浓度低的酶开始,酶切完毕后再调整盐浓度直至满足第二种酶的要求,然后加入第二种酶完成双酶切反应。 3、使用配有特殊缓冲液的酶进行双酶切(图) 使用配有特殊缓冲液的酶进行双酶切也不复杂。在大多数情况下,采用标准缓冲液的酶也能在这些特殊缓冲液中进行酶切。这保证了对缓冲液有特殊要求的酶也能良好工作。由于内切酶在非最佳缓冲液中进行酶切反应时,反应速度会减缓,因此需要增加酶量或延长反应时间。通过《内切酶在不同缓冲液里的活性表》可查看第二种酶在特殊缓冲液相应盐浓度下的作用活性。 双酶切建议缓冲液 注: 只要其中一种酶需要添加BSA,则应在双酶切反应体系中加入BSA。BSA不会影响任何内切酶的活性。 注意将甘油的终浓度控制在10%以下,以避免出现星号活性,详见《星号活性》。可通过增加反应体系的总体积的方法实现这一要求。 某些内切酶的组合不能采用同步双酶切法,只能采用分步法进行双酶切。上表中这些组合以“se q”标注。 [编辑本段] 双酶切的注意事项 1、做转化的时候,进行酶连接反应时,注意保持低温状态,因为LIGASE酶很容易降解.为保险起见,一般连接3小时,16度。 2、对含有AMP-RESISTENCE的质粒铺板时,注意加AMP时的温度,温度过高,会使克隆株无法筛选出来.我的方法是培基高温消毒后放在烤箱里,烤箱一般温度为55-60度,然后做的时候拿出来,这样好掌握温度。铺板前后注意用吹风机吹干。 3、对照的设立:为验证双酶切是否成功,可做如下对照: 酶切反应时加各单酶分别切,两管,用同一种BUFFER,跑胶,看单切的两管是否成线性.如两管均成线性可初步判断双酶切成功.做转化时,也要进行对照。 [编辑本段] 双酶切连接反应之全攻略 1、回收PCR产物:

基因工程实验报告

基因工程实验报告 、

小麦GAPDH截短体的重组与表达 摘要:本实验通过基因工程(genetic engineering)手段对小麦总RNA进行提取、PCR扩增及与质粒载体的重组构建的操作,并将重组质粒以氯化钙法导入大肠杆菌感受态细胞,诱导目的基因表达,并在蛋白水平进行Western检测。通过本对实验的实践,我们对基因工程技术将会有一个比较全面的认识和了解。 关键字:小麦基因;载体;感受态 前言 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术。为在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 (一)实验过程

1.实验部分流程:

2.小麦总RNA提取(Trizol法) 2.1 材料 小麦幼苗 2.2 试剂配制及器具处理 ① 0.1%的DEPC H2O(DEPC:焦碳酸二乙酯) ②器具处理:试剂瓶、量筒、研钵、大小枪头和1.5ml和0.2ml 的EP管等用纱布包裹,在 0.1%的DEPC H2O中浸泡过夜(37℃),高压灭菌,80℃烘干备用。剪刀、镊子和药匙等160℃烘烤6h以上。 ③无RNA酶灭菌水(DEPC H2O):用将高温烘烤的玻璃瓶(180℃×2h)装蒸馏水,然后加入 0.1%的DEPC(体积/体积),处理过夜后高压灭菌。 ④Trizol ⑤ 75%乙醇:用新打开的无水乙醇和DEPC处理过的水配制75%乙醇(用高温灭菌器皿配制),然后装入高温烘烤的玻璃瓶中,存放于低温冰箱。 ⑥氯仿(最好用新的)。 ⑦异丙醇(最好用新的)。 2.3 操作步骤: ①先在研钵中加入液氮,再将小麦叶片剪成小段在液氮中磨成粉末,用液氮预冷的药匙取50~100mg组织粉末加入已盛有1ml的Trizol液的EP管中(注意研磨粉末总体积不能超过所用Trizol体积的10%),充分混合均匀。 ②室温放置5min,然后加入200μL的氯仿,盖紧EP管并剧烈摇荡15秒钟。 ③ 12000rpm离心10min,取上层水相于一新的EP管中(千万不要将中间的沉淀层和下层液混入,否则重新离心分离),加入500μL异丙醇,温和颠倒混匀。室温放置10min,12000rpm 离心10min。 ④小心地弃去上清液,加入1ml的75%乙醇,涡旋混匀,4℃下12000rpm离心5min。 ⑤重复步骤④。 ⑥弃去上清液(尽量将残余液体除去),室温或真空干燥5~10min(注意不要干燥过分,否则会降低RNA的溶解度)。用30μL DEPC处理过的水将RNA溶解,必要时可55℃~60℃水浴10min。RNA可进行mRNA分离,或贮存于70%乙醇并保存于-70℃。 3. RT-PCR扩增目的基因cDNA 3.1 试剂 ① RNA模板 ②Olig(dT)18 ③反转录缓冲液 ④dNTP ⑤ M-MULV反转录酶 ⑥ RNA抑制剂(RNasin) ⑦Premix EX Taq DNA聚合酶 ⑧ PCR特异引物 3.2操作步骤: 3.2.1 RNA的反转录 采用Thermo Scientific(Fermentas)RevertAid First Strand cDNA Synthesis Kit Total RNA 6μL(需加入RNA约1μg) OligodT primer 1μL H2O(nuclease-free)5μL 12μL 65℃ 5min,补加下列试剂: 5× Reaction buffer 4μL RibolockRNase Inhibitor 1μL 10mM dNTP Mix 2μL RevertAid M-MuLV Reverse Transcriptase 1μL 20μL 42℃ 60min 70℃,5min,﹣20℃保存

蛋白质测定实验报告

蛋白质测定实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述: 1 材料与方法 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如,

基因工程实验报告

基因工程实验报告

————————————————————————————————作者:————————————————————————————————日期: 2

基因工程实验报告 、

小麦GAPDH截短体的重组与表达 摘要:本实验通过基因工程(genetic engineering)手段对小麦总RNA进行提取、PCR扩增及与质粒载体的重组构建的操作,并将重组质粒以氯化钙法导入大肠杆菌感受态细胞,诱导目的基因表达,并在蛋白水平进行Western检测。通过本对实验的实践,我们对基因工程技术将会有一个比较全面的认识和了解。 关键字:小麦基因;载体;感受态 前言 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术。为在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 (一)实验过程

1.实验部分流程: 片段胶 小麦幼苗小麦总RNA RT-PCR扩增小麦pGEX-4T-1 表达载体 表达菌株 目的蛋白 目的蛋白 Western

2.小麦总RNA提取(Trizol法) 2.1 材料 小麦幼苗 2.2 试剂配制及器具处理 ① 0.1%的DEPC H2O(DEPC:焦碳酸二乙酯) ②器具处理:试剂瓶、量筒、研钵、大小枪头和1.5ml和0.2ml 的EP管等用纱布包裹,在 0.1%的DEPC H2O中浸泡过夜(37℃),高压灭菌,80℃烘干备用。剪刀、镊子和药匙等160℃烘烤6h以上。 ③无RNA酶灭菌水(DEPC H2O):用将高温烘烤的玻璃瓶(180℃×2h)装蒸馏水,然后加入 0.1%的DEPC(体积/体积),处理过夜后高压灭菌。 ④Trizol ⑤ 75%乙醇:用新打开的无水乙醇和DEPC处理过的水配制75%乙醇(用高温灭菌器皿配制),然后装入高温烘烤的玻璃瓶中,存放于低温冰箱。 ⑥氯仿(最好用新的)。 ⑦异丙醇(最好用新的)。 2.3 操作步骤: ①先在研钵中加入液氮,再将小麦叶片剪成小段在液氮中磨成粉末,用液氮预冷的药匙取50~100mg组织粉末加入已盛有1ml的Trizol液的EP管中(注意研磨粉末总体积不能超过所用Trizol体积的10%),充分混合均匀。 ②室温放置5min,然后加入200μL的氯仿,盖紧EP管并剧烈摇荡15秒钟。 ③ 12000rpm离心10min,取上层水相于一新的EP管中(千万不要将中间的沉淀层和下层液混入,否则重新离心分离),加入500μL异丙醇,温和颠倒混匀。室温放置10min,12000rpm 离心10min。 ④小心地弃去上清液,加入1ml的75%乙醇,涡旋混匀,4℃下12000rpm离心5min。 ⑤重复步骤④。 ⑥弃去上清液(尽量将残余液体除去),室温或真空干燥5~10min(注意不要干燥过分,否则会降低RNA的溶解度)。用30μL DEPC处理过的水将RNA溶解,必要时可55℃~60℃水浴10min。RNA可进行mRNA分离,或贮存于70%乙醇并保存于-70℃。 3. RT-PCR扩增目的基因cDNA 3.1 试剂 ① RNA模板 ②Olig(dT)18 ③反转录缓冲液 ④dNTP ⑤ M-MULV反转录酶 ⑥ RNA抑制剂(RNasin) ⑦Premix EX Taq DNA聚合酶 ⑧ PCR特异引物 3.2操作步骤: 3.2.1 RNA的反转录 采用Thermo Scientific(Fermentas)RevertAid First Strand cDNA Synthesis Kit Total RNA 6μL(需加入RNA约1μg) OligodT primer 1μL H2O(nuclease-free)5μL 12μL 65℃ 5min,补加下列试剂: 5× Reaction buffer4μL RibolockRNase Inhibitor 1μL 10mM dNTP Mix 2μL RevertAid M-MuLV Reverse Transcriptase 1μL 20μL 42℃ 60min 70℃,5min,﹣20℃保存

质粒DNA的制备和酶切

实验十五质粒DNA的制备和酶切 一、实验目的及背景 质粒时细菌内的共生型遗传因子,它能在细菌中垂直遗传并且赋予宿主细胞一些表型,是比病毒更简单的原始生命。质粒通过细菌的结合作用,从雄性体转移到雌性体,是细菌有性繁殖的性因子,1952年由Lederburg正式命名为质粒。质粒是携带外源基因进入细菌中扩增或表达的重要媒介物,这种基因运载工具在基因工程中具有极为广泛的应用价值。本实验要求掌握最常用的质粒的提取方法。 从大肠杆菌中分离质粒DNA方法众多,目前常用的如碱变性法、煮沸法、SDS法、羟基磷灰石栏层析法等。各个方法分离是依据宿主菌株类型,质粒分子大小,碱基组成及结构等特点加以选择的,其中碱变性法既经济且得率较高,获得的质粒可以用于酶切,连接与转化。 碱变性法基本原理是,在pH为12.0-12.6的碱性环境中,线性的大分子量细菌染色体DNA变性,而共价闭环质粒DNA仍为自然状态。将pH调至中性并有高盐浓度存在的条件下,染色体DNA之间交联形成不溶性网状结构,大部分DNA 和蛋白质在去污剂SDS的作用下形成沉淀,而质粒DNA仍为可溶状态,通过离心可去除大部分细胞碎片,染色体DNA,RNA及蛋白质,质粒DNA尚在上清中,再用酚氯仿抽提进一步纯化质粒DNA。 在获得较纯的质粒后,我们常常会利用核酸限制性内切酶对质粒进行酶切,就可以达到在体外有目的地对遗传物质DNA进行改造。核酸限制性内切酶,是一类能识别双链DNA中特定碱基顺序的核酸水解酶,能够以内切方式水解核酸链中的磷酸二酯键,产生的DNA片段5’端为P,3’端为OH。根据限制酶的识别切割特性,催化条件及是否具有修饰酶活性可分为I/II/III型三大类,II型酶就是通常指的DNA限制性内切酶,他们能识别双链DNA的特异序列,并在这个序列内进行切割,产生特异的DNA片段。II型酶分子量较小,仅需Mg2+作为催化反应的辅助因子,识别序列一般为4~6个碱基对的反转重复序列,可以切割DNA 产生三种不同的切口:①5’端突出②3’端突出③平末端。在酶切反应中应当注意以下几个问题:内切酶的纯度和用量、内切酶底物(DNA)的纯度和浓度、反应缓冲液、酶解温度与时间。 二、实验试剂 1.LB培养基:胰化蛋白胨10g、酵母提取物5g、NaCl 10g,定容至1L,调节 pH至7.5 2.STE溶液:0.1M NaCl、10mM Tris-HCl(pH8.0)、1mM EDTA 3.Amp抗生素:50mg/ml 4.溶菌酶:10mg/ml(用10mM Tris- HCl pH8.0新鲜配制) 5.溶液I:50mM 葡萄糖、25mM Tris-HCl(pH8.0)、10mM EDTA 6.溶液II(新鲜配制):0.2M NaOH、1% SDS

基因工程大实验报告

基因工程综合实验报告 A型产气荚膜梭菌α毒素基因克隆及表达 班级生物工程081班 姓名盖雪 学号08771029 指导教师高凤山 实验时间2011.10.10-10.14 成绩

一、实验原理 二、主要试剂 DNA Ligation Kit Ver.2.0; Eco RI、Bam HI限制性内切酶;含15%甘油的 0.1mol/L CaCl2,20-30mL。无菌;0.1mol/L CaCl2 , 20-30mL ;50%甘油(无菌,保存菌种用,50mL)4×25mL LB液体培养基(现配现用),卡那霉素(Kan)100mg/mL配2mL(过滤),X-gal 二甲基甲酰胺配成20mg/mL 配2mL; IPTG 24mg/mL, 配2mL(需过滤);蛋白Marker; 0.5M EDTA,pH8.0; 溴化乙锭溶液(EB) (贮存浓度:10mg/mL,使用浓度0.5μg/mL)

三、仪器设备 紫外成像系统,高速冷冻离心机,恒温震荡培养箱,高压灭菌锅,冰箱,水浴锅,微波炉,电炉子,试管架,tube 架,试管,瓶塞,锥形瓶,胶板,电泳槽(包括琼脂糖凝胶和SDS-PAGE),电泳仪,培养皿,移液枪,枪头(各种规格),玻璃涂棒,记号笔,标签纸,卫生纸,水漂(水浴用),试纸,称量纸,一次性手套,酒精灯,火柴,药勺,搅拌子,量筒,烧杯,镊子,tip, tube(1.5mL, 2mL) 五、实验步骤 (一)准备工作 LB培养基配制;LB固体培养基配置;接菌(制备感受态用) 1)LB固体配制 配制固体培养基100mL 加入蒸馏水100mL溶解,用2mol/L NaOH调pH值至7.4,121℃灭菌20min。 灭菌结束后,待温度降至80℃以下时,方能取出,在超净台上,当培养基凉至50-60℃时,迅速加入Kan 30μL(若氨苄,加100ul),摇匀,倒板(4个)。凝固后放入4℃冰箱。 2)LB液体配制 配制100mL液体LB培养基 加入蒸馏水100mL溶解,用2mol/L NaOH调pH值至7.4。 然后分装,每管5mL,每人分装2管,一共12管;另外分装30mL LB与三角瓶中,余下的LB在原三角瓶中与试管等一起高压,121℃,20min。高压后,将剩余三角瓶中的LB分装至1.5mL tube中,每管800μL LB (共10个)。在时间允许的情况下,将高压后的LB试管加入卡那,每管1.5μL。 总结:需要灭菌的东西-液体培养基(试管、30mL三角瓶及剩余液体LB的三角瓶)-固体培养基、离心管(至少30个)、各种规格的枪头。 3)接菌 下午,接种BL21感受态于1管5mL培养基中,37℃震荡培养。 (二)感受态细胞制备、转化、重组菌接种 1)感受态细胞的制备 1.从大肠杆菌DE3平板上挑取一个单菌落接种于5mL LB液体培养基的试管

质粒DNA的提取、定量与酶切鉴定

一、实验目的 1、掌握PCR基因扩增的原理和操作方法; 2、掌握碱裂解法提取质粒的方法; 3、了解紫外吸收法检测DNA浓度和纯度的原理、方法; 4、学习水平式琼脂糖凝胶电泳操作。 二、实验原理 1.PCR: PCR(Polymerase Chain Reaction)即聚合酶链式反应,是指在DNA聚合酶催化下,以DNA为模板,特定引物为延伸起点,通过变性、退火、延伸等步骤,在体外复制DNA 的过程。 ①延伸:溶液反应温度升至中温72℃,在 Taq酶作用下,以dNTP为原料,引物为复制起点,模板DNA的一条单链在解链和退火之后延伸为一条双链; ②变性:加热使模板DNA在高温下90℃-95变性,双链解链; ③退火:降低溶液温度,使合成引物在低温(35-70℃,一般低于模板Tm值的5℃左右),与模板DNA互补退火形成部分双链。 2. 质粒DNA的提取与定量——碱裂解法: A、基于染色体DNA与质粒DNA的变性与复性的差异; B、高碱性条件下,染色体DNA和质粒DNA变性;

C、当以高盐缓冲液调节其pH值至中性时,变性的质粒DNA复性并保存在溶液中,染色体DNA不能复性而形成缠连的网状结构,通过离心形成沉沉淀去除。 D、定量检测原理:物质在光的照射下会产生对光的吸收效应; 而且物质对光的吸收是具有选择性的; 各种不同的物质都具有其各自的吸收光谱。 3.酶切鉴定:利用限制性内切酶。 4、琼脂糖凝胶电泳: A、琼脂糖是一种天然聚合长链状分子,可以形成具有刚性的滤孔,凝胶孔径的大小决定于琼脂糖的浓度; B、DNA分子在碱性环境中带负电荷,在外加电场作用下向正极泳动; C、DNA分子在琼脂糖凝胶中泳动时,有电荷效应与分子筛效应。不同的DNA,分子量大小及构型不同,电泳时的泳动率就不同,从而分出不同的区带(迁移速度与分子量的对数值成反比关系)。 三、材料与方法: (一)、材料 1、样品: 菌液(大肠杆菌DH5a菌株)、引物、2*Premix Taq、灭菌离子水、含pMD19-T质粒的大肠杆菌DH5α 2、试剂: LB培养基、AXYGEN试剂盒(溶液S1、S2、S3、去蛋白液W1、漂洗液W2、洗脱液EB)、电泳指示剂、Gelview、TBE、琼脂糖、DNA Marker 500、无菌水、10*M酶切缓冲液Buf R、HindⅢ(15U/ul)、EcoR I (12U/ul) 3、仪器与器材: PCR仪、台式离心机、微量加样枪、灭菌的薄壁离心管、凝胶电泳系统、凝胶成像系统、

DNA重组技术实验报告

一、实验名称: 重组DNA技术 二、实验目的: 1.了解掌握DNA重组技术理论基础; 2.掌握质粒载体、外源DNA的准备、酶切、连接技术方法; 3.掌握连接产物的转化方法及操作; 4.掌握阳性重组体的的鉴定和筛选方法; 三、实验原理: 1.重组DNA技术 重组DNA技术是指在体外通过人工“剪切”和“拼接”等方法,对各种生物的核酸(基因)进行改造和重新组合,然后导入微生物或真核细胞内,使重组基因在细胞内表达,产生出人类需要的基因产物,或者改造、创造新特性的生物类型的技术。它主要包括以下几个步骤: ①目的基因的获取:主要有化学合成、PCR、基因组文库、cDNA文库构建等。cDNA文库是以mRNA为模板,利用反转录酶合成与mRNA互补的DNA,再复制成双链cDNA片段,与适当载体连接后转入受体菌,这些受体菌包含了所有cDNA信息,总称cDNA文库。常用于筛选编码蛋白质的结构基因。基因组DNA文库是利用限制性核酸内切酶将组织或细胞染色体DNA切割后,与适当载体连接后转入受体菌,这些受体菌包含了所有基因组DNA信息,因此称为基因组DNA文库。 ②基因载体的选择与构建:常用载体有质粒、噬菌体、病毒DNA等。分为克隆载体和表达载体。克隆载体:用于目的基因的克隆、扩增、序列分析和体外定点突变等。表达载体:用于在宿主细胞中表达外源目的基因,获得大量表达产物。选择好的载体与目的基因利用限制性内切酶切割成合适片段。

③目的基因与载体的拼接:通过粘性末端连接法(同源互补粘性末端连接、非同源互补粘性末端连接)、平端连接、人工接头连接、同聚物接尾、经部分补平的不匹配末端的连接等将目的基因与载体进行连接。 ④重组DNA分子导入受体细胞:将连接有目的DNA的载体导入宿主细胞,主要有以下几种方法:a、转化:将质粒或其它外源DNA导入宿主细胞(常用大肠杆菌),并使其获得新的表型的过程。b、转染:将外源DNA导入真核细胞的过程。c、感染:以λ噬菌体、柯斯质粒和病毒为载体的重组DNA分子,在体外经过包装成具有感染能力的病毒或噬菌体颗粒,才能感染适当的细胞,并在细胞内扩增。 ⑤重组体的筛选:可通过遗传标记如抗药性标志选择、营养缺陷型的互补筛选法及分子标记(PCR、分子杂交)等直接筛选或是根据免疫化学法、酶联免疫检测法等进行间接筛选。 ⑥无性繁殖转化子(含重组分子的受体细胞) ⑦目的基因的表达 2、质粒酶切及鉴定原理 限制性内切酶是一种工具酶,其特点是具有能够识别双链DNA分子上的特异核苷酸序列的能力,能在这个特异性核苷酸序列内,切断DNA双链,形成一定长度的DNA序列。根据限制性内切酶的识别切割特性、催化条件及是否具有修饰酶活性可分为Ⅰ、Ⅱ、Ⅲ三类,II型限制性内切酶只需要二价镁离子的激活,酶在其识别序列内切割双链DNA,产生的各种DNA片段具有相同的末端结构,而且大多数的II型酶可提供粘性未端,有利于片段再连接,限制性内切酶对环状质粒DNA产生的酶切片段数与切口数一致。因此,鉴定酶切后的片段在电泳凝胶的区带数,就可以推断切口的数目;从片段迁移率可判断酶切片段大小。用已知分子量的线状DNA为对照,通过电泳迁移率的比较,可以粗略地测出分子形状相同的未知DNA的相对分子大小。本实验采用的限制性内切酶是Bam HI 和Hind III。 对于DNA回收,回收的目的是为了纯化提取的质粒,以用于以后的分子杂交、重组质粒的构建、序列分析等。目前常用的回收技术有:柱纯化回收法、电洗脱法、低熔点琼脂糖凝胶法、DEAE滤膜插片法等,其中柱纯化回收法、电

蛋白质含量测定——双缩脲试剂法-实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

实验名称蛋白质含量测定——双缩脲试剂法 实验日期实验地点 合作者指导老师 评分教师签名批改日期 一、实验目的 1.1.掌握双缩脲测定血清总蛋白的基本原理、操作; 1.2.掌握双缩脲试剂的配制; 1.3.熟悉血清总蛋白的临床意义; 1.4.了解双缩脲法测定血清总蛋白的特点和注意事项。 二、实验原理 2.1.两分子尿素加热脱氨缩合成的双缩脲(H2N-OC-NH-CO-NH2),因分子内含有两个邻接的肽键,在碱性溶液中可与Cu2+发生双缩脲反应,生成紫红色络合物。 2.2.蛋白质分子含有大量彼此相连的肽键(-CO-NH-),同样能在碱性条件下与Cu2+发生双缩脲反应,生成的紫红色络合物,且在540nm处的吸光度与蛋白质的含量在10~120g/L范围内有良好的线性关系。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①小牛血清;②6.0mol/LNaOH溶液;③双缩脲试剂:硫酸酮、酒石酸钾钠、碘化钾;④蛋白质标准液(70g/L);⑤0.9%NaCl;⑥蒸馏水。 3.1.2.实验器材:①试管;②烧杯;③容量瓶;④加样枪;⑤刻度吸管;⑥玻璃棒;⑥1100分光光度计;⑦电子天平;⑧水浴锅。

3.2.实验步骤 四、结果与讨论: 4.1.实验现象: ①选取三支洁净无损的试管,从左往右依次加入0.9%氯化钠溶液、蛋白质标准液、相应的小牛血清各0.5ml,分别命名为B试管、S试管和U试管,再分别向三支试管内加入4ml的双缩脲试剂,溶液均成蓝色透明状。

测定次数 1 2 3 平均吸光度 ②将三支试管放入37℃水浴锅中加热20min,取出后,B试管呈淡蓝色,S试管和U 试管均成浅紫色,且S试管的颜色比U试管的颜色深。(如图一) 图一水浴后三支试管颜色图二分光计读数 S 0.185 0.184 0.185 0.1847 U 0.152 0.151 0.152 0.1517 结果计算:代入公式:血清总蛋白(g/L)=(Au/As)X蛋白质标准液浓度(g/L),得出结果:血清总蛋白=57.493g/L。 4.3.结果讨论 经查阅资料得:正常成人血清总蛋白含量为60~80g/L,而小牛血清总蛋白含量比正常成人血清总蛋白含量略低一点,本次结果得出小牛血清总蛋白含量为57.493g/L,符合情况。 4.3.1.成功原因: ①本次试验的试剂混合水浴后出现了预期效果:B试管呈淡蓝色,S试管和U试管均成浅紫色,且S试管的颜色比U试管的颜色深。B试管呈淡蓝色是因为B试管中没有发生任何反应,所以呈现双缩脲试剂本来的淡蓝色,而S试管和U试管呈浅紫色是因为试剂中的蛋白质和双缩脲发生了双缩脲反应而呈浅紫色。 管号

质粒DNA及λDNA的酶切分子生物学实验

质粒DNA及λDNA的酶切、连接、转化及重组子的筛选、鉴定 一、实验目的 1、学习和掌握限制性内切酶的特性 2、掌握对重组质粒进行限制性内切酶酶切的原理和方法 3、掌握利用CaCl2制备感受态细胞的方法 4、学习和掌握热击法转化E.coli的原理和方法 5、掌握α互补筛选法的原理 6、学习用试剂盒提取重组质粒DNA的方法 7、复习琼脂糖凝胶电泳的原理及方法 二、实验原理: 外源DNA与载体分子的连接即为DNA重组技术,这样重新组合的DNA分子叫做重组子。重组的DNA分子式在DNA连接酶的作用下,有Mg2+、ATP存在的连接缓冲系统中,将分别经限制性内切酶酶切酶切酶切酶切的载体分子和外源DNA分子连接连接连接连接起来。将重组质粒导入感受态细胞中导入感受态细胞中导入感受态细胞中导入感受态细胞中,将转化后的细胞在选择性培养基选择性培养基选择性培养基选择性培养基中培养,可以通过αααα互补筛选法互补筛选法互补筛选法互补筛选法筛选出重组子,并可通过酶切酶切酶切酶切电泳电泳电泳电泳及PCRPCRPCRPCR检验检验检验检验的方法进行重组子的鉴定。 1.重组子的构建 酶切时首先要了解目的基因的酶切图谱,选用的限制性内切酶不能目的基因内部有专一的识别位点,否则当用一种或两种限制性内切酶切割外源工体DNA时不能得到完整的目的基因。其次要选择具有相应的单一酶切位点质粒或者噬菌体载体分子。常用的酶切方法有双酶切法和单酶切法两种。本实验采用单酶切法,即只用一种限制性内切酶切割目的DNA片段,酶切后的片段两端将产生相同的黏性末端或平末端,再选用同样的限制性内切酶处理载体。在构建重组子时,除了形成正常的重组子外,还可能出现目的DNA片段以相反方向插入载体分子中,或目的DNA串联后再插入载体分子中,甚至出现载体分子自连,重新环化的现象。单酶切法简单易行单是后期筛选工作比较复杂。各种限制性内切酶都有去最佳反应条件,最主要的因素是反应温度和缓冲液的组成,在双酶切体系中,限制性内切酶在使用时应遵循“先低盐后高盐,先低温后高温”的原则进行反应。(要达到高效率的连接,必须酶切完全,酶切的DNA数量要适当。另外,酶切反应的规模也取决于需要酶切的DNA的量,以及相应的所需酶的量。可以适当增加酶的用量,但是最高不能超过反应总体积的10%,因为限制性核酸内切酶一般是保存在50%甘油的缓冲液中,如果酶切反应体系中甘油的含量超过5%,就会抑制酶的活性。) 连接反应总是紧跟酶切反应,外源DNA片段与载体分子连接的方法即DNA分子体外重组技术主要依赖限制性核算内切酶和DNA连接酶催化完成的。DNA连接酶催化两双链DNA片段相邻的5'-磷酸和3'-OH间形成磷酸二酯键。它可以连接酶,T4DNA噬菌体的T4连接酶是来自DNA在分子克隆中最有用的.

蛋白质测定实验报告

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述:

1 材料与方法 1.1 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、0.12mol/LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 1.2 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如, 生化制备中常用的(NH4)2SO4 等和大多数缓冲液不干扰测定,特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。 此法的特点是测定蛋白质含量的准确度较差,干扰物质较多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质有一定的误差,故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。 此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。取待测样品制成蛋白浓度大约在0. 1~1. 0mgPmL的蛋白质溶液,用紫外分光光度计进行比色,对照标准曲线得出样品含氮量。每个样品做3次重复测定,取平均值。 (3)双缩脲法测定蛋白质含量

酶切反应条件的优化

当建立内切酶酶切反应体系时有几个关键因素需要考虑。比如如何在正确的反应体系中,加入适量的DNA、内切酶和缓冲液,就可以获得最佳酶切效果。根据定义,在50μl体系中,1单位的限制性内切酶可以在60分钟内完全切割1μg的底物DNA。上述酶、DNA与总反应体积的比值可以做为建立反应体系的参考数据。但是,目前大多数科研人员会遵循下表中所列的标准反应条件,使用5-10倍的过量酶切割DNA,这样有利于克服由于DNA来源不同、质量和纯度不同而造成的实验失败。 “标准”反应体系 内切酶 ?从冰箱取出后请一直置于冰上。 ?酶最后加入到反应体系中。 ?加入酶之前将反应混合物混匀,可以用移液枪上下吹打或轻弹管壁,然后在离心机中快速离心。切忌振荡混匀! ?当切割超螺旋质粒和琼脂糖包埋DNA时,通常需要超过1unit/μg的酶量以达到完全酶切。DNA ?避免酚、氯仿、酒精、EDTA、变性剂或过多盐离子的污染。 ?甲基化的DNA会抑制某些酶的切割效率。 缓冲液 ?使用终浓度为1X的缓冲液。 ?根据实验需要加入终浓度为100μg/ml的BSA(1:100稀释)。 ?在不需要BSA即可达到最佳活性的酶切反应中如果加入BSA也不会影响酶切效果。 反应总体积 ?建议在50μl反应体系中消化1μg底物DNA。 ?为避免星号活性,甘油浓度应<5%。 ?加入内切酶(贮存于50%甘油中)的量应不超过总体积的10%。 ?使用以下技术,内切酶的反应条件可能未达到最佳反应条件:克隆、基因分型、突变检测、基因定位、探针制备、测序和甲基化检测等。 ?内切酶贮存液中的添加物(如:甘油和盐)和底物溶液中尚存的残余物(如:盐、EDTA 或乙醇)会导致小体积反应体系出现问题。NEB提供了一系列高保真内切酶(方便建立反应体系。下述为小体积反应体系反应指南。 酶切反应体系的选择

基因工程实验报告资料

实验报告 实验项目名称:基因工程综合实验所属课程名称:基因工程原理 班级:12生物工程3班学号:201230620312 姓名:李杰锋 指导老师:徐学锋

目录 0.摘要 (1) 1.前言 (1) 2.实验材料和仪器 (2) 2.1 实验材料 (2) 2.2 实验仪器 (2) 3.实验试剂 (2) 3.1DNA提取所需试剂 (2) 3.2 PCR实验所需试剂 (2) 3.3 双酶切实验所需试剂 (2) 4.实验步骤 (3) 4.1 质粒DNA提取 (3) 4.2 聚合酶链式反应(PCR) (3) 4.3 质粒DNA的双酶切分析 (4) 4.4 琼脂糖凝胶制备 (4) 5.实验结果与分析 (5) 5.1质粒DNA提取所得凝胶电泳结果 (5) 5.2 PCR扩增实验结果 (5) 5.3质粒DNA的双酶切分析结果 (6)

摘要:本实验包括质粒DNA的提取、DNA的凝胶电泳、质粒DNA中靶基因的酶切分析及质粒DNA中重组进的靶DNA序列的PCR扩增。通过本综合实验,进一步理解质粒DNA的提取原理、凝胶电泳中DNA分离的机理、限制性内切酶的工作原理及PCR是如何实现DNA扩增的,也掌握了DNA的提取技术、凝胶电泳技术、DNA酶切分析技术及靶基因的体外快速扩增技术,进而了解实验中出现的现象并学会分析与解决实验中出现的有关问题。 聚合酶链式反应(Polymerase Chain Reaction,简称PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA或RNA的地方。 关键词:凝胶电泳限制线内切酶DNA质粒 1 前言 本次实验对象为含有重组了1kb DNA片段的PET32.a表达质粒。该表达质粒中长度约6kb。首先采用离心破碎法破碎细胞,再使用碱裂解法提取质粒DNA。最后通过各种化学抽提纯化质粒DNA,最后得到纯化后的DNA质粒作为之后实验的材料。在碱性溶液中,双链DNA氢键断裂,DNA双螺旋结构遭破坏而发生变性,但由于质粒DNA分子量相对较小,且呈环状超螺旋结构,即使在高碱性pH条件下,两条互补链也不会充分分离,当加入中和缓冲液时,变性质粒DNA 又恢复到原来的够型;而线性的大分子量细菌染色体DNA则不能复性,与细胞碎片、蛋白质、SDS等形成不溶物,通过离心沉淀可被除去,而质粒DNA及小分子量的RNA则留在上清液中。混杂的RNA可用RNaseA酶消除,再用酚/氯仿处理,可除去残留的蛋白质,达到纯化质粒DNA的目的。 PCR是根据DNA双螺旋结构在变性温度下解链为单链DNA,在退火温度下加入反应体系的特异引物根据碱基互补配对原则与单链DNA特异结合,然后在延伸温度下,通过DNA聚合酶的聚合作用,不同的脱氧核苷酸按照碱基互补配对原则,由引物引导合成出与模板DNA互补的新链,实现DNA的扩增的技术。本次实验我们将以纯化后的质粒DNA作实验材料,在预先设计好引物后

紫外分光光度法测定蛋白质含量实验报告

紫外分光光度法测定蛋白质含量 一、实验目的 1.学习紫外光度法测定蛋白质含量的原理; 2.掌握紫外分光光度法测蛋白质含量的实验技术。 二、实验原理 1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。本实验采用紫外分光光度法。 2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。 利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。 三、仪器与试剂 TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。 10mL比色管、1cm石英比色皿、吸量管。 四、实验步骤 1.绘制吸收曲线 用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。 2.绘制标准曲线 用吸量管分别吸取1.0、1.5、2.0、2.5、3.0mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。 3.样品测定 取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次 五、数据处理与结果分析

蛋白质测定实验报告

生物化学实验报告 姓名: XXX 学号: XXXXXXXXXX 专业年级: 2015级护理(助产)组别:第六实验室 生物化学与分子生物学实验教学中心

实验名称Folin-酚试剂法测定蛋白质含量 实验日期2016-10-18 实验地点第六实验室 合作者指导老师 评分教师签名批改日期 一、实验目的 1、掌握Folin-酚试剂法测定蛋白质含量的原理及其实验操作技术。 2、掌握制作标准曲线的要领和通过标准曲线求样品溶液中待测定物质含量的方法。 3、熟悉分光光度计的用法。 二、实验原理 1、在碱性溶液中,蛋白质分子中的肽键与碱性铜试剂中的Cu2+作用生成紫红色的蛋白质- Cu2+复合物。 2、蛋白质- Cu2+复合物中所含的酪氨酸或色氨酸残基还原酚试剂中的磷钼酸和磷钨酸,生成蓝色的化合物。 3、在一定浓度范围内,蓝色的深浅度与蛋白质浓度呈线性关系,故与同样处理的蛋白质标准液比色即可求出蛋白质的含量。 三、材料与方法: 1.实验材料 (1)样品 健康人血清(300倍稀释);正常人血清蛋白质含量:60~80 g/L (2)试剂 牛血清白蛋白标准液(200μg/ml);碱性硫酸铜溶液(当日有效);Folin-酚试剂(3)仪器与器材

V-1100分光光度计;恒温水浴箱;试管6支、试管架;加样枪、加样枪架;坐标纸 2.实验步骤 流程图: (1)取6支试管做好标记,再按下表加样:(1作空白对照,2-5作标准试管,6为待测样品) 试剂(ml) 1 2 3 4 5 6 牛血清白蛋白标准液- 0.20 0.40 0.60 0.80 - 样品液(稀释300倍)- - - - - 0.50 蒸馏水 1.0 0.80 0.60 0.40 0.20 0.50 碱性硫酸铜 2.0 2.0 2.0 2.0 2.0 2.0 Folin-酚试剂0.20 0.20 0.20 0.20 0.20 0.20 蛋白质浓度(μg/ml)0 40 80 120 160 未知(2)往各试管中按表格要求加入蛋白标准液、样品液、蒸馏水及碱性硫酸铜试剂后,混匀室温静置10min。 (3)向各管内加入Folin-酚试剂0.20ml,并于2s内迅速摇匀。 (4)加样完毕后,将各试管进行40℃水浴10min。 (5)冷却至室温后,以500nm波长比色,以1号管作空白对照,按2-6顺序测定试管内溶液吸光度并重复测三次,记录数据并计算结果。

相关主题
文本预览
相关文档 最新文档