当前位置:文档之家› 新型含磷硅阻燃剂的研究应用

新型含磷硅阻燃剂的研究应用

新型含磷硅阻燃剂的研究应用
新型含磷硅阻燃剂的研究应用

新型含磷硅阻燃剂的研究应用

高分子材料由于具有优异的耐化学腐蚀性、力学性能、耐热性以及质轻等特点,已广泛应用于航空、航天、电子、机械、化工等领域。由于绝大多数高分子材料在空气中是可燃或易燃的,在给人们的生产和生活带来巨大利益的同时,也使人们面临新的火灾威胁。高分子材料被引燃燃烧时,其发热量高,同时释放出大量烟尘和毒气,会给人类和环境带来极大的危害。因此提高高分子材料的阻燃性已成为亟待解决的问题。

一.阻燃剂机理

材料的阻燃主要通过气相阻燃、凝聚相阻燃和中断热交换阻燃等机理实现。但阻燃和燃烧都是十分复杂的过程,涉及很多影响和制约因素,将一种阻燃体系的阻燃机理严格划分为某一种是很难的,实际上很多阻燃体系同时以几种阻燃机理起作用[1]。如下是三种常见的阻燃机理:

(l)气相阻燃

是指在气相中使燃烧中断或延缓链式燃烧反应的阻燃作用。下述几种情况都属于气相阻燃:

①阻燃材料受热或燃烧时能产生自由基抑制剂,从而使燃烧链式反应中断,应用广泛的卤一锑协同体系主要按此机理产生阻燃作用;

②阻燃材料受热或燃烧时生成细微粒子,它们能促进自由基相互结合以终止链式燃烧反应;

③阻燃材料受热或燃烧时释放出大量惰性气体或高密度蒸汽,前者可稀释氧气和气态可燃产物,并降低此可燃气体的温度,致使燃烧终止。后者则覆盖于可燃气体上,隔绝它与空气的接触,因而使燃烧窒息。

(2)凝聚相阻燃

是指在凝聚相中延缓或中断阻燃材料热分解而产生的阻燃作用。下述几种况都属于凝聚相阻燃:

①阻燃剂在固相中延缓或阻止可产生可燃性气体和自由基的热分解;

②阻燃材料中比热容较大的无机填料,通过蓄热和导热使材料不易达到热分解温度;

③阻燃剂受热分解吸热,使阻燃材料温升减缓或中止。工业上大量使用的氢氧化铝和氢氧化镁均属此类阻燃剂;

④阻燃材料燃烧时,在其表面生成多孔炭层,此层难燃、隔热、隔氧,又可阻止可燃性气体进入燃烧气相,致使燃烧中断。膨胀型阻燃剂即按此机理阻燃。(3)中断热交换阻燃

是指将阻燃材料燃烧产生的部分热量带走,致使材料不能维持热分解温度,因而不能持续产生可燃气体,于是燃烧自熄。如:当阻燃材料受强热或燃烧时可熔化,而熔融材料易滴落,因而使大部分热量带走,减少了反馈至材料的热量,致使燃烧延缓,最后可能中止燃烧。所以,易熔融材料的可燃性通常较低,但滴落的灼热液滴可引燃其它物质,增加火灾危险性。目前,人们一般认为有机磷系阻燃剂可同时在凝聚相及气相发挥阻燃作用,但以凝聚相为主。在两相中发生的物理和化学作用相当复杂,在含磷阻燃剂阻燃过程中可产生如下过程,如火焰的抑制、熔滴导致的热量损失、含磷酸引起的表面阻断、酸催化炭层的累积和积炭防止炭的进一步氧化等。不过,阻燃机理也可因含磷阻燃剂结构、聚合物类型及燃烧条件而异。在很多情况下,阻燃过程是多种阻燃模式的组合[2]。

二.阻燃剂的分类

1.硅系阻燃剂

一般认为,硅氧链节的阻燃作用是按凝聚相阻燃机理,而不是按气相机理进行的,即通过生成裂解炭层和提高炭层的抗氧化性实现其阻燃功效。硅氧链节能促进材料在高温下成炭,而炭层中的硅氧链节又有助于形成连续的、抗氧化的硅酸盐保护层;因而可显著提高材料的氧指数及抗高温氧化性能,并保护炭层下的基材免遭破坏。这种类似于膨胀型阻燃剂的功能,不仅对材料的阻燃性贡献相当理想,而且使材料燃烧时生成的烟量和腐蚀性气体量大为降低,这更是人们对当代阻燃材料所特别希望的。聚合物主链所含的硅氧链节,还可提高材料的耐湿性和链的柔顺性能,改善材料的性能。特别是,聚合物中的Si(以及P,Mn等)可赋予材料耐氧自由基的能力,因而将这种材料用于宇航系统时,可减轻它们在低轨道环境时发生的降解和失重。此外,含硅聚合物受热分解时,生成CO2、水蒸气和SiO2,所以是毒性低的材料。含硅氧链节的PU共聚物暴露于热氛围中时形成保护层,但该层不含碳,分析证明只含硅和氧,这说明有机硅转变成了无机的二氧

化硅[3]。

有机硅阻燃技术主要有如下几种:(1)添加硅树脂粉末;(2)高分子硅油与金属化合物并用;(3)硅橡胶与有机金属化合物、白碳黑并用;(4)硅氧烷接枝或含活性官能团硅氧烷与单体共聚合,在分子内引入硅原子。含硅阻燃聚合物引入卤素或P 后,阻燃效果更为理想,原因是卤素、P与Si具有阻燃协同效应。高温下,卤素或P促成炭的生产,Si增加炭层的稳定性;并且,用硅氧烷代替硅烷时,P/Si两元素的阻燃协同作用进一步加强[4-5]。

2.磷系阻燃剂

有机磷系阻燃剂可同时在凝聚相及气相中发挥阻燃作用,可能以凝聚相为主,不过阻燃机理可因磷阻燃剂结构、聚合物类型及燃烧条件而异[3]。

(1)凝聚相阻燃机理:含有磷系阻燃剂的高聚物被引燃时,阻燃剂受热分解生成磷的含氧酸(包括它们中的某些聚合物),这类酸能催化含经基化合物的脱水成炭,降低材料的质量损失速度和可燃物的生成量,而磷的大部分残留于炭层中。由于下列特点,材料表面生成的焦层能发挥良好的阻燃效能。首先,炭层本身氧指数可高达60%且难燃、隔热、隔氧,可使燃烧窒息:其次,焦炭层导热性差,使传递至基材的热量减少;再次,经基化合物的脱水系吸热反应,因脱水形成的水蒸气又能稀释氧和可燃气体;最后,磷的含氧酸多系粘稠状半固体物质,可在材料表面形成一层覆盖于焦炭层的液膜,这能降低焦炭层的透气性和保护焦炭层不被继续氧化。磷化合物对某些高聚物的阻燃作用主要来自于磷酸和偏磷酸的覆盖作用,且主要发生在火灾初期高聚物分解阶段[6]。的

(2)气相阻燃机理:有机磷系阻燃剂所形成的气态产物含有PO·它可以抑制H·和OH·其气相抑制燃烧链式反应为:

H3PO4→ HPO2+ PO·+其他

PO·+ H·→ HPO·

HPO·+ H·→ H2+ PO·

PO·+ OH → HPO·+ O·

当燃烧过程主要取决于链的支化反应( )时,自由基PO·最为重要。以质谱分析经三苯基氧化膦处理的聚合物的热分解产物,证实了PO·的存在。

3 .氮系阻燃剂

氮系阻燃剂,主要指三聚氰胺及其衍生物,可单独使用,也可以同别的材料复合使用。该类阻燃剂无卤素、低毒、无腐蚀、对热和紫外线稳定、阻燃效率高且价廉,具有广阔的应用前景。氮系阻燃剂受热分解后,易放出氨气、氮气等不燃性气体,达到阻燃的目的。氮系阻燃剂还有三聚氰胺的氰脲酸盐、磷酸盐、硼酸盐、胍盐、双氰胺盐等。汽巴精化[7]开发出的

M系列阻燃剂,广泛用于热塑性及热固性塑料领域;双氰胺主要用于制造胍盐阻燃剂,可以代替三聚氰胺,或者与三聚氰胺结合。欧洲专利报导双氰胺等比例混合,添加量5%,可使聚酰胺达到UL94 V-0级的阻燃效果,且该阻燃剂对材料的撕裂强度影响很小[8]。在尼龙6、尼龙66或他们的共混物中,添加质量分数为10%的MCA,可达到UL94 V-0级阻燃标准。美国Borg-Warner化学品公司设计合成了具有笼状结构的磷酸酯三聚氰胺盐,以其丰富、合理的碳源、气源和酸源,明显改善了材料吸潮性。欧育湘[9]合成了一系列环状或笼状阻燃剂并提高了合成物的产率。目前市场上较成熟的Mulapur系列阻燃剂即为氮系阻燃剂。彭治汉等[10]重点研究了蜜胺尿酸盐(MCA)的阻燃性能,主要用于聚酸胺及聚氨酯泡沫塑料及工程塑料,用量15% ~25%时效果明显。

4.卤系阻燃剂

卤系阻燃剂是在塑料阻燃改性中开发较早,应用最广泛的一类阻燃剂[11],以其低成本,高效率的优势在许多行业上继续应用着。在含卤阻燃剂中,大量使用的是含氯或溴的化合物,尤其溴系阻燃剂种类很多,主要有十溴联苯醚(DBDPO),八溴二苯醚(OBDPO),四溴二苯醚(TBDPO),四溴双酚A(TBA),六溴环十二烷(HBCD)等。卤素阻燃剂的阻燃是通过气相机理实现的。气相阻燃是指在气相中进行的阻燃作用,即在气相中中断或延缓可燃气体的燃烧反应(一般为链式反应)。卤素阻燃剂在高温下发生分解反应,释放出HX,后者与火焰中游离基发生下面一系列反应:

HX +·OH―>H2O +·X

HX +·O·―>·OH +·X

HX + H·―>H2+·X

HX + RCH2―>RCH3+·X

由于HX与火焰中链反应活性物质·OH、·O·等作用,使上述游离基浓度降低,

从而减缓或中止燃烧的链式反应,达到阻燃的目的。含卤阻燃剂阻燃效率高,应用广泛,对其研究也比较多。但卤素阻燃剂在使用时存在多烟、释放有毒和腐蚀性卤化氢气体等缺点,潜藏着二次危害。特别是近来研究发现,用多溴二苯醚阻燃的高聚物在燃烧时会产生有毒致癌物多溴代二苯并恶烷(PBDDs)和多溴代二苯并呋喃(PBDFs)。因此近年来世界各国都开始积极致力于寻找含卤阻燃剂的代用品。2004年7月,欧盟新出台的RoHS环保指令明确规定,成员国确保从2006年7月1日起,投放于市场的新电器电子设备不得含有多溴二苯醚(PBDE)或多溴联苯(PBB)等卤系阻燃剂。该指令对我国无卤阻燃材料的发展提出了新的挑战,抓紧无卤阻燃剂的开发,不仅是保护环境的需要,同时也是商业竞争的迫切要求[12]。

5. 锑系阻燃剂

三氧化二锑、胶体五氧化二锑和锑钠是锑系阻燃剂的主要产品,其中广泛应用的是三氧化二锑。它是一种典型的添加型无机阻燃剂,主要用于塑料制品和纺织物的阻燃,亦可用做橡胶、木材的阻燃剂。其阻燃机理是三氧化二锑在燃烧初期首先熔融,在材料表面形成保护膜,隔绝空气,通过内部吸热反应,降低燃烧温度,在高温状态下三氧化二锑被氧化,稀释了空气中氧浓度,从而起到阻燃作用。

6. Al(OH)

3和Mg(OH)

2

阻燃剂

无机阻燃剂是无卤阻燃剂中的一个重要发展方向,目前, Al(OH)3和Mg(OH)2两种阻燃剂发展的较成熟,有一定的市场占有率。其阻燃机理主要是通过达到热分解温度时迅速分解、吸热降温、释放水蒸气来降低体系温度,同时水蒸气又稀释了可燃性气体以实现阻燃效果。无机阻燃剂用量很大,可能导致高聚物的物理机械性能发生变化,为改善这些缺陷,将无机阻燃剂进行微粒化、表面活化处理[13]。前者让其在高聚物中分散均匀,在体相中阻燃效果均一化,减少阻燃剂用量。后者通过表面改性剂(硬脂酸钠或油酸钠)来改善无机阻燃剂与高聚物之间的黏结力及界面亲和力[14-15],既可提高相容性,还可保持机械强度的情况下减少阻燃材料的加入量。Zhang等[16]将纳米级Al(OH)3用于EVA的阻燃,当Al(OH)3质量分数为60%时, EVA的氧指数即可达37.9%,同时阻燃材料的力学性能下降不大;沈兴教授研发出了的一种新型无机阻燃剂产品—无水碳酸镁单位质量吸热量更大,释放二氧

化碳气体,隔离助燃空气。由于合成方法简单,可在常温常压下生产,有望替代氢氧化铝、氢氧化镁的无机阻燃剂。锑系阻燃剂以三氧化二锑和五氧化二锑[17]为主, Fernandes等[18]用Sb203与十溴二苯醚协同阻燃UPR,经过UL94、DSC、TGA测试,得出试样燃烧活化能较纯树脂增加87%,且在离火1 s内自熄。对于这一类阻燃剂,加强表面改性,减少添加量是今后的研究重点。

7.硼酸盐(硼类化合物)系阻燃剂

硼酸酸盐系列产品也是一种常用的无机阻燃剂,有偏硼酸铵、五硼酸铵、偏硼酸钠、氟硼酸铵、偏硼酸钡、硼酸锌等,目前主要使用的是硼酸锌。硼酸锌最早由美国硼砂和化学品公司开发成功,商品名为Frie BrakeZB,因此简称FB阻

燃剂(2ZnO.3B

2O

3

.3.5H

2

O)。硼酸锌(FB)是热稳定性良好的阻燃剂,是一种无

毒、无味的白色粉末。硼酸锌在30℃开始释放出结晶水,在卤素化合物存在下,生成卤化硼、卤化锌,抑制和捕获游离的羟基,阻止燃烧连锁反应;同时形成固相覆盖层,隔绝燃烧物的表面空气,阻止火焰继续燃烧并能发挥消烟灭弧作用。硼酸锌阻燃剂可以单独使用,也可与有机卤化物、三氧化二锑协同使用,协同使用效果更好。由于硼酸盐类阻燃剂价格相对较高,限制了其应用,我国对硼酸盐阻燃剂的应用与合成工艺研究都处于开发阶段。由于FB硼酸盐阻燃剂的性能良好、安全无毒、价格低廉、原料来源易得,主要应用于高层建筑的橡胶制品配件、电梯、电缆、电线、塑料护套、临时建筑、军用制品、塑料、电视机外壳和零部件、船舶涂料及合成纤维制品等,而且在一些领域具有无法替代的优越性,因此发展前景看好。我国硼资源丰富,国内有资源的地区可以加快硼酸盐阻燃剂的合成与开发。

8.复合阻燃体系体系

○1.磷氮协同效应

Chen Yang[19]等人的研究表明,通过N3P3cl6制得含磷酸脂和环三磷酸盐的环氯树脂PPCTP,测得PPCTP基的环氧聚合比一般环氯聚合物的氧指数提高至少13.5。他们认为,由于PPCTP中 P.N.含量高所致。

○2.卤磷协同效应

目前对于卤磷协同尚无定论.肖卫东[20]等人研究证明,含磷阻燃剂与含卤阻燃剂配合的环氧树脂体系有明显的协同效应。协同效应的动力在于燃烧时互相反

应生成有更大阻燃活性的磷卤化合物,并且这种互相反应在气相和凝聚相中均可进行。

○3.Al(OH)3与红磷协同效应

二者并用,可促进环氧树脂固化物失水炭化作用;另外,ATH分解的水促进红磷转化成磷酸,进一步加强阻燃效果。

○4.硅磷协同效应

在阻燃剂的生产和应用中,人们在探索合成新型高效阻燃剂的同时,也对阻燃效果较好的阻燃剂进行复配。所谓复配,主要是利用阻燃剂之间的相互作用,以期提高阻燃效能,即通常所称的阻燃剂“协同效应”。具有协同效应的阻燃体系阻燃效果好,阻燃性能增强,既可阻燃又可抑烟,还具有一些特殊功能;其应用范围广,成本低,能提高经济效益,是实现阻燃剂低卤无卤化有效途径之一。

大多数含磷阻燃剂与含氮或卤素的化合物共同使用时,能大幅度提高阻燃效果。前人对磷/氮协同体系及磷/卤素协同体系的作用机理及应用都已作了不少综述。但对磷/硅的协同阻燃效应及应用却鲜有报道。有机硅系阻燃剂是一种新型的无卤阻燃剂,也是一种成炭型抑烟剂,还是一种良好的分散剂,能增加材料间的相容性。它作为一类高分子阻燃剂,具有高效、无毒、低烟、防滴落、无污染等特点。有机磷阻燃剂具有高热稳定性,耐析出性好,高效低毒,不挥发等特点。将两者结合起来,通过复配,可以获得阻燃效果更佳的复合型阻燃剂。

磷硅复合体系阻燃效果更为理想,原因是磷与硅具有阻燃协同效应。高温下,磷促成炭的生成,硅增加这些炭层的热稳定性;并且,用硅氧烷代替硅烷时,磷/硅两元素的阻燃协同作用得到进一步加强。该类共聚物阻燃协同元素位于同一分子中,阻燃协同效应比添加型协同阻燃体系要好。这正是此类高聚物的优势。○4.1.磷/硅协同阻燃机理

磷硅协同阻燃机理为:当磷硅阻燃剂使用时,在高温下,磷会催化促成炭的形成,而硅则增加这些炭层的热稳定性,从而发挥磷硅协同阻燃效果,并且,用硅氧烷代替硅烷时,磷硅的阻燃协同作用得到进一步加强,因为硅氧烷降解形成的层状二氧化硅阻止了炭层的氧化,从而提高了炭层的稳定性[ 20]。

○4.2.磷/硅协同阻燃体系的运用

磷硅协同阻燃体系包括两个方面的内容,一方面是将磷系阻燃剂与硅系阻燃剂进行复配,通过阻燃剂之间的相互作用,产生协同阻燃效果,另一方面是将磷硅两种元素引入同一分子结构中,通过元素之间的相互作用,产生协同阻燃效果。(1)磷/硅复配阻燃体系的应用

国内外对磷硅复配阻燃体系在棉织物上的应用鲜有报道,东华大学恒逸研究所的刘丽雅、彭治汉将其自制的阻燃剂SP-03与N-羟甲基-3-(二甲氧基膦酰基)丙烯酰胺(商品名代号FRP - 3010 )复配,然后利用浸轧焙烘工艺对棉织物进行阻燃整理。阻燃剂SP-03与FRP -3010均是具有反应性的有机磷化合物,在酸质子存在下经高温焙烘,能与纤维素纤维上的羟基脱水键合。阻燃剂与纤维素的键合直接改变了纤维素高温下热裂解的固有历程,阻止了左旋葡萄糖的形成,脱水生成不饱合双键使得纤维分子之间相互交联,转而演化为难燃的炭化物,不仅能有效地抑制燃烧的继续进行,还具有防止阴燃发生的效果。将SP-03阻燃剂和FRP-3010复配用于棉织物的阻燃整理,是因为磷硅协同效应比单独使用FRP-3010具有更好的阻燃效果。

磷硅复配阻燃体系兼有有机阻燃剂的高效和无机阻燃剂的低烟、无毒功能,能有效降低成本和减少无机阻燃剂的用量,改善材料的功能。

(2)分子中含有磷及硅元素阻燃体系的应用

有机磷阻燃剂应用于棉织物阻燃整理时,虽然有良好的耐洗性,耐久压烫性,但有些处理过的织物存在断裂强度下降,变色和产生臭气、有毒性等问题,而有机硅系阻燃剂是一种新型的无卤阻燃剂,也是一种成炭型抑烟剂,还是一种良好的分散剂,能增加材料间的相容性。有机硅系阻燃剂作为一类高分子阻燃剂,具有高效、无毒、低烟、防滴落、无污染等特点。但由于价格等问题而限制了它的使用。单独将有机硅阻燃剂应用于棉织物上所获得的阻燃效果大多不够理想,一般都是通过磷硅协同效应同时将磷和硅两种元素引入同一分子当中,一方面可以降低有机硅阻燃剂的价格,另一方面还可以降低有机磷阻燃剂的毒性,获得阻燃效果更佳的磷硅型阻燃剂。

新型阻燃剂DOPO及其衍生物

DOPO 的简介

DOPO为白色片状或粉末状固体,是绿色环保的含磷阻燃剂,符合RoHS指令。

DOPO分子结构中含有联苯环和菲环结构,比一般的未成环的有机憐酸酯热稳定性和化学稳定性高,阻燃性能更好。DOPO是9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物的英文缩写,其英文名称为:

9,10-dihydro-9-oxa-10-phos-phaphenanthrene-10-oxide,

分子结构为:

DOPO的合成:一般用邻苯基苯酚(OPP)和三氯化磷(PC1

3)为原料,以无水ZnCl

2

为催化剂,来合成DOPO。即邻苯基苯酚与三氯化磷发生酯化反应形成2-苯基-苯氧基亚磷酰二氯,2-苯基-苯氧基亚磷酰二氯在催化剂作用下发生分子内的付克酰基化反应,生成CDOP,然后CDOP开环水解形成HPPA,HPPA分子内脱水酯化成环形成DOPO。其反应过程如下:

DOPO在阻燃剂中的应用

DOPO 环状结构中的 O=P-O 的 P 原子上有一个活泼 H,易失去后与缺电子体系发生亲核反应形成新的化合物,同时由 DOPO 及其衍生物合成出的阻燃剂主链结构中均存在着大的共轭体系,具有较好的化学稳定性。研究表明,在PBT、PET、PEN、PBN主链引入DOPO后,晶格均未变,但结晶性随P含量增加略降低,且共聚物流变性均与PET等类似,LOI值也随P含量增加而增加。聚酯的阻燃性和热稳定性均有显著提高,因此DOPO及其衍生物通过共聚键入聚酯链中,在提高阻燃性和热稳定性的同时并不影响聚酯的物理及其他性能,避免了一般阻燃剂与聚酯

不相溶、易析出、对机械性能影响大等缺点[21-22]。

郝建薇等人[23]采用双酚 A 型环氧树脂(E-51)与 DOPO 反应, 再将产物用间苯二胺固化,制备出了含磷环氧树脂 EP-P。

Lin等人[24-25]利用DOPO与玫红酸在乙醇溶液中反应生成dopotriol。再用dopotriol和

环氧氯丙烷反应生成环氧树脂预聚体dopotep,经固化生成环氧树脂。反应式如下:

Liu等人[26]利用 DOPO 和 4,4′-二氨基二苯甲酮的反应得到 2DOPO-A,用

2DOPO-A 固化邻甲酚醛环氧树脂(CNE200)、双酚 A 型液态环氧树脂(BE188)和 2DOPO-E1 得到了几种含磷阻燃环氧树脂。

Lijun Qian[27]等人用1,3,5-三缩水甘油-S-三嗪三酮;三环氧丙基异氰尿酸酯与DOPO反应得到新型的含硅氮的复合体系的阻燃剂。其反应方程式如下:

新型P-Si阻燃剂

M. Sponton[28]等人先用苯胺与2-羟基苯合成2 - [(苯基氨基甲基)]苯酚,再加入DOPO得到新型的含硅氮的复合体系的阻燃剂。其反应方程式如下:

Wen chao Zhang[29]等人利用DOPO与乙烯基三乙氧基硅烷反应得到DOPO-VETS 的含硅磷的复合体系的阻燃剂。其反应方程式如下:

Xiaodong Qian[30.]等人先用DOPO和乙烯基三甲氧基硅烷(vts)合成DOPO-VTS,在用1,3,5-三缩水甘油-S-三嗪三酮;三环氧丙基异氰尿酸酯(TGIC)与3-氨基丙基三乙氧基硅烷(KH)合成TGIC-KH,然后两者混合,得到新型的含磷硅的溶胶,其反应方程式如下:

磷/硅协同阻燃体系的发展前景

在现代阻燃剂技术中,协同阻燃技术是极其重要的一个方面。由于磷硅协同阻燃剂在赋予基材优异的阻燃性能之外,还能改善基材的其他性能(如加工性能、机械性能、耐热性能等),阻燃材料的循环使用效果较好,能满足人们对阻燃剂的严格要求,所以近几年磷硅协同阻燃剂及其阻燃技术得到了较快的发展。

磷硅阻燃剂协同阻燃体系的研究与开发是提高阻燃效率、降低有机磷阻燃剂的毒性和降低有机硅阻燃剂成本的切实可行的办法。它集催化阻燃作用、抑制凝聚相的氧化反应和形成有效的焦炭层或含其他阻燃元素(如硅、磷等阻燃元素)的焦炭层等多种特征于一体,是今后阻燃技术发展的重要方向之一,其发展潜力和应用前景十分巨大。

中国的阻燃剂(FR)市场

因为FR的进出口贸易较大中国的FR产量与用量的差距是比较大的。例如,中国PFR及P/X FR年产量可能有100 kt/a,但其中一大部分供出口,国内用量则较少。据作者综合多方面情况分析,中国目前BFR的年用量约100~120kt/a,ATO约30~40 kt/a, PFR及磷-卤素(P-X)系FR约15~20 kt/a,其他FR(包括N系P/N系及其他无机)FR约30~40 kt/a,至于CFR,有的资料在统计中国用的 CFR 时,将主要起增塑作用的氯化石蜡-50(42)也包括在内,这似可商榷,能真正作为FR的只有氯化石蜡-70,但中国氯蜡-70的产量甚少,且由于氯化石蜡-70的热稳定性欠佳,在阻燃材料领域内的应用不广。其他CFR(如得克隆)在中国的用量也比较有限。

总的看来,中国目前FR的总用量,估计为180~220 kt/a,过去5年中用量的年均增长率达15%左右。但中国FR市场的最大问题之一是X-Sb系统比例过高,估计达70%左右,因此,产品结构的更新必要而迫切,宜及早重视,不可掉以轻心。

总结

目前,磷硅协同阻燃体系的研究都还处于起步阶段, 根据已获得的磷硅阻燃剂协同阻燃的研究成果, 今后的研究重点应是针对不同的应用领域, 选择或合成特定分子结构的硅系阻燃剂与磷系阻燃剂,进行复配协同阻燃体系的组合与优化,以达到最佳的效果;大力发展磷元素和硅元素处于同一分子结构中的协同阻燃剂, 设计和优化其分子结构与聚集态结构;加强磷硅协同阻燃机理的研究; 简化工艺, 降低生产成本, 加快工业化、商品化的进程。

参考文献

[1]欧育湘,李建军.阻燃剂一性能、制造及应用,北京:化学工业出版社,2006,2一4.

[2]HorroeksAR. PrieeD.Fire retardan tmaterial.Cambridge:Wood head Publishing Ltd And CRCPressLLC,2001,43一55

[3]欧育湘,陈宇,王筱梅.阻燃高分子材料[M].北京:国防工业出版社,2001.

[4]Zanette M,Camino G,Canacese D et al.Fire Retardant Halogen?Antimony?Clay Synergism in Polypropylene Layered Silicate Nanocomposites [J].Chem.Mater.2002,14:189~193.

[5]Zhang C,Liu S M,Huang J Y,et al.Flame retardance and thermal properties of

a novel phosphorus-containing unsaturated polyester resin/SiO2 hybrid nanocomposite[J].E-polymers,2009,No.151:1-12.

[6 ]马承银,杨翠纯.磷系阻燃剂的发展动向[J].现代塑料加工应

用,2000,13(2):38-41.

[7]梁诚.我国阻燃剂生产现状与发展趋势[J].化工新型材料, 2001, 23 (8): 5-11.

[8] ALAEE M, ARIAS P, SJODIN A, et a.l An overviewofcommercially used brominated flame retardants, their appli-cations, their use patterns in different countries pregious andpossible modes of release [ J]. Environ Inter, 2003, 29(6): 683-689.

[9]欧育湘.阻燃剂-制造、性能及应用[M].北京:兵器工业出版社, 1996.

[10]彭治汉,邓向阳.氮系阻燃剂MCA阻燃尼龙-6的机理研究[J].高分子材料科学与工程, 1998, 14 (4):107-109.

[11].郭如新,阻燃剂发展现状,海湖盐与化工,1999,28(1):43-44.

[12].Horacek H, Pieh S. The importance of intumescent systems for fire protection of plastic materials,Polym Int, 2000, 49(10): 1106-1114.

[13]Fu B X,Yang L,Somani R H,et al.Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions[J].J Polym Sci Part B:Polym Physics.2001,39(22):2727~2739.

[14] 崔隽,姜红雷,吴明艳, 等. 阻燃剂的现状与发展趋势[J].山东轻工学院学报, 2003, 4 (1): 14-17.

[15 ] WANG Zhengzhou, WU Guosheng, HU Yuan, et a.l Thermal degradation ofmagnesium hydroxide and red phos- phorus flame retarded polyethylene composites [ J]. PolymDegrad Stab, 2002, 77 (3): 427-434.

[16] HIETANIEMI J, KALLONEN R, MIKKOLA E. Burning Characteristics of selected substances: production of heat, smoke and chemicals species [J]. FireMater, 1999, 23 (4): 171-185.

[17] ZHANG X G, GUO F. Investigation of interfacial modifi- cation for flame retardant ethylene vinylacetate copolymer/a- lumina trihydrate nanocomposites [J]. Polym Degrad Stab,

2005, 87 (3): 411-430.

[18]欧育湘.膨胀型石墨及其协效阻燃剂的聚丙烯[J].塑料科技, 1999, 13 (3): 13-14.

[19] FERNANDES JR, FERNANDESV J, FONSECA N S, et a.l Kinetic evaluation of decabromod iphenyl oxide as a flame retardant for unsaturated polyester [J]. Thermo chim-

icaActa, 2002, 388 (1/2): 283-297.

[20] Y.W。ChenYang,H.F.LEE C.Y,Yuan,An oXygen inde evaluation of flammability On modified epoxy.Joumal of polymer Science par tA:polymer Chemist .Vol. 2000,38,972一98

[21] 肖卫东等.A1203.3H20阻燃环氧树脂机理探讨应用化学,2000.17(s):397

[22] 张利利,刘安华. 磷硅阻燃剂协同效应及其应用[ J ]. 塑料工业, 2005,

33(B05) : 2032205, 209.

[23]郝建薇, 熊燕兵, 张涛. 含磷环氧树脂的合成及阻燃研究[J]. 北京理工大学学报,2006, 26(3): 279-282.

[24]Cai S X, Lin C H. Flame-retardant epoxy resins with high glass-transition temperatures

from a novel trifunctional curing agent: Dopotriol [J]. Polym Sci Part A: Polym1 Chem, 2005, 43(13): 2862-2873.

[25] Ching Hsuan Lin, Kai Zhi Yang, Tsu Shang Leu, et al. Synthesis characterization and

properties of novel epoxy resins and cyanate esters [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2006, 44(13): 3487-3502.

[26] Ying Ling Liu. Epoxy Resins from Novel Monomers with a Bis-(9,

10-dihydro-9-oxa-

10-oxide- 10- phosphaphenanthrene-10-yl-) Substituent [J]. Journal of Polymer Science:

Part A: Polymer Chemistry, 2002, 40(3): 359-368.

[27]Lijun Qian*, Yong Qiu, Nan Sun, Menglan Xu, Guozhi Xu, Fei Xin, Yajun Chen. Pyrolysis route of a novel flame retardant constructed by phosphaphenanthrene and triazine-trione groups and its flame-retardant effect on epoxy resin[J].Polymer Degradation and Stability Elsevier Ltd.2014 107 :98-105

[28] M. Sponton, G. Lligadas, J.C. Ronda, M. Galia, V. Cadiz*.Development of a DOPO-containing benzoxazine and its high-performance flame retardan t copolybenzoxazines[J]. Polymer Degradation and Stability Elsevier Ltd. 2009 94:1693–1699

[29]Wen chao Zhang,Rong jie Yang .Synthesis of Phosphorus-Containing Polyhedral Oligomeric Sisesquioxanes via Hydrolytic Condensation of a Modified Silane[J]. Journal of Applied Polymer Science, 2011 ,122:3383-3389

[30] Xiaodong Qian , Lei Song , Yuan Bihe , Bin Yu , Yongqian Shi , Yuan Hu ,Richard K.K. Yuen .Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system[J].Materials Chemistry and

Physics .2014 ,143:1243-1252

阻燃剂的研究发展现状

第1期18纤维复合材料No.1 2012年3月FIBER COMPOSITES Mar.,2012 阻燃剂的研究发展现状 陈浩然,李晓丹 (哈尔滨玻璃钢研究院,哈尔滨150036) 摘要本文分别介绍了卤系阻燃剂、磷系阻燃剂、硅系阻燃剂和氮系阻燃剂,从机理上分析各类阻燃剂的阻燃效果、应用效果,并指出无卤高效环保型阻燃剂的研究是今后发展方向。 关键词阻燃剂;阻燃机理;卤系阻燃剂;磷系阻燃剂;硅系阻燃剂;氮系阻燃剂;无卤环保型阻燃剂 The Recent Progress of Flame-retardants CHEN Haoran,LI Xiaodan (Harbin FRP Institute,Harbin150036) ABSTRACT This paper introduces halogen flame-retardants,phosphorous flame-retardants,siliceous flame-retardants and nitrogenous flame-retardants.Retardant effect and application effect are analyzed from retardant mechanism.It is considered that the research of halogen-free,high efficient,environmental flame-retardants will be the development trend of the flame-retardants. KEYWORDS flame-retardant;retardant mechanism;halogen flame-retardants;phosphorous flame-retardants;sili-ceous flame-retardants;nitrogenous flame-retardants;halogen-free environmental flame-retardants 1引言 由于有机聚合物材料具有独特的物理、化学性质和良好的加工性能,近几十年来,塑料、橡胶、合成纤维等聚合物材料及其制品得到蓬勃发展,获得了显著的经济效益和社会效益。但是大多数聚合物材料属于易燃、可燃材料,在燃烧时具有燃烧速度快、发热量高、产烟量大以及释放毒性气体等特点。统计表明,在火灾中造成人员伤亡的主要原因不是火,而是在燃烧中放出的这些烟雾和毒气,严重危害了人们生命和财产的安全。从而可看出,聚合物材料抑烟和阻燃的研究是同等重要的。为此如何提高合成高聚物及天然高聚物材料的阻燃性和抑制硝烟生成已成为一个急需解决的问题,具有重要的社会和经济意义[1]。 2阻燃机理分析 在研究阻燃机理之前,要先了解高聚物受热后发生热分解并燃烧的过程[2]。高聚物受热后,温度逐渐升高,一些热稳定性最差的键先开始断裂,当材料达到热分解温度时,高聚物中大多数键发生断裂,高聚物本身开始分解。高聚物最终生成的产物可能有以下几种:可燃性气体(甲烷、乙烷、乙烯等)、不燃气体或低燃烧值气体(N2、SO2、卤化氢等)、液体(熔融聚合物、预聚体及焦油)、固体(炭化物)、烟。热裂解后的可燃性产物与氧气接触发生燃烧,燃烧是按自由基链式反应进行的,包括以下四步: 链引发:RH→R·+H· 链增长:R·+O2→ROO· ROO·+RH→ROOH+R·链的支化:ROOH→RO·+OH· 2ROOH→ROO·+RO·+H 2 O 链的终止:2R·→R—R R·+OH·→ROH 2RO·→ROOR 2ROO·→ROOR+O 2 从聚合物燃烧的过程可以看出,燃烧中释放的能量会加剧这一过程。 因此,材料的阻燃可以通过以下的途径来实现,一是抑制在燃烧反应中起链增长作用的自由基,隔绝氧气;二是在固相中阻止聚合物的热分解和阻止聚合物释放出可燃气体,如接枝和交联改性或催化成炭;三是减缓生热和传热,如冷却阻燃。

有机磷酸酯阻燃剂研究进展_徐会志

有机磷酸酯阻燃剂研究进展 徐会志,王胜鹏,包杰界 (浙江传化股份有限公司,杭州 311231) 摘 要有机磷阻燃剂研究在国内外得到极大的关注。综述了磷酸酯类阻燃剂、膦酸酯类阻燃剂和磷杂环类阻燃剂的研究进展,并提出了有机磷阻燃剂今后的发展方向。 关键词 有机磷,阻燃剂,磷酸酯,膦酸酯,磷杂环 1 引言 有机磷酸酯阻燃剂是一种阻燃性能较好的阻燃剂,它品种多,用途广泛。卤系阻燃剂存在很多缺点,如抗紫外线稳定性差,燃烧时生成较多的烟、腐蚀性气体和有毒气体。特别是自1986年起,发现多溴二苯醚及其阻燃的高聚物的热裂解和燃烧产物中含有致癌物四溴代双苯并二恶烷及四溴代苯并呋喃后,卤系阻燃剂的使用受到了限制,使得非卤阻燃剂特别是有机磷阻燃剂的研究和开发变得更加重要。虽然有机磷化合物都会有一定的毒性,但它们的致畸性却不高,其分解产物及其阻燃的高聚物的热裂解和燃烧产物中腐蚀性、有毒物也很少。有机磷阻燃剂之所以成为阻燃剂研究中的热点,除了上面的因素外,还因为有机磷阻燃剂除了具有阻燃性能之外,很多品种还同时具有增塑、热稳定等作用,对提高高分子材料的综合性能有十分重要的作用。 目前,有机磷阻燃剂的研究、开发方兴未艾,每年报道很多。有机磷阻燃剂根据化学活性的不同,可以分为使用方便的反应型和阻燃性持久的添加型两类,下面就这些阻燃剂种类、合成和应用的最新发展状况进行论述[1,2]。 2 磷酸酯阻燃剂 用作阻燃剂的磷酸酯很多,主要可用于聚苯乙烯(PS),聚氨酯(PU)泡沫塑料,聚酯(PET),聚碳酸酯(PC)和液晶等高分子材料的阻燃。包括只含磷的磷酸酯阻燃剂、含氮磷酸酯阻燃剂和含卤磷酸酯阻燃剂等几类。 (1)只含磷的磷酸酯阻燃剂 只含磷的磷酸酯阻燃剂大多数为酚类的磷酸酯,也有少量的烷基磷酸酯。Bright Danielle A报道,结构式如下的化合物可用于高抗冲聚苯乙烯的阻燃处理: 1,4-(ArO)2P(O)OCH2C6H4CH2OP(O)(ArO)2 式中Ar=(未)取代的芳基。 当在高抗冲聚苯乙烯中加入5.6份该化合物时极限氧指数(LOI)从18变为20.5。相近结构的

阻燃剂的研究进展

阻燃剂的研究进展 摘要:本文主要介绍阻燃剂的分类,阐述各类阻燃剂的阻燃原理及优缺点,目前阻燃剂的市场情况及阻燃剂在国内外的研究进展。 关键词:阻燃剂阻燃机理市场研究进展 一、引言 据公安局消防局统计,2011年,全国共接报火灾125402起,死亡1106人,受伤572人,直接财产损失18.8亿元,由此可以看出火灾引起的损失非常巨大,因此,阻燃剂是有机材料的重点研究方向。粗略估计,全球65%-70%的阻燃剂用于塑料,20%用于橡胶,5%用于纺织品,3%用于涂料,2%用于纸张及木材。由此可以看出,阻燃剂大部分应用于塑料行业。 二、阻燃剂的介绍 2.1 无机阻燃剂 无机金属氢氧化物阻燃剂:主要有氢氧化铝和氢氧化镁两类。目前为了进一步提高氢氧化铝的阻燃性能,对其进行了一些处理,如表面活性化、超细化、大分子键合处理以及复合化等。其反应机理如下:该反应是吸热反应,使体系的温度下降,水在此温度下变成水蒸气,又可冷却和稀释受热分解产生的可燃性气体和氧化剂,而氧化铝的残渣又是优良的导热体,可增加燃烧区热量的排出。经过表面改性处理的氢氧化铝和氢氧化镁,其阻燃性能和被阻燃基材的抗拉强度、伸长率等与处理前相比有大幅提高。 无机磷系:包括聚磷酸铵、磷酸、红磷等,其阻燃机理既有气相机理,又有凝聚相机理,但以凝聚相机理为主。在燃烧时发生以下变化:磷化合物-磷酸-偏磷酸-聚偏磷酸,聚偏磷酸玻璃体不仅覆盖于燃烧体表面,形成保护膜,能隔绝氧气、起阻燃作用。 膨胀型石墨阻燃剂:膨胀型石墨(EG)是一种近期发展起来的无卤无机膨胀型阻燃剂,其作用机理为:EG膨胀时吸收大量的环境热量,一方面通过膨胀窒息、覆盖形成隔离膜中断链反应,达到热量缓释的效果;另一方面本身不燃,并能够吸收环境热量,EG是多种阻燃机理集于一身的优良的阻燃剂。 其它一些无机阻燃剂或消烟剂:硼类阻燃剂是近年来发展较快的一类多功能阻燃剂。主要有五硼酸铵、偏硼酸钠、氟硼酸铵、偏硼酸钡和硼酸锌等;锑系阻燃剂是一种重要的阻燃增效剂。可单独使用亦可复合使用,尤其是与卤系阻燃剂并用时可大大提高卤系阻燃剂的效能,是卤系阻燃剂中不可缺少的协同剂;钼类化合物是人们发现最好的抑烟剂,使钼类化合物的开发与应用成为目前阻燃剂领域的新热点。

阻燃剂的发展趋势

阻燃剂的发展趋势 随着现代工业的不断发展,塑料、橡胶、合成纤维等高分子材料得到广泛的应用。然而,这些有机高分子化合物绝大多数都是可燃的,且燃烧时可产生大量致命的有毒气体。为解决这一难题、提高合成材料的抗燃性,最有效的方法是加入阻燃剂。对此,以阻燃为目的阻燃剂研究及材料阻燃技术近几年得到长足发展,至今天已成为世界工业体系的重要组成部分之一。本文将阐述阻燃剂的现状和发展趋势。 1 我国阻燃剂发展现状 我国阻燃剂生产在塑料助剂中, 是仅次于增塑二、各类阻燃剂的现状研究剂的第二大行业, 产量逐年增加, 市场不断扩大。自1960 年起开始研制和生产阻燃剂以来, 到目前为止, 我国阻燃剂总生产能力约15 万t/a , 从事阻燃剂研究的研制单位有50 多家, 阻燃剂品种有120 多种, 生产单位150 多家。近几年来, 我国阻燃剂工业发展迅速, 比如最重要的添加型溴系阻燃剂十溴二苯醚(DBDPO)的销量1999 年为7000t/a , 2000 年为9000t/a , 2001 年为13500t/a。增长幅度逐年增大,其它卤系中的另一个重要成员氯蜡系列也有很大增长。还有磷系(包括无机磷类和有机磷酸酯类)和无机系[ 主要是Al2 (OH)3 、Mg (OH)2 和助阻燃剂Sb2O3 等] 的市场也在不断扩大。但是, 按阻燃塑料制品占塑料总用量的比例来看, 与美国相比差距还很大。美国的比例为40 %, 而我国还不到1 %, 即使考虑到美国的经济总量为我国的10 倍, 我们也还有很大的扩展空间。 我国的阻燃剂以卤系阻燃剂为主, 占整个阻燃剂的80 %以上, 其中氯系(主要是氯化石蜡)占69 %, 并有出口;但溴系不足, 每年仍需进口;作为无污染、低毒的无机系仅占阻燃剂的17 %, 其中有一半为三氧化二锑, 而氢氧化铝、氢氧化镁还不到10 %。主要阻燃剂品种有42 型、52 型氯化石蜡, 还有少量的70 型氯化石蜡、多溴二苯醚、六溴醚、八溴醚、聚2 , 6-二溴苯醚、四溴双酚A 及其齐聚物、磷酸烷(芳)基酯、氯(溴)化磷酸醋、氢氧化铝(镁)、三氧化二锑、红磷等。我国阻燃剂比例与世界发达国家和地区相比, 消费结构差距甚大, 目前国

阻燃剂的应用与研究进展

阻燃剂的应用与研究进展 白景瑞 ( 北京理工大学化工与材料学院 北京 100081 ) 滕 进 ( 航天材料及工艺研究所 北京 100076 ) 文 摘 阐述了阻燃材料与阻燃剂得以推广应用并迅速发展的主要原因;分析了应用于阻燃材料中的卤系、有机磷系、磷—氮系(又称膨胀型)或有机硅系等不同类型阻燃剂的阻燃特性及其适用范围;重点探讨了膨胀型阻燃剂的阻燃机理和阻燃特性,并介绍了相关产品的发展动向。为克服卤系阻燃剂的不足和提高环保效果,无卤、高效、低烟、低毒新型阻燃剂合成及其阻燃技术的研究是当今高分子阻燃材料的发展方向,特别是膨胀型阻燃剂和有机硅系阻燃剂的开发与应用将成为21世纪阻燃剂最活跃的研究领域之一。 关键词 阻燃材料,阻燃剂,膨胀型,阻燃机理 Usage and Development of Flame Retardant Bai Jingrui ( Beijing Institute of T echnology Beijing 100081 ) T eng Jin ( Aerospace Research Institute of Materials and Processing T echnology Beijing 100076 ) Abstract Main reas ons why flame retardant materials and flame retardants are widely used and rapidly developed are reviewed.The flame retarding characteristics and applicable area are analyzed for the flame retardant materials,such as halogen systems,organic phosphorus systems,phosphorus2nitrogen systems(intumescent flame retardants)and organic silicate systems.Particular attention is focused on retarding mechanism and retarding characteristics of the intumescent flame retardants and their development.T o overcome drawbacks of the halogen flame retardant systems and im prove their environment effects,s ome new non2halogen,low sm oke,low toxic,and high efficient flame retardants and flame retarding technique are being developed,and it is considered that the research and development of intumescent flame retardants and organic silicate retardant systems will be one of the hottest research field in the21st century. K ey w ords Flame retardant materials,Flame retardants,Intumescent,Flame retarding mechanism 1 引言 20世纪50年代后,随着高分子材料工业的发展,三大合成材料愈来愈广泛地应用于生产和生活的各个邻域。与此同时,由于这些有机聚合物的可燃性而引起的火灾也给人们酿成了惨重的人员伤亡和造成了巨大的经济损失,所以自60年代起,一些工业发达国家即开始生产和应用阻燃塑料、阻燃橡胶和阻燃纺织品。随着电器、电子、机械、汽车、船舶、航空、航天和化工的发展,对产品材质的阻燃要求也愈来愈高,使阻燃剂和阻燃材料的研制、生产及 收稿日期:2000-09-14;修回日期:2000-12-06 白景瑞,1942年出生,副教授,主要从事功能材料及其中间体的制备工艺研究工作

皮革阻燃技术研究进展_段宝荣

第6期收稿日期:2008-02-03 基金项目:国家科技攻关计划项目(2004BA320B)资助第一作者简介:段宝荣(1977-),男,硕士,助教,主要从事材料助剂研究。 皮革阻燃技术研究进展 段宝荣1,王全杰1,2,马先宝1,何波1,魏鹏勃3 (1.烟台大学化学生物理工学院皮革与蛋白质实验室,山东烟台264005;2.国家制革技术研究推广中心, 山东烟台264003;3.广州三骏佳纺织合成材料厂有限公司,广东广州510445) 摘要:阐述了皮革的阻燃性机理,介绍了国内外皮革阻燃的发展史及现状,阐明了皮革阻燃剂应具备的条件,并列举皮革阻燃性能的检验方法,提出解决皮革阻燃性能的研究途径及发展趋势。关键词:皮革;阻燃;趋势;中图分类号:TS513;TS529 文献标识码:A 文章编号:1671-1602(2008)06-0009-05 TheResearchProgressofLeatherFlameRetardant DUANBao-rong1,WANGQuan-jie1,2,MAXian-bao1,HEBo1,WEIPeng-bo3 (1.LeatherandProteinLaboratory,CollegeofChemistryandBiology,YantaiUniversity,Yantai264005,China; 2.StateResearchandPromotionCenterofLeather-makingTechnology,Yantai264003,China;3.Guangzhou SaniunjiaWeaveSyntheticMaterialManufactoryCo.LTD,Guanzhou510445,China)Abstract:Mechanismofleatherflameretardantwasrecommended.Thedevelopmentandcurrentsituationofleatherflameretardantinabroadandhomewereilluminatedindetail.Thecharacteristicsofleatherflameretardantwereshowed,andthemeasuremethodofflameretardantpropertieswasenumerated.Intheend,theresearchrouteanddevelopmenttrendsofleatherflameretardantwereputforward.Keywords:leather;flameretardant;tendency 1引言 近年来,国内外火灾的发生越来越频繁,火灾造成的人员伤亡和财产损失也越来越严重[1]。随着人民生活水平的提高,人们对安全防火也越来越重视。为了避免火灾的发生,降低火灾的可能损失,各种阻燃材料得到了广泛的应用。皮革制品以其卓越的透气 性、透水汽性、绝热、耐陈化、耐汗、耐磨及防穿刺等综合性能,被广泛的应用于森林防火装备的制造、高层建筑的内装潢以及飞机、汽车内装饰和办公家具的制造等领域。针对皮革的易燃,且燃烧会释放出有毒气体和烟雾的缺点,国外汽车公司纷纷提出苛刻的内饰革阻燃指标[2],于是阻燃皮革技术上升为国内外业内人士关注的焦点之一。而目前,我国对于皮革阻燃技术以及阻燃材料的研究开发很少,特别是具有高效、无毒、无腐蚀、耐久性好、多功能化的阻燃材料,几乎还是空白。 2阻燃的机理 30卷第6期2008 年6月西部皮革 WESTLEAHTER Vol.30No.4 Jun.2008

阻燃剂的现状和发展趋势_陈建兵

阻燃剂的现状和发展趋势 陈建兵 (池州学院化学与食品科学系,安徽池州247000) 摘要:从燃烧机理和阻燃机理以及主要研究现状方面介绍了阻燃剂,并就未来阻燃剂的研究方向进行了探讨。 关键词:阻燃剂;燃烧;发展 中图分类号:TQ314124+ 8 文献标志码:A 文章编号:1005-8141(2008)05-0559-02 Development and Situation o f Flame Retardant CHEN Jian-bin (Department of Chemistry and Food Science,Chizhou College,Chizhou 247000,China) Abstract:The mechanism of combustion were introduced briefly in the text,and introduced the mechanism of flame and the situation of re -search,predicted the develop ment of flame retardant in the future. Key words:flame retardant;combusti on;development 收稿日期:2008-04-17;修订日期:2008-05-15 基金项目:安徽省教育厅自然基金(编号:KJ 2006B156;KJ2008B177)。 作者简介:陈建兵(1980-),男,硕士,讲师,主要从事水性高分子与无机非金属材料研究。 阻燃剂是合成高分子材料加工的重要助剂之一,其功能是使合成材料具有难燃性、自熄性和消烟性。随着科学进步与环境保护意识的提高,人们不但开发出性能更好的阻燃剂,而且对阻燃剂自身与使用过程中的环境保护问题也提出了更为严格的要求。阻燃剂的无卤化、低毒化、复合化、抑烟化已经成为21世纪阻燃剂整体发展趋势,因此我国的阻燃剂发展具有广阔的发展前景[1] 。本文就未来阻燃剂研究的方向进行了探讨。1 燃烧机理 聚合物燃烧是一个极其复杂的热氧化过程,导致燃烧过程进行的基本要素是:热、氧和可燃物。其燃烧可分为5个阶段:受热、热降解、着火、燃烧和扩散,在燃烧过程中产生含有大量的高能自由基HO -,如果空气流通,燃烧就会越来越剧烈,但只要降低HO -自由基的浓度或切断氧的供应,就可以达到阻燃的目的,主要有:1降低着火点,防止聚合物降解出自由基;o隔绝空气;?捕获活性极大的HO -自由基,阻止火焰的蔓延。 2 阻燃机理 卤素阻燃剂的阻燃机理:卤素在燃烧时能生成卤化氢,卤化氢是一种自由基的捕捉剂。它能捕捉促进高分子化合物燃烧反应的HO -自由基,从而使火焰减 小,达到阻燃效果。 磷系阻燃剂的阻燃机理:磷化物不论是固相还是液相都有很好的阻燃效果,这是因为磷化物在火焰中产生这样的反应过程:磷酸)偏磷酸)聚偏磷酸,由于生成的磷酸层不挥发的保护,隔绝了空气,产生了阻燃效果。另一个原因是产生聚偏磷酸,具有强力的脱水作用,使有机物炭化,而炭化膜也起到了隔绝空气的效果。 锑系阻燃剂的相乘效应:单独使用锑的氧化物并没有阻燃效果,但与卤素阻燃剂相配合,就使其效果增大,人们把这种效应称为/相乘效应0,把锑的氧化物称为助阻燃剂,卤素与三氧化二锑的相乘效应,其机理可认为是由于聚合物在固相的脱水作用引起了炭化,捕捉在气象的自由基,使自由基停止连锁反应,即卤素与三氧化锑反应生成卤素化锑;在245)564e ,随着温度的上升,各阶段连续生成的三氯化锑(气态),在气相时能起到自由基捕捉剂的作用。 氧化铝水合物的阻燃剂机理:一般认为氧化铝水合物受热时,失水变成氧化铝的反应是失水,使燃烧温度降低,当周围温度下降到200)300e 时,它完全失水变成无水氧化铝,可稀释聚合物受热分解后放出的可然性气体,同时还可以吸收凝聚炭的极小微粒,即起消烟阻燃作用。3 阻燃剂的研究现状 自从1908年Engelard G A 等用天然橡胶与氯气反应制得了阻燃氯化橡胶,开创了以化学方法阻燃高聚物的先河以来,特别是近40年高分子工业迅速发展的需求,阻燃技术得到迅速的发展,开发出许多高效的、 # 559#资源开发与市场Res ource Development &Market 200824(6) #资源与环境#

常见阻燃剂

十溴二苯乙烷TDE 英文名称:2,2',3,3',4,4',5,5',6,6'-Decabromobibenzyl [1] 英文别名:DBDPE;1,2-Bis(2,3,4,5,6-pentabromophenyl)ethane CAS号:84852-53-9 分子式:C14H4Br10 分子量:971.22 纯度:≥96.0% 性状描述: 白色粉末 物理参数: 熔点:~345℃. 沸点:~676.2℃. 用途说明: 新型溴系添加型阻燃剂(改性塑料行业必须用到的) 贮藏运输: 密封阴凉干燥保存 相关补充说明: 十溴二苯乙烷是一种使用范围广泛的广谱添加型阻燃剂,其溴含量高,热稳定性好,抗紫外线性能佳,较其他溴系阻燃剂的渗出性低;特别适用于生产电脑、传真机、电话机、复印机、家电等的高档材料的阻燃。 十溴二苯乙烷热裂解或燃烧时不产生有毒的多溴代二苯并二恶烷 (DBDO )及多溴代二苯并呋湳(DBDF ),用它阻燃的材料完全符合欧洲关于二恶英条例的要求,对环境不造成危害。二恶英(Dioxin),又称二氧杂芑(qǐ),是一种无色无味、毒性严重的脂溶性物质,二恶英实际上是二恶英类(Dioxins)一个简称,它指的并不是一种单一物质,而是结构和性质都很相似的包含众多同类物或异构体的两大类有机化合物。二恶英包括210种化合物,这类物质非常稳定,熔点较高,极难溶于水,可以溶于大部分有机溶剂,是无色无味的脂溶性物质,所以非常容易在生物体内积累,对人体危害严重。 十溴二苯乙烷无任何毒性,也不会对生物产生任何致畸性,对水生物如鱼等无副作用,可以说符合环保的要求。 十溴二苯乙烷在使用的体系中相当稳定,用它阻燃的热塑性塑料可以循环使用。 十溴二苯乙烷对阻燃材料性能的不利影响较传统阻燃剂十溴二苯醚小,且耐光性能好,渗出性低。 产品指标: 项目规格项目规格

磷系阻燃剂研究进展(图文并茂版)

磷系阻燃剂研究进展 1.磷系阻燃剂 随着合成材料的广泛应用, 阻燃剂的消耗量日益增加, 目前已成为塑料助剂中仅次于增塑剂的第二大品种。阻燃剂种类繁多, 其中, 磷系阻燃剂是各类阻燃剂中最复杂, 也是研究较充分的一类[ 1]。磷系阻燃剂大都具有低烟、无毒、低卤、无卤等优点, 符合阻燃剂的发展方向, 具有很好的发展前景。 磷系阻燃剂-CEPPA 2.磷及磷化合物阻燃机理 加入含磷阻燃剂的聚合物燃烧时, 磷化合物受热分解, 发生如下变化: 聚偏磷酸是不易挥发的稳定化合物, 覆盖在聚合物表面形成一个保护层, 起到阻燃作用。另外, 由于磷酸和聚偏磷酸具有较强的脱水性, 使聚合物表面形成碳化膜而起到阻燃作用。这是磷系阻燃剂在聚合物的凝聚相中的阻燃机理。 另外, 磷系阻燃剂在阻燃过程中产生的水分,一方面可以降低凝聚相的温度, 另一方面可以稀释气相中可燃物的浓度, 从而更好地起到阻燃作用。 3.磷系阻燃剂研究进展 3.1磷系协同型阻燃剂 所谓协同型阻燃剂就是指利用阻燃剂或阻燃元素之间的相互作用而提高阻燃效果的阻燃剂, 其优点是: 阻燃性能增强, 应用范围扩大, 经济效益提高, 是实现阻燃剂低卤无卤化有效途径之一。 3.1.1磷- 卤系阻燃剂

磷- 卤型阻燃剂是一类含卤较低的阻燃剂, 其协同阻燃作用已被许多实验所证实。燃烧时能产生聚偏磷酸、三卤化磷、三卤氧磷等, 它们相作用, 覆盖于聚合物表面以隔绝空气, 从而发挥了凝聚相和蒸气相阻燃作用。 如:美国的FMC 公司现销售的PB - 460 也是一种溴代磷酸酯, 在聚碳酸酯( PC) / 聚对苯二甲酸乙二酯( PET) 以及PC/ ABS 三元共聚物中表现出明显的磷- 溴协同作用, 阻燃 效率远远高于只含磷或只含溴的阻燃剂。 PB-460 磷酸三(溴苯基)酯 3.1.2磷- 氮系阻燃剂 由于磷- 氮之间的协同与增效作用, 使得这类阻燃剂显示出了良好的阻燃性能, 且发烟 量小, 有毒气体生成量少, 被认为是今后阻燃剂发展的方向之一。其主要包括如下三类: a.磷酸盐( 酯) 类如聚磷酸铵( APP ) 、季戊四醇三聚氰胺磷酸酯( 也是优良的大分子 膨胀型阻燃剂) 等。 b.聚磷酰胺类如APO ( 商品名) 。 c.磷腈聚合物如PR- 1000 、PNF 等。[2] 聚磷酸铵(APP)-阻燃剂 3.2多功能阻燃剂 多功能化是阻燃剂的发展趋势之一。多功能化阻燃剂可以减少助剂的用量, 降低成本, 避免对聚合物物性产生大的影响。磷酸酯类化合物大都具有阻燃、增塑等功能。1 - 氧代- 4 - 羟甲基- 2 , 6 , 7 - 三氧杂- 1 - 磷杂双环[ 2, 2 , 2 ] 辛烷引进叠氮基团便成为对体系有能 量贡献, 又有增塑和键合等性能的多功能添加剂。 如:溴代芳基磷酸酯很早就被作为阻燃剂使用, 一般用于工程塑料及透明材料, 经研究发现:BPP ( 即溴代芳基磷酸酯之一) 不仅可以作工程塑料的阻燃剂, 而且还具有极佳的防霉、避鼠的功能, 是应用于塑料的一种多功能助剂。三芳基磷酸酯属于添加型有机无毒阻燃剂, 具有阻燃和增塑的双重功能, 可广泛应用于PVC 软制品中。[3] 3.3红磷 红磷添加量少, 阻燃效果好, 对材料物性影响小, 是一种很有发展前途的阻燃剂, 但也

阻燃剂的研究及发展概况(通用版)

阻燃剂的研究及发展概况(通 用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0822

阻燃剂的研究及发展概况(通用版) 1前言 随着城市建筑的密集化、房屋建筑的高层化和建筑结构的轻型化,合成高分子材料广泛应用于各类领域,与人们的生活密切相关,直接影响着人们的工作生活。但在可燃、易燃物中,容易引起火灾的材料大部分是有机高分子化合物,有极大的潜在火灾危险性。由于高分子材料被引燃导致火灾发生的情况越来越频繁,对高分子材料的阻燃已经引起人们的高度重视。如何提高合成材料的阻燃性能,减少可燃物的燃烧危险性及燃烧时释放出的有毒气体,减少人民的生命财产损失,已经成为研究人员研究的课题。研究人员研究发现,通过添加阻燃剂或者通过化学反应在高分子材料中引入阻燃基团,能有效提高材料的抗燃性,阻止材料被引燃及抑制火焰的传播。在此基础上,世界各国研究人员对阻燃技术进行深入的探讨研究,并

研制开发出了一系列阻燃性能良好的阻燃材料。阻燃剂便是这其中一种,适用于合成材料的阻燃,有很好的阻燃效果。现就阻燃剂发展概况进行分析讨论。 2阻燃剂的类型 阻燃科学技术是为了适应社会安全生产和生活的需要,预防火灾发生,保护人民生命财产而发展起来的一门科学。阻燃剂是阻燃技术在实际生活中的应用,它是一种用于改善可燃易燃材料燃烧性能的特殊的化工助剂,广泛应用于各类装修材料的阻燃加工中。经过阻燃剂加工后的材料,在受到外界火源攻击时,能够有效地阻止、延缓或终止火焰的传播,从而达到阻燃的作用。根据不同的划分标准可将阻燃剂分为以下几类: 2.1按所含阻燃元素分 按所含阻燃元素可将阻燃剂分为卤系阻燃剂、磷系阻燃剂、氮系阻燃剂、磷-卤系阻燃剂、磷-氮系阻燃剂等几类。卤系阻燃剂在热解过程中,分解出捕获传递燃烧自由基的X?及HX,HX能稀释可燃物裂解时产生的可燃气体,隔断可燃气体与空气的接触。磷系阻

硅系阻燃剂

1.阻燃剂 1.1 我国阻燃剂需求介绍 我国阻燃剂工业随着我国总体经济的持续、快速发展,迎来了一个大发展的机遇,同时,也面临严峻的挑战。我国阻燃剂的生产和消费形势持续发展,年均消费增长率超过20%。从2002 年开始,国内阻燃剂消费量急剧上升,增加的市场份额主要来源于电子电器、汽车市场两个方面。 阻燃剂发展趋势则是在提高阻燃性能的同时,更加注重环保与生态安全,在这种背景下,一些传统的溴系阻燃剂已受到日益严格的环保和阻燃法规的压力,迫使用户寻找溴系阻燃剂的代用品,同时也将促进新阻燃材料的问世。这些新的阻燃材料将具有低放热率、低生烟性和低毒性,而且阻燃效率不会降低。由于人们对使用溴系阻燃剂十分审慎,给其发展前景蒙上了一层阴影。但由于溴系阻燃剂在阻燃领域的历史地位,而且在很多应用领域还很难找到合适的代用品,所以溴系阻燃剂在欧洲等国仍然是无可替代的选择。但寻找溴系阻燃剂(特别是十溴二苯醚)的代用品,以逐步实现阻燃剂的无卤化和生态化将是明显的发展趋势之一。今后全球溴系阻燃剂消费量增速缓慢,而代用品将会继续增多。 预计未来5 年内,我国阻燃剂消费量年均增长率可达到15%。 目前我国阻燃剂无论在品种上还是用量上均与发达国家存在较大差距。随着国家对阻燃技术要求力度的加强,我国阻燃剂的开发和发展将出现更好的广阔前景。我们应该提高开发创新能力,推动阻燃剂工业朝着环保化、低毒化、高效化、多功能化的方向发展。

1.2 常用的阻燃剂 1.2.1 卤系阻燃剂卤系阻燃剂主要是含溴和含氯阻燃剂。含溴阻燃剂包括脂肪族、脂环族、芳香族及芳香一脂肪族的溴化合物,常用的有十溴二苯醚、十溴二苯乙烷、溴化环氧树脂、四溴双酚A、六溴环十二烷、八溴醚等, 这中间尤以十溴二苯醚、十溴二苯乙烷、四溴双酚A 使用量较大。含氯阻燃剂主要是氯化石蜡。 溴系阻燃剂的优点在于对复合材料的力学性能几乎没有影响,根据阻燃机理能显著降低燃气中溴化氢的含量,而且该类阻燃剂与基体树脂相容性好。即使在苛刻的条件下也无析出现象。它们的分解度大多在200?300C 左右,与各种高聚物的分解温度相匹配,因此能在最佳时刻,于气相及凝聚相同时起到阻燃作用,有添加量小、效果好等优点。 1.2.2 硅系阻燃剂硅系列阻燃剂国内生产品种和生产量都很小。使用较多的硅酮聚合物是一种透明、粘稠的聚硅氧烷聚合物,它可通过类似于互穿聚合物网络(IPN)部分交联机理而结合人基材聚合物结构中,这可大大限制硅添加剂的流动性,因而使它不致于迁移至被阻燃聚合物的表面, 且与聚烯烃等高聚物相容。 作为阻燃剂的硅酮聚合物,通常与一种或多种协同剂并用。这些协同剂有H A族有机金属盐(如硬脂酸镁)、聚磷酸铵(PPA)与季戊四醇的混合物、氢氧化铝(ATH)等。它们既能与基材聚合,又能与的互渗性,而且能促进炭层的生成,进而阻止烟的形成和火焰的发展。对于加有填料和未加填料的聚烯烃,由于燃烧时硅酮聚合物能与它们形成炭层,所以既能提高其氧指数,又能降低火焰传播速度。硅铜聚合物不论是用做添加剂或者是

阻燃剂

2 概述 ?自20世纪60年代以来,阻燃剂经历了70年代到80年代初每年增长百分之十以上的蓬勃发展时期,90年代进入稳步发展阶段。 ?1997年阻燃剂的销售额超过22亿美元,其中溴系阻燃剂占39%,有机磷系占23%,无机类占22%,氯系占10%,三聚氰胺类占6%。1998年全球阻燃剂总耗量约1100kt 1998年全球主要国家和地区阻燃剂消耗量/kt 阻燃剂美国西欧日本其他国家或地区总计溴系68.351.547.897264.4 有机磷系57.1712619173.1 氯系18.52437 2.12065.3 氢氧化铝259160429470 氧化锑28.023.015.52086.5 其他42.729.810.583 总计473.6360143.91651142.5

4?理想的阻燃剂 v阻燃效率高,添加量少; v无毒,无烟,对环境友好; v热稳定性好,便于加工; v对被阻燃物各项性能影响小,不渗出,便于回收; v使用方便,使用面广,还要价格便宜。 v同时具有上面这些要求的阻燃剂几乎是不存在的,只能是在满足基本要求的前提下取得最佳的综合平衡。

6?自1986年以来,德国等欧洲国家与美国就多溴二苯醚等卤系阻燃剂的毒性与环境问题展开争论, ?在缺乏溴系阻燃剂合适代用品的前提下,溴类阻燃剂在世界范围内还会被用相当长的时间,而且还会有一定的增长率。但从长远看阻燃剂的无卤化是人们最终目标。 ?超过80%的含卤阻燃剂用于电子、办公设备及建筑工业,主要品种是热塑性通用塑料(苯乙烯及其共聚物等)、热塑性工程塑料和热固性塑料(如)环氧树脂。

8 ?1.无机磷阻燃剂 v 磷酸铵 ü在1820年左右,盖.吕萨克对纺织品的阻燃问题系统地进行了研究,他利用磷酸铵、氯化铵、硼砂等无机化合物配置成适用于纤维素的阻燃剂 v 磷酸二氢胺和磷酸氢二胺 ü磷酸二氢胺和磷酸氢二胺,或低分子量聚磷酸胺与硼酸铵、硫酸铵、氨基磺酸铵和溴化铵的共混物,是尼龙类的有效阻燃剂。 v 红磷 ü对红磷的表面处理、稳定化处理及包覆处理使红磷的吸湿性、自燃温度、释放磷化氢量、粉尘爆炸浓度、落高自燃及与高聚物的相容等性能得到极大改善。采用Al(OH)3、Mg (OH )2、Zn(OH)2等进行无机包覆,再采用蜜胺-甲醛原位聚合或其他热固性树脂再进行有机包覆。最近有人提出用水合钛-钴氢氧化物包覆红磷,磷化氢发生量可降到0.05mg ·g -1以下。

阻燃剂的应用现状和发展趋势

阻燃剂的应用现状和发展趋势 学校:安阳工学院 院系:化学与环境工程学院 专业:09高分子材料与工程 姓名:莫墨 学号:200905060087

阻燃剂的应用现状和发展趋势 摘要:随着现代工业的不断发展,塑料、橡胶、合成纤维等高分子材料得到广泛的应用。然而,这些有机高分子化合物绝大多数都是可燃的,且燃烧时可产生大量致命的有毒气体。为解决这一难题、提高合成材料的抗燃性,最有效的方法是加入阻燃剂。为此,以阻燃为目的阻燃剂研究及材料阻燃技术近几年得到发展,至今已成为世界工业体系的重要组成部分一。阻燃剂在化学建材,电子电器,交通运输,航天航空,日用家具,室内装饰,衣食住等各个领域中具有广阔的市场前景。本文将阐述阻燃剂的应用现状和发展趋势。 关键字:阻燃剂分类机理现状发展趋势 一、概述 阻燃剂,又称难燃剂,耐火剂或防火剂:赋予易燃聚合物难燃性的功能性助剂;依应用方式分为添加型阻燃剂和反应型阻燃剂。根据组成,添加型阻燃剂主要包括无机阻燃剂、卤系阻燃剂(有机氯化物和有机溴化物)、磷系阻燃剂(赤磷、磷酸酯及卤代磷酸酯等)和氮系阻燃剂等。反应型阻燃剂多为含反应性官能团的有机卤和有机磷的单体。此外,具有抑烟作用的钼化合物、锡化合物和铁化合物等亦属阻燃剂的范畴。主要适用于有阻燃需求的塑料,延迟或防止塑料尤其是高分子类塑料的燃烧。使其点燃时间增长,点燃自熄,难以点燃。 1.1阻燃剂的分类 阻燃剂有几种不同的分类方法。按所含阻燃元素可将阻燃剂分为卤系阻燃剂、磷系阻燃剂、氮系阻燃剂、磷-卤系阻燃剂、磷-氮系阻燃剂等几类。按组分的不同可分无机盐类阻燃剂、有机阻燃剂和有机、无机混合阻燃剂三种。无机阻燃剂是目前使用最多的一类阻燃剂,它的主要组分是无机物,应用产品主要有氢氧化铝、氢氧化镁、磷酸一铵、磷酸二铵、氯化铵、硼酸等。在三大类阻燃剂中,无机阻燃剂具有无毒、无害、无烟、无卤的优点,广泛应用于各类领域,需求总量占阻燃剂需求总量一半以上,需求增长率有增长趋势。按使用方法的不同可把阻燃剂分为添加型和反应型。添加型阻燃剂主要是通过在可燃物中添加阻燃剂发挥阻燃剂的作用。反应型阻燃剂则是通过化学反应在高分子材料中引入阻燃基团,从而提高材料的抗燃性,起到阻止材料被引燃和抑制火焰的传播的目的。在阻燃剂类型中,添加型阻燃剂占主导地位,使用的范围比较广,约占阻燃剂的85%,反应型阻燃剂仅占15%。 1.2阻燃剂的作用机理 阻燃剂的作用机理是很复杂的,包括种种因素,但阻燃剂的作用机理不外乎

有机硅阻燃剂的研究进展(DOC)

研究生课程论文(2015—2016学年第1学期) 有机硅阻燃剂的研究进展 研究生:谢鑫

有机硅阻燃剂的研究进展 谢鑫 摘要:由于塑料、合成纤维等高分子材料的大量应用,这类材料的可燃性和易燃性使人类面临生命财产安全,这就促使阻燃剂成为安全防火科研的重点之一,我们通过介绍聚合物的燃烧、各种类型的阻燃剂以及其阻燃机理,有机硅阻燃剂在赋予基材优异的阻燃性能之外,还能改善基材的加工性能、耐热性能等;这使得它将成为未来阻燃剂发展的新方向。本文综述了有机硅阻燃剂近年来国内外的研究状况和发展趋势。 关键词:燃烧;阻燃剂;有机硅 1.前言 1.1有机硅 有机硅,即有机硅化物,是指含有Si-O键、且至少有一个有机基是直接与硅原子相连的化合物,有机硅是化工新材料产业的重要组成部分,具有许多其它化工材料无可替代的作用,是名副其实的“工业维生素”和“科技催化剂”。有机硅产品的基本结构是由Si-O链节构成的,侧链则通过硅原子与其他有机基团相连。因此,在有机硅产品的结构中既含有“有机基团”又含有“无机结构”,这样使得其与其他高分子材料相比,具有更突出的性能。由于Si-O键的键能很大使得有机硅具有优良的热稳定性,难燃性,而且能改善基材的加工性能、耐热性能[1~2]。这样将有机硅聚合物作为阻燃剂成为了一种非常有意义的课题。 1.2聚合物的燃烧及阻燃 聚合物的燃烧是一个比较复杂的物理化学过程,燃烧的条件是:可燃物、氧气和着火点,缺一不可,也就是说,当易燃的聚合物暴露在空气中或含有氧气的环境中时,与火源接触后受热,达到它的着火点就会燃烧。聚合物在燃烧时热氧化降解产生自由基,并释放出热量,部分可燃性气体。随之可燃性气体接触空气中的氧发生燃烧,产生大量的热传至聚合物材料表面,会加快聚合物的降解过程,促使燃烧过程变得剧烈,产生对环境和人体具有极大危害的火焰[3]。 阻燃是使基材具有防止、减慢或终止燃烧的一种性能。可以通过以下几种方

有机磷系阻燃剂.

阻燃剂及有机磷系阻燃剂的综述 1引言 材料是实现工业、农业、国防和科学技术现代化的重要物质基础,它与信息、能源并列为现代文明的三大支柱,是现代社会赖以生存和发展的基本条件之一。然而,自20世纪30年代,有机高分子材料进入国民经济的各个领域及人民生活的各个方面后,人类即开始面临新的火灾威胁,原因是这类材料大部分是易燃或可燃的。这不但限制了它们的应用,还给人类社会带来频繁的火灾危害和严重的经济损失,表1.1列举了半个世纪以来世界各国部分特大火灾。据统计,经济发达的国家和地区在1989-1993年间的年均火灾损失达国民生产总值的0.1-0.4%。 因此,阻燃已成为当前人类提高社会消防能力,确保人民生命和财产免遭火灾的重要措施,以阻燃为目的的高分子材料改性也愈加引人注目,从而大大促进了阻燃材料和技术的研究、生产。制备应用低烟、低毒和环境污染低的阻燃剂是加工绿色阻燃材料的需求。 阻燃剂是用以提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。阻燃剂主要用于阻燃合成和天然高分子材料(包括塑料、橡胶、纤维、木材、纸张、涂料等)。

一个理想的阻燃剂最好能同时满足下述条件,但这实际上几乎是不可能的,所以选择实用的阻燃剂时大多是在满足基本要求的前提下,在其他要求间折中和求得的最佳的平衡: (1)阻燃效率高,获得单位阻燃效能所需的用量少。 (2)本身低毒或基本无毒(对大鼠口服的LD50)5000mg/kg),燃烧时生成的有 毒和腐蚀性气体量及烟量尽可能少。 (3)与被阻燃基材的相容性好,不易迁移和渗出。 (4)具有足够高的热稳定性,在被阻燃基材加工温度下不分解,但分解温度 也不宜过高,以在250~400度之间为宜。 (5)不致过多恶化被阻燃基材的加工性能和最后产品的物理-机械及电气性 能。可以认为,现有的阻燃剂和阻燃工艺无一不或多或少地对被阻燃高 聚物的某一性能或某几种性能会产生不利的影响,而且阻燃剂用量越多,影响越大,所以性能优良的阻燃剂和合理的阻燃剂配方在于能在材料阻 燃性和实用性间求得和谐的统一。 (6)具有可接受的紫外线稳定性和光稳定性。 (7)原料来源充足,制造工艺简便,价格低廉。因为阻燃剂的用量一般比较 大,所以它的价格也是一个不可忽视的考虑因素,一个性能较优而价格 偏贵的阻燃剂在于一个性能尚能满足使用要求但不甚理想而价格低廉的 阻燃剂竞争时,前者往往败北。 2阻燃剂的分类 按化学组成来分,阻燃剂可分为有机阻燃剂和无机阻燃剂两大类;按使用方式的不同,阻燃剂可分为添加型阻燃剂和反应型阻燃剂两种。按照阻燃元素的不同,阻燃剂可分为卤系、有机磷系及卤磷系、磷-氮系、锑系、铝磷系、无机磷系、硼系和钼系、锡系、钙化合物、铁化合物等。前三种属于有机阻燃剂,后几类属于无机阻燃剂。

相关主题
文本预览
相关文档 最新文档