当前位置:文档之家› 低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能
低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段:

弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即

比例系数E代表直线(OA) 的斜率,称作材料的弹性模量。

屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(Bˊ)作为材料屈服极限ReL。ReL是材料开始进入塑性的标志。结构、零件的应力一旦超过ReL,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限ReL作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

强化阶段(CD):屈服阶段结束后,R-ε曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留下来。强化阶段的卸载路径与弹性阶段平行。卸载后若重新加载,加载线仍与弹性阶段平行,但重新加载后,材料的弹性阶段加长、屈服强度明显提高,而塑性却相应下降。这种现象称作为形变强化或冷作硬化。冷作硬化是金属材料极为宝贵的性质之一。塑性变形和形变强化二者联合,是强化金属材料的重要手段。例如喷丸,挤压,冷拨等工艺,就是利用材料的冷作硬化来提高材料强度的。强化阶段的塑性变形是沿轴向均匀分布的。随塑性变形的增长,试样表面的滑移线亦愈趋明显。D点是R-ε曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度记作Rm。对低碳钢来说Rm是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。

颈缩阶段(DE):应力达到强度极限后,塑性变形开始在局部进行。局部截面急剧收缩,承载面积迅速减少,试样承受的载荷很快下降,直到断裂。断裂时,试样的弹性变形消失,塑性变形则遗留在破断的试样上。材料的塑性通常用试样断裂后的残余变形来衡量,单拉时的塑性指标用断后伸长率A和断面收缩率Z来表示。即

Lu,Su分别代表试样拉断后的标距和断口的面积。

工程上通常认为,材料的断后伸长率A> 5%属于韧断,A< 5%则属于脆断。韧断的特征是断裂前有较大的宏观塑性变形,断口形貌是暗灰色纤维状组织。低碳钢断裂时有很大的塑性变形,断口为杯状周边为45°的剪切唇,断口组织为暗灰色纤维状,因此是一种典型的韧状断口。

铸铁是典型的脆性材料,其拉伸曲线如图1-1(c)所示。其拉伸过程较低碳钢简单,可近似认为是经弹性阶段直接过渡到断裂。其破坏断口沿横截面方向,说明铸铁的断裂是由拉应力引起,其强度指标只有Rm。由拉伸曲线可见,铸铁断后伸长率甚小,所以铸铁常在没有任何预兆的情况下突然发生脆断。因此这类材料若使用不当,极易发生事故。铸铁断口与正应力方向垂直,断面平齐为闪光的结晶状组织,是典型的脆状断口。

如有侵权请联系告知删除,感谢你们的配合!

实验一 低碳钢及铸铁的拉伸试验

实验一 低碳钢及铸铁的拉伸试验 一、实验目的 1、通过拉伸破坏试验观察、分析低碳钢和铸铁的拉伸过程,比较其机械性能。 2、测定材料的强度指标和塑性指标。 二、实验设备 1、WEW-600屏显万能材料试验机或WE-B600液压万能材料试验机 2、千分尺、游标卡尺、直钢尺 三、试样的制备 一般拉伸试样由三部分组成,即工作部分、过渡部分和夹持部分。工作部分必须保持光滑均匀以确保材料表面的单向应力状态。均匀部分的有效工作长度L 0称做标距,d 0、A 0分别代表工作部分的直径和面积,它们的 关系规定为L 0= k 0A 。为了使各种材料试件的尺寸和形状按国家统一规定,取试件直径d 0=10mm 标距L 0=10d 0或L 0=5d 0。 四、实验原理及方法 常温下的拉伸实验可以测定材料的弹性模量E 、屈服极限σs 、强度极限σb 、延伸率δ和断面收缩率Ψ等力学性能指标,这些参数都是工程设计的重要依据。 1、低碳钢弹性模量E 的测定 由材料力学可知,弹性模量是材料在弹性变形范围内应力与应变的比值,即 E=εσ 因为σ=P /A, ε=ΔL/L 0,所以弹性模量E 又可表示为 E=L A PL 0 ? 式中: E —材料的弹性模量,σ —应力,ε —应变,P —实验时所施加的载荷 A —以试件直径的平均值计算的横截面面积,L 0—引伸仪标距 ΔL —试件在载荷P 作用下,标距L 0段的伸长量。 可见在弹性变形范围内,对试件作用拉力P ,并量出拉力P 引起的标距内伸长ΔL ,即可求得弹性模量E 。

实验时,如使用WEW-600屏显万能材料试验机,它采用电子测量技术,由计算机对数据进行处理,屏幕显示试验力和变形。 如使用WE-B600液压万能材料试验机,拉力P 值由试验机读数盘示出,标距L 0=50mm (不同引伸仪标距不同),试件横截面面积A 可算出,只要测出标距段的伸长量ΔL ,就可得到弹性模量E 。 在弹性变形阶段内试件的变形很小,标距段的变形(伸长量ΔL )需用放大倍数为200倍的球铰式引伸仪来测量。为检验载荷与变形之间的关系是否符合胡克定律,并减少测量误差,实验时一般用等增量法加载,即把载荷分成若干个等级,每次增加相同的载荷ΔP ,逐级加载。为保证应力不超出弹性范围,以屈服载荷的70%-80%作为测定弹性模量的最高载荷n P 。此外,为使试验机夹紧试件,消除试验机构的间隙等因素的影响,对试件应施加一个初始载荷P 0(本实验中P 0=2.0KN )。 实验过程中,从P 0到 n P 逐级加载,载荷的每级增量均为ΔP 。对应着每级载荷P i ,记录相应的伸长i L ?,1+?i L 与i L ?之差即为变形增量()i L ??,它是p ?引起的变形(伸长) 增量。在逐级加载中,如果得到的 ()i L ??基本相等,则表明ΔL 与P 为线性关系,符合虎克定理。完成一次加载过程,将得到P i 和i L ?的一组数据,按平均法计算弹性模量,即 ()L A L P E ??????=0200其中[]()i n i L n L ∑=??=??11为变形增量的 平均值;200为测量变形的放大倍数。 2、 屈服极限σs 、强度极限σb 的测定 测定弹模后继续加载使材料到屈服阶段,进入屈服阶段时,载荷常有上下波动,其中较大的载荷称为上屈服点,较小的称为下屈服点。一般用第一个波峰的下屈服点表示材料的屈服载荷P S ,它所对应的应力为屈服极限σs 。 屈服阶段过后,材料进入强化阶段,试件又恢复了承载能力。载荷达到最大值P b 时,试件某一局部的截面明显缩小,出现“颈缩”现象。这时载荷迅速下降,试件即将被拉断,这时所示的载荷即为破坏载荷P b ,它所对应的应力叫强度极限σb 。 即 0A P s s = σ, 0A P s s =σ 其中20041d A π=,0d 为最小直径。 3、 延伸率δ和断面收缩率Ψ的测定

钢结构钢材力学性能试验送样规范

验送2个试样,冷弯试验送1个 2、送样要求:取样部位见下图,截取长50cm、宽2-3cm的长条形试样: 不同种类型钢试验取样部位示意图 3、委托要求:委托时说明取样的位置及方向 注:1、做弯曲试验时,应在钢产品表面切取样坯,保留至少一个表面,当厚度尺寸允许时应制备全截面试样 2、制备试样时应避免由于机加工时钢表面产生硬化及过热而改变其力学性能 3、试样边缘应平齐,表面无锈蚀

2、送样要求:取样部位见下图,试样长50cm,直径2.5cm为宜 4、委托要求:委托时说明取样的位置及方向 注:1、做弯曲试验时,应在钢产品表面切取样坯,保留至少一个表面,当厚度尺寸允许时应制备全截面试样 2、制备试样时应避免由于机加工时钢表面产生硬化及过热而改变其力学性能 3、试样边缘应平齐,表面无锈蚀

2、送样要求:应在钢板宽度1/4处切取长50cm、宽2-3cm的长条形试样,见下图: 厚度t≤30mm的钢板取样部位厚度t>30mm的钢板取样部位 3、委托要求:委托时说明原钢板的厚度及取样的位置和方向 注:1、做弯曲试验时,应在钢产品表面切取样坯,保留至少一个表面,当厚度尺寸允许时应制备全截面试样 2、制备试样时应避免由于机加工时钢表面产生硬化及过热而改变其力学性能 3、试样边缘应平齐,表面无锈蚀

2、送样要求:取样位置见下图,切取长50cm、宽2-3cm的长条形试样,试样厚度视钢管厚度而定 注:1、做弯曲试验时,应在钢产品表面切取样坯,保留至少一个表面,当厚度尺寸允许时应制备全截面试样 2、制备试样时应避免由于机加工时钢表面产生硬化及过热而改变其力学性能 3、试样边缘应平齐,表面无锈蚀

低碳钢和铸铁的拉伸实验

实验一 低碳钢和铸铁的拉伸实验 一、实验目的要求 1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极 限b σ。 2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ?-曲 线)。 3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。 二、实验设备和仪器 CMT5504/5105电子万能试验机、游标卡尺等 图1-1 CMT5504/5105电子万能试验机

三、拉伸试件 金属材料拉伸实验常用的试件形状如图所示。图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。 为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。 对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。 低碳钢拉伸 铸铁拉伸 图1-2 拉伸试件

四、实验原理和方法 1.低碳钢拉伸实验 低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。用准确的拉 σ-曲线。首先将试件安装于试验机的夹头内,之后匀速缓伸曲线可直接换算出应力应变ε 慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。 图1-3 低碳钢拉伸曲线 OA段,没有任何残留变形。在弹性阶段,载荷与变形 (1) 弹性阶段是指拉伸图上的' 是同时存在的,当载荷卸去后变形也就恢复。在弹性阶段,存在一比例极限点A,对应的应σ,此部分载荷与变形是成比例的。 力为比例极限 p (2) 屈服阶段对应拉伸图上的BC段。金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。屈服阶段中一个重要的力学性能就是屈服点。低碳钢材料存在上屈服点和下屈服点,不加说明,一般都是指下 F,即试件发生屈服而力首次下降前的最屈服点。上屈服点对应拉伸图中的B点,记为 SU F,是指不计初始瞬时效应的屈服阶段中的最小力值,注意这里的大力值。下屈服点记为 SL 初始瞬时效应对于液压摆式万能试验机由于摆的回摆惯性尤其明显,而对于电子万能试验机或液压伺服试验机不明显。

低碳钢、铸铁的拉伸试验

工程力学实验报告 实验名称: 试验班级: 实验组号: 试验成员: 实验日期:

一、试验目的 1、测定低碳钢的屈服点 σ,强度极限bσ,延伸率δ,断面收缩率ψ。 s 2、测定铸铁的强度极限 σ。 b 3、观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。 4、熟悉试验机和其它有关仪器的使用。 二、实验设备 1.液压式万能实验机; 2.游标卡尺 三、设备简介 万能试验机简介 具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成; 1、加载部分:利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。 2、测控部分:指示试件所受载荷大小及变形情况。 四、实验原理 低碳钢和铸铁是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。大致可分为四个阶段: σe

(1)弹性阶段(Ob段) 在拉伸的初始阶段,ζ-ε曲线(oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζ p ),线性段的直线斜率即为材料的弹性摸量E。 线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全 消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζ e ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段(bc段) 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极 限(ζ s )。 当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段(ce段) 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。 若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的 强度极限(ζ b ),强度极限所对应的载荷为试件所能承受的最大载荷F b 。 (4)局部变形阶段(ef段) 试样拉伸达到强度极限ζ b 之前,在标距范围内的变形是均匀的。当应力增 大至强度极限ζ b 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现

低碳钢和铸铁拉伸试验.docx

实验编号2 低碳钢和铸铁的拉伸实验 低碳钢和铸铁拉伸试验 概述 常温,静载下的轴向拉伸试验是材料力学实验中最基本,应用最广泛的实验。通过拉伸试验,可以全面地测定材料地力学性能,如弹性、塑性、强度、断裂等力学性能指标。弹性模量E是表征材料力学性能中弹性的重要指标之一,它反映了材料抵抗弹性变形的能力。这些性能指标对材料力学地分析计算、工程设计、选择材料和新材料开发都有极其重要的作用。 二、实验目的 1、测定低碳钢的下屈服点δSL 、抗拉强度δb、断后伸长率δ、断面收缩率ψ 2、验证虎克定律,测定低碳钢的弹性模量E 3、测定铸铁的抗拉强度δb 4、观察分析两种材料在拉伸过程中的各种现象 5、学习自动绘制σ—ε曲线及微机控制电子万能实验机、电子引伸计的 操作 三、实验设备和仪器 1、微机控制电子万能实验机(IOT) 2、游标卡尺 3、低碳钢和铸铁圆形拉伸试样 四、实验原理 1、低碳钢拉伸 低碳钢拉伸实验过程分四个阶段: (1)、弹性阶段OE在此阶段中的OP段拉力和伸长成正比关系,表明钢材的应力和应 变为线性关系。完全遵循虎克定律δ= Eε,故点P的应力δP称为材料的比例极限。 如图1-1所示,当应力继续增加达到材料的弹性极限δ E 对应的E点时,应力和应变间的关系不再是线性关系,但变形仍然是弹性的,即卸除拉力后变形完全消失,工程上对弹性极限和比例极限不严格的区分它们。 (2)、屈服阶段ES,当应力超过弹性极限到达S点时,应变有明显的增加,而应力 先是下降,然后作微小的波动,在σ—ε曲线上出现锯齿形线段。这种应力基本保持不变,而应变显著增加的现象,称为屈服。在屈服阶段内的最高应力和最低应力分别称为上屈服极限和下屈服极限。上屈服极限的数值与试样形状、加载速度等因素有关,一般不稳定。下屈服极限则有比较稳定的数值,能够反应材料的性能。通常把下屈服极限称为屈服极限或屈服点,用δSL来表示。屈服应力是衡量材料强度的一个重要指标。其计算公式为δSL=F S L/A O

钢筋力学性能检测报告

00000000000R 有效期限至:2016-04-05 xxx建设工程质量安全监督站 钢筋力学性能检验报告 工程名称:/ 报告编号:BRZ11500092 (第2页共2页) 委托单位/ 委托编号15000697-2 委托日期2015-04-27 施工单位/ 钢材种类热轧带肋钢筋检测日期2015-04-28 结构部位/ 牌号HRB400 报告日期2015-04-29 见证单位/ 见证人/ 证书编号/ 检验性质委托检验 样品编号 公称 直径 (mm) 技术指标要求 序 号 屈服 强度 Re(MPa) 极限 强度Rm (MPa) 伸长 率 A(%) 最大力 下总伸 长率(%) 冷弯实测强度比值 重量 偏差 (%) 生产 厂别 炉号 出产合 格证编 号 代表 数量 (t) 弯心直 径d (mm) 弯曲 角度 a() 结果Rm/Re Re/Re K 屈服 强度 (MPa) 极限 强度 (MPa) 伸 长 率 (%) 最大力 下总伸 长率(%) 重量 偏差 (%) BZ11500392 18 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 475 600 27.0 / 72.0 180 合格 1.26 1.19 -4 三钢/ / 60 2 470 595 27.0 / 72.0 180 合格 1.27 1.18 BZ11500393 20 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 470 600 26.5 / 80.0 180 合格 1.29 1.18 -4 三钢/ / 60 2 475 605 26.0 / 80.0 180 合格 1.27 1.19 BZ11500394 16 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 460 595 27.0 / 64.0 180 合格 1.29 1.15 -4 三钢/ / 60 2 465 590 27.5 / 64.0 180 合格 1.27 1.16 检验依据GB1499.2-2007《钢筋混凝土用热轧带肋钢筋》GB/T228.1-2010《金属材料室温拉伸试验方法》 主要仪 器设备仪器名称:油压万能材料试验机管理编号:YQ-03 规格型号: WI-100 有效期至:2016-01-14 结论样品编号:BZ11500392 样品编号:BZ11500393 样品编号:BZ11500394 试样依据标准所检验项目符合指标要求 试样依据标准所检验项目符合指标要求 试样依据标准所检验项目符合指标要求备注 声明1、报告未盖检测单位“检测报告专用章”无效。 2、复制报告未重新加盖检测单位“检测报告专用章”无效。 3、对报告若有异议,应及时向检测单位提出。 地址 地址:xxxxxxxxxxxxxxxxx(xxx建设工程质量安全监督 站) 邮编:000000 电话:0000-00000000 传真:0000-00000000 批准:审核:校核:检验:

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告 摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理 一.拉伸实验 1. 低碳钢拉伸实验 拉伸实验试件 低碳钢拉伸图 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:

低碳钢拉伸应力-应变曲线 (1)弹性阶段(Ob段) 在拉伸的初始阶段,ζ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζ p ),线性段的直线斜率即为材料的弹性摸量E。 线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全 消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζ e ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段(bc段) 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极 限(ζ s )。 当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段(ce段) 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。 若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的 强度极限(ζ b ),强度极限所对应的载荷为试件所能承受的最大载荷F b 。 (4)局部变形阶段(ef段) 试样拉伸达到强度极限ζ b 之前,在标距范围内的变形是均匀的。当应力增 大至强度极限ζ b 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。 (5)伸长率和断面收缩率 试样拉断后,由于保留了塑性变形,标距由原来的L变为L1。用百分比表示的比值 δ=(L1-L)/L*100% 称为伸长率。试样的塑性变形越大,δ也越大。因此,伸长率是衡量材料塑性的指标。 原始横截面面积为A的试样,拉断后缩颈处的最小横截面面积变为A1,用百分比表示的比值

材料力学性能拉伸试验报告

材料力学性能拉伸试验报告 材化08 李文迪 40860044

[试验目的] 1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。 2. 测定低碳钢的应变硬化指数和应变硬化系数。 [试验材料] 通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法: 1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。 1.2热处理状态及组织性能特点简述: 1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀 的冷却称为退火。 特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正 火。 特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。 1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此 温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。 特点:硬度大,适合对硬度有特殊要求的部件。 1.3试样规格尺寸:采用R4试样。 参数如下:

1.4公差要求 [试验原理] 1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段 卸荷后,试样变形立即消失,这种变形是弹性变形。当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服强度R 。当屈服到一定 eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。 [试验设备与仪器] 1.1试验中需要测得: (1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。(有万能材料试验机给出应力-应变曲线) (2)两个个直接测量量:试样标距的长度 L o;直径 d。 1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为 0.02mm。 1.3检测工具:万能材料试验机 WDW-200D。载荷传感器,0.5级。引伸计,0.5级。 注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。 注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。

哈工大—低碳钢拉伸试验

试验一 金属材料的拉伸与压缩试验 1.1概 述 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-1987的要求,拉伸试件一般采用下面两种形式: 图1.1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.3 0S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.65 0S =π0 45S d 0——试验前试件计算部分的直径; S 0——试验前试件计算部分断面面积。 此外,试件的表面要求一定的光洁度。光洁度对屈服点有影响。因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。 1.2拉伸实验 一、实验目的: 1.研究低碳钢、铸铁的应力——应变曲线拉伸图。 2.确定低碳钢在拉伸时的机械性能(比例极限R p 、下屈服强度R eL 、强度极限R m 、延伸率A 、断面收缩率Z 等等)。 3. 确定铸铁在拉伸时的力学机械性能。 二、实验原理: 拉伸实验是测定材料力学性能最基本的实验之一。在单向拉伸时F —ΔL (力——变形)曲线的形式代表了不同材料的力学性能,利用: 0F S σ= 0L L ε?= 可得到σ—ε曲线关系。

钢材力学性能试验取样

钢材力学性能试验取样——焊接接头的取样 国家标准GB/T2649-1989《焊接接头机械性能试验取样方法》对金属材料熔焊和压焊焊接接头拉伸、冲击、弯曲、压扁、硬度等试验的取样做了详细的规定,其主要内容如下。 一、焊接试板的制备 所谓焊接试板就是模拟产品或构件的制造技术条件而焊接成的试验板或管接头。力学试验手的试样样坯一般都是从专门焊接的试板或管接头中切取,也可从结构件上切取。制备焊接试板时,试板的截取方向应符合相关的产品制造规范或冶金产品标准的规定,试板材料、焊接材料、焊接条件以及焊前热处理规范等等,均应与相关标准或产品的制造规范相同,或符合有关试验条件的规定。试板尺寸应根据样坯尺寸、数量、切口宽加工余量等综合考虑。 二、样坯的切取 (一)切取方法 从焊接试板上切取样坯时,尽量采用机械切削的方法,也可用冷剪法、火焰切割法或其他方法切取,但均应考虑其加工余量,在任何情况下都有必须保证受试部分的金属不在切割影响区内。从试板上切取样坯时,如相关标准或产品制造规范无另外注明时,样坯允许矫直。 (二)切取方位 1、冲击样坯焊接接头冲击样坯切取方位见表1-2。对于多层焊缝的样坯如无特殊规定时,应尽量靠近焊缝后焊一侧的表层切取,但封底焊除外。 表1-2 焊接接头冲击样坯切取方位(单位:mm) 试件厚度焊接方法样坯方位说明 压力焊 <16 电弧焊 或气焊 压力焊C=1~3

>16~40电弧焊C=1~3电渣焊 >40~60电弧焊C=1~3电渣焊C>6 >60~100 电弧焊C=1~3 电渣焊C>6 H=18~40 H>40~60 电弧焊C=1~3 注;S——试样厚度;C——从试件厚度表面至样坯边缘的距离:H——后焊一侧的焊缝厚度。 2 、拉伸样坯焊接接头拉伸样坯原则上取试板的全厚度,如试板厚度超过

低碳钢、铸铁拉伸试验

低碳钢、铸铁拉伸试验 一、实验目的 本试验以低碳钢和铸铁为代表,了解塑性材料在简单拉伸时的机械性质。它是力学性能试验中最基本最常用的一个。一般工厂及工程建设单位都广泛利用该实验结果来检验材料的机械性能。试验提供的 E ,R eL ,R m ,A 和Z 等指标,是评定材质和进行强度、刚度计算的重要依据。本试验具体要求为: 1.了解材料拉伸时力与变形的关系,观察试件破坏现象。 2.测定强度数据,如屈服点R eL ,抗拉强度R m 。 3.测定塑性材料的塑性指标:拉伸时的伸长率A ,截面收缩率Z 。 4.比较塑性材料与脆性材料在拉伸时的机械性质。 二、实验原理 进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL 曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。但是F-ΔL 曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。因此,拉伸图往往用名义应力、应变曲线(即R-ε曲线)来表示: 0F R S = ——试样的名义应力 L L ?=ε——试样的名义应变 S 0和L 0分别代表初始条件下的面积和标距。R-ε曲线与F-ΔL 曲线相似,但消除了几何尺寸的影响。因此,能代表材料的属性。单向拉伸条件下的一些材料的机械性能指标就是在R-ε曲线上定义的。如果试验能提供一条精确的拉伸图,那么单向拉伸条件下的主要力学性能指标就可精确地测定。 不同性质的材料拉伸过程也不同,其R-ε曲线会存在很大差异。低碳钢和铸铁是性质截然不同的两种典型材料,它们的拉伸曲线在工程材料中十分典型,掌握它们的拉伸过程和破坏特点有助于正确、合理地认识和选用材料。 低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段: 弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即 R E ε= (1-1) 比例系数E 代表直线OA 的斜率,称作材料的弹性模量。 屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(B ˊ)作为材料屈服极限R eL 。R eL 是材料开始进入塑性的标志。结构、零件的应力一旦超过R eL ,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限R eL 作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

钢材力学性能实用实用标准一览表

钢材力学性能指标汇总表钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs%

不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹)牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯d弯心直径a公称直径 不小于 光圆ΙR235 8~20 235 370 25 180°d=a 三、低碳钢热轧圆盘条GB/T701-1997 牌号屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯180°d弯心直径a公称直径 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5a 四、冷轧扭钢筋JG3046-1999 表一轧扁厚度、节距

低碳钢和铸铁在拉伸试验中的力学性能教学内容

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸和压缩时的力学性能 根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 1、低碳钢拉伸实验 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能: (1)弹性阶段 在拉伸的初始阶段,ζ-ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E 。线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(ζs )。当材料屈服时,如果用砂纸将试件表面 1 打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(ζb ),强度极限所对应的载荷为试件所能承受的最大载荷 Fb 。 (4)局部变形阶段 试样拉伸达到强度极限ζb 之前,在标距范围内的变形是均匀的。当应力增大至强度极限ζb 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲 2

材料力学性能测试实验报告

材料力学性能测试实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

材料基本力学性能试验—拉伸和弯曲一、实验原理 拉伸实验原理 拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉 至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。 对于均匀横截面样品的拉伸过程,如图 1 所示, 图 1 金属试样拉伸示意图 则样品中的应力为 其中A 为样品横截面的面积。应变定义为 其中△l 是试样拉伸变形的长度。 典型的金属拉伸实验曲线见图 2 所示。 图3 金属拉伸的四个阶段 典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。直线部分的斜率E 就是杨氏模量、σs 点是屈服点。金属拉伸达到屈服点后,开始出现颈缩 现象,接着产生强化后最终断裂。 弯曲实验原理 可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实 验结果测定材料弯曲力学性能。为方便分析,样品的横截面一般为圆形或矩形。 三点弯曲的示意图如图 4 所示。 图4 三点弯曲试验示意图 据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是 其中I 为试样截面的惯性矩,E 为杨氏模量。 弯曲弹性模量的测定 将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲, 对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。 对试样施加相当于σpb0.01。 (或σrb0.01)的10%以下的预弯应力F。并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为 对于矩形横截面试样,横截面的惯性矩I 为 其中b、h 分别是试样横截面的宽度和高度。 也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。然后利用式(4)计算弯曲弹性模量。 二、试样要求

钢筋机械性能试验参数

钢筋机械性能试验参数 序 号直径截面积(mm2)刻痕长(mm)弯心直径(冲头)、弯曲角度1Φ32840.2160一、原材 2Φ28615.8140Ⅰ1d 180° 3 Φ25490.9125Ⅱ≤25 3d 180°>25 4d 180° 4Φ22380.1110 5Φ20314.2100二、对接焊 6Φ18254.590Ⅰ≤25 2d 90° 7Φ16201.180>25 3d 90° 8Φ14153.970Ⅱ≤25 4d 90° 9Φ12113.160>25 5d 90° 10Φ1078.5450三、热轧带肋钢筋GB1499.2-2007 11Φ850.2780HRB335 6-25 3d、28-40 4d 12Φ6.533.270HRB400 6-25 4d 、28-40 5d 13Φ628.2760HRB500 6-25 6d 28-40 7d 钢筋修约 性能范围修约修约方法 屈服点抗拉强度(Mpa) ≤200N/m㎡1N/m㎡四舍六入五单双200-1000N/m㎡5N/m㎡二五进位 >1000N/m㎡10N/m㎡四舍六入五单双 伸长率(%) 0.5﹪二五进位 断面收缩率(%) 0.5﹪二五进位 注:1、热轧光圆(Ⅰ级纲)2根拉2根弯。 2、热轧带肋(Ⅱ级纲)2根拉,2根弯。低碳钢热轧圆盘条1根拉,2根弯 3、对接焊3根拉3根弯。 4、原材和焊接取样长度:拉伸取50㎝长,弯曲取30㎝长。 5、两支辊间的距离应等于弯心直径加2.5倍钢筋直径(支距=d+2.5a) 6、(1)热轧光圆钢屈服点235、抗拉强度≥370、伸长率≥25%;(2)热轧带肋钢屈服点335、抗拉强度≥455、伸长率≥17%;(3)低碳钢热轧圆盘条抗拉强度≤410、伸长率≥30%、 7、钢筋砼用钢热轧光圆钢筋GB1499.1-2008,钢筋砼用钢热轧光圆钢筋GB1499.1-2008替代《低碳钢热轧圆盘条》GB/T701-1997中建筑用盘条部分; 8、钢筋砼用热轧带肋钢筋GB1499.2-2007; 9、《低碳钢热轧圆盘条》GB/T701-2008; 9、金属材料室温拉伸试验方法GB/T228-2002; 10、金属材料弯曲试验方法GB/T232-1999; 11、钢筋焊接接头试验方法标准JGJ/T27-2001; 12、钢筋焊接及验收规程 JGJ18-2003 光圆钢筋HPB235的是370MPa;HPB300的是400MPa;

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σs和铸铁的强度极限σb。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会

影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps 时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增 ,因此也得不到强度极大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b ,所以在实验中是以变形来控制加载的。 限 b 前出现较明显的变形然后破裂,此时试验机测力铸铁试件压缩时,在达到最大载荷P b 指针迅速倒退,从动针读取最大载荷P 值,铸铁试件最后略呈故形,断裂面与试件轴线大 b 约呈450。 图2—2 低碳钢压缩图铸铁压缩图 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。 (2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。 (3)将试件放在试验机活动台球形支撑板中心处。 (4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停

低碳钢和铸铁在拉伸试验中的力学性能

低碳钢和铸铁在拉伸试验中的力学性能 低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段: 弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即 比例系数E代表直线(OA) 的斜率,称作材料的弹性模量。 屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(Bˊ)作为材料屈服极限ReL。ReL是材料开始进入塑性的标志。结构、零件的应力一旦超过ReL,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限ReL作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。 强化阶段(CD):屈服阶段结束后,R-ε曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留下来。强化阶段的卸载路径与弹性阶段平行。卸载后若重新加载,加载线仍与弹性阶段平行,但重新加载后,材料的弹性阶段加长、屈服强度明显提高,而塑性却相应下降。这种现象称作为形变强化或冷作硬化。冷作硬化是金属材料极为宝贵的性质之一。塑性变形和形变强化二者联合,是强化金属材料的重要手段。例如喷丸,挤压,冷拨等工艺,就是利用材料的冷作硬化来提高材料强度的。强化阶段的塑性变形是沿轴向均匀分布的。随塑性变形的增长,试样表面的滑移线亦愈趋明显。D点是R-ε曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度记作Rm。对低碳钢来说Rm是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。

相关主题
文本预览
相关文档 最新文档