当前位置:文档之家› 高中物理第5章典力学与物理学的革命第3节量子化现象第4节物理学_人类文明进步的阶梯教师用书粤教版必修2

高中物理第5章典力学与物理学的革命第3节量子化现象第4节物理学_人类文明进步的阶梯教师用书粤教版必修2

高中物理第5章典力学与物理学的革命第3节量子化现象第4节物理学_人类文明进步的阶梯教师用书粤教版必修2
高中物理第5章典力学与物理学的革命第3节量子化现象第4节物理学_人类文明进步的阶梯教师用书粤教版必修2

第三节 量子化现象

第四节 物理学——人类文明进步的阶梯

量 子 化、 光 电 效 应

[先填空]

1.黑体辐射与能量子假说

(1)黑体辐射及遇到的困难

①黑体:能够吸收照射到它上面的全部辐射而无反射的物体.

②黑体辐射:黑体发出的电磁辐射.

③经典物理学的困难:应用经典物理学的连续观念,进行黑体辐射研究,理论分析与实验结果不相符合.

(2)普朗克的能量子假说

①能量子假说:物质发射(或吸收)能量时,能量不是连续的,而是一份一份地进行的.每一份就是一个最小的能量单位,称为“能量子”.

能量子与频率成正比,即ε=h ν,ν为辐射的频率,h 为普朗克常量.实验测得h =

6.63×10-34 J·s.

②能量的量子化:在微观领域中能量不连续变化,即只能取分立值的现象.

③普朗克的能量子假说不仅解决了黑体辐射的理论困难,而且揭开了物理学上崭新的一页.

2.对光电效应现象的解释

(1)爱因斯坦的光子说:光在传播过程中,也是不连续的,它由数值分立的能量子组成,称为光量子,也叫“光子”,光子能量ε=hν.

(2)光电效应现象:当紫外线这一类波长较短的光照射金属表面时,金属便有电子逸出的现象,从金属表面逸出的电子称为光电子.光电效应的产生取决于光的频率而与光的强度无关.

(3)经典物理学的困难:经典理论中“光的波动说”认为光是一种波,它的能量是连续的,与光的强度有关,而与光的频率无关,无法解释光电效应现象.

(4)光子说对光电效应的解释:

光子照到金属上时,能量被金属中的某电子吸收,若光子能量足够大,电子就能摆脱金属离子的束缚,成为光电子.而光子能量取决于频率而非光强,所以光电效应产生与否取决于光的频率.

[再判断]

1.所谓量子或量子化,本质是不连续性.(√)

2.光强达到一定程度,就一定发生光电效应现象.(×)

3.光子和电子是同样的粒子.(×)

[后思考]

平时生活中,为什么很难碰到量子化的现象?

【提示】量子化在微观世界里表现明显,在宏观世界里表现不明显.

[合作探讨]

探讨1:十九世纪末科学家们研究黑体辐射规律时遇到了什么困难?

【提示】理论分析与实验结果不相符.

探讨2:什么是能量的量子化?

【提示】在微观领域中能量不连续变化,即只能取分立值的现象.

[核心点击]

1.量子化假设:普朗克提出物质辐射(或吸收)的能量E只能是某一最小能量单位的整数倍,E=nε,n=1,2,3…n叫作量子数.量子的能量ε=hν.式中h为普朗克常数(h=6.63×10-34J·s),是微观现象量子特征的表征,ν为频率.

2.量子化:量子化的“灵魂”是不连续.在宏观领域中,这种量子化(或不连续性)相对于宏观量或宏观尺度极微小,完全可以忽略不计,但在微观世界里,量子化(或不连续)是明显的,微观物质系统的存在、物体之间传递的相互作用量、物体的状态及变化等都是量子化的.

3.光子说解释光电效应

(1)当光子照射到金属表面上时,它的能量可以被金属中的某个电子全部吸收,电子吸收光子的能量后,动能立刻增加,不需要积累能量的过程.这就是光电效应的发生用时极短的原因.只有能量足够大,即频率ν足够大的光子照射在金属上,才能使电子获得足够大的动能,克服金属原子核对它的束缚从金属表面飞离出来成为光电子,这就说明发生光电效应是入射光的频率必须足够大,而不是光足够强.

(2)电子吸收光子的能量后可能向各个方向运动,有的向金属内部运动,并不出来.向金属表面运动的电子,经过的路程不同,途中损失的能量也不同.唯独金属表面上的电子,只要克服金属原子核的引力做功,就能从金属中逸出,这个功叫逸出功,这些光电子的动能最大,叫最大初动能.金属中的每个电子对光子能量的吸收不是连续累加的,它只能吸收一个光子的能量,因此只有达到一定频率的光子照射才有光电效应产生.

1.(多选)关于量子假说,下列说法正确的是( )

A.为了解决黑体辐射的理论困难,爱因斯坦提出了量子假说

B.量子假说第一次得出了不连续的概念

C.能量的量子化就是能的不连续化

D.量子假说认为电磁波在空间中的传播是不连续的

【解析】普朗克提出了量子假说,它认为,电磁波发射和吸收都不是连续的,是一份一份进行的.它不但解决了黑体辐射的理论困难,而且更重要的是提出了“量子”概念,揭示了物理学的崭新的一页,选项B、C正确.

【答案】BC

2.某单色光照射金属时不会产生光电效应,下列措施中可能使该金属产生光电效应的是( )

A.延长光照时间B.增大光的强度

C.换用波长较短的光照射D.换用频率较低的光照射

【解析】要产生光电效应,入射光的频率必须大于该金属的极限频率,波长越短的光频率越高,当高于极限频率时就能产生光电效应,故C正确.

【答案】 C

3.(多选)对光电效应的解释正确的是( )

A.金属内的每个电子要吸收一个或一个以上光子,当它积累的能量足够大时,就能逸出金属

B.如果入射光子的能量小于金属表面的电子克服原子核的引力而逸出时所需做的最小功,便不能发生光电效应

C.发生光电效应时,入射光越强,光子的能量就越大,越容易发生光电效应

D.不同的金属产生光电效应的入射光的最低频率也不同

【解析】光电效应中电子只能吸收一个光子,不能吸收多个光子,A错.要使电子离开金属,须使电子具有足够的动能,而电子增加的动能只能来源于照射光的光子能量,按照爱因斯坦的光子说,光的能量是由光的频率决定的,与光强无关.入射光的频率越大,发生光电效应就越容易,B正确.只要光的频率低,即使照射时间足够长,也不会发生光电效应,C错.不同的金属中的电子逸出需要的能量不同,故入射光的最低频率也不同,D正确.【答案】BD

光的本性、原子光谱

[先填空]

1.光的本性

(1)光既具有波动性又具有粒子性,也就是光具有波粒二象性.

(2)在宏观上,大量光子传播往往表现为波动性;在微观上,个别光子在与其他物质产生作用时往往表现为粒子性.

2.原子光谱分析

(1)氢原子光谱特点:由一系列不连续的亮线组成的线状谱.

(2)原子能量特点:原子只能处于一系列不连续的能量状态中,当原子从一种能量状态变化到另一种能量状态时,辐射(或吸收)一定频率的光子,辐射(或吸收)的光子的能量是不连续的.

3.量子论建立的意义

(1)量子论的发展带来了20世纪科学技术的繁荣,开辟了众多的高新技术领域,成为当今高科技的理论基础.

(2)量子论的发展改变了人们的思维方式,将对21世纪的科学进步产生深远的影响.

4.物理学与人类的文明进步

(1)物理学与化学从来都是并肩前进的,应用物理学的原理和方法研究有关化学现象和过程建立了物理化学这一边缘学科.20世纪随着量子力学的建立,量子化学应运而生.

(2)物理学的研究成果和研究方法向生物学渗透的结果,形成了生物物理、分子生物学.

(3)物理学的光度测量和光谱分析应用于天文学,使天文学家能够考察天体的温度分布、化学构成、物理结构和演化过程,由此产生了标志天文学新的发展水平的天体物理学,使人类进入了认识宇宙的新阶段.

(4)物理学的发展推动了科学技术的高速发展,几乎所有重大的新技术领域都是在物理学中经过了长期的酝酿,在理论上和实验上取得突破,继而转化为技术成果的.[再判断]

1.光的波动性是大量光子的集体表现.(√)

2.光的波长越长,其波动性越显著;波长越短,其粒子性越显著.(√)

3.氢原子光谱说明光子的能量是不连续的.(√)

[后思考]

当我们走到有自动门的处所时,光电池电子眼探测到我们到来,门(玻璃移门或旋转门)就自动打开了.这种传感器可以对光作出响应.试讨论其中的物理原理是什么?

【提示】这种传感器代表了光电效应的一种应用.当光强变化时,传感器产生的电流大小将发生改变,与相应的电路耦合,就可以触发,将门打开.

[合作探讨]

探讨1:光既具有粒子性,又具有波动性,光的粒子性及波动性表现在哪些方面?

【提示】光的粒子性表现为光的反射、光的折射等,光的波动性表现为光的干涉、衍射等.

探讨2:氢原子光谱是分立的线状谱,说明了什么?

【提示】原子只能处于一系列不连续的能量状态中.

[核心点击]

1.光电效应说明光具有粒子性,光的干涉、衍射等实验事实,显示光具有波动性,大量实验事实表明,光既具有波动性又具有粒子性.

2.光具有波粒二象性,但在不同情况下表现不同.在宏观上,大量光子传播往往表现为波动性;在微观上,个别光子在与其他物质产生作用时,往往表现为粒子性.3.光的粒子性不同于宏观观念中的粒子,粒子性的含义是“不连续”的、“一份一份”的.光的波动性也不同于宏观观念中的波,波动规律决定光子在某点出现的概率,是一种概率波.

4.氢原子光谱为线状谱,这说明原子只能处于一系列不连续的能量状态中.微观物质系统的存在是量子化的,物质之间传递的相互作用量是量子化的,物体的状态及其变化也是量子化的.

4.关于光的本性,下列说法中不正确的是( )

A.光是一种电磁波

B.光具有波粒二象性

C.大量光子显示出光的波动性

D.大量光子显示出光的粒子性

【解析】光的电磁说已表明光是一种电磁波,光具有波粒二象性,大量的光子表现出

波动性,单个光子的运动才表现出粒子性,应选D.

【答案】 D

5.关于波粒二象性,下列说法正确的是( )

A.光像原子一样是一种微粒,光又像机械波一样是一种波

B.波粒二象性是牛顿的微粒说与惠更斯的波动说结合起来的学说

C.光是一种波,同时也是一种粒子,大量光子表现的物理规律是波动性,单个光子的表现有偶然性,是粒子性的反映

D.光具有波粒二象性,实物粒子不具有波粒二象性

【解析】光具有波粒二象性是说光在一定条件下,突出地表现为粒子性,在另一条件下,又会表现为波动性,这种粒子性与波动性不同于宏观物质的机械波,也不能把光子简单看作宏观概念中的粒子,故选项A、B均错;光子是一种波,同时也是一种粒子,大量光子表现的是波动性的反映,单个光子易表现出粒子性,故选项C正确;光与任何静止质量不为零的物质粒子都具有波粒二象性,因此选项D错误.

【答案】 C

6.下列对光的波粒二象性的说法中,正确的是( )

A.一束传播的光,有的光是波,有的光是粒子

B.光子与电子是同样一种粒子,光波与机械波是同样一种波

C.光的波动性是由于光子间的相互作用而形成的

D.光是一种波,同时也是一种粒子.光子说并未否定电磁说,在光子能量E=hν中,频率ν仍表示的是波的特性

【解析】光是一种波,同时也是一种粒子,光具有波粒二象性.当光和物质作用时,是“一份一份”的,表现出粒子性;单个光子通过双缝后的落点无法预测,但大量光子通过双缝后在空间各点出现的可能性可以用波动规律描述,表现出波动性.粒子性和波动性是光子本身的一种属性,光子说并未否定电磁说.

【答案】 D

在宏观现象中,波与粒子是对立的概念,而在微观世界中,波与粒子可以统一.光既不是宏观观念的波,也不是微观观念的粒子,光具有波粒二象性是指光在传播过程中,同物质作用时表现出波和粒子的特性.把光理解为宏观世界的波和粒子是主要错误,受宏观概念中波与粒子对立地的思维定势影响是错误的根源.

高中物理专题七实验(力学实验)教案

专题七、实验(力学实验) 【典型例题】 一、基本仪器的使用: 1.用某精密仪器测量一物件的长度,得其长度为1.63812cm.如果用最小刻度为mm的米尺来测量,则其长度应读为________cm,如果用50分度的卡尺来测量,则其长度应读为________cm,如果用千分尺(螺旋测微计)来测量,则其长度应读为________cm. 2.图1甲为20分度游标卡尺的部分示意图,其读数为__________ mm ;图乙为螺旋测微器的示意图,其读数为________ mm. 3.在某一力学实验中,打出的纸带如图1所示,相邻计数点的时间间隔是T .测出纸带各计数点之间的距离分别为x 1、x 2、x 3、x 4,为了使由实验数据计算的结果更精确些,加速度的平均值为a =___ ___;打下C 点时的速度v C =__ ____. 二、验证性实验: 4.“验证机械能守恒定律”的实验可以采用如图1甲或乙方案来进行。 (1)比较这两种方案, (填“甲”或“乙”)方案好些,理由是: 。 (2)如图2是该实验中得到的一条纸带,测得每两个计数点间的距离如图中所示,已知每两个计数点间的时间间隔T = 0.1s 。物体运动的加速度a = ;该纸带是采用 (填“甲”或“乙”)实验方案得到的。简要写出判断依据 。 三、探究性实验: 5.某实验小组利用拉力传感器和速度传感器探究“动能定理”,如图1所示,他们将拉力传感器固定在小车上,用不可伸长的细线将其通过一个定滑轮与钩码相连,用拉力传感器记录小车受到拉力的大小。在水平桌面上相距50.0cm 的A 、B 两点各安装一个速度传感器记录小车通过A 、B 时的速度大小。小车中可以放置砝码。 (1)实验主要步骤如下: ①测量________和拉力传感器的总质量M 1;把细线的一端固定在拉力传感器上另一端通过定滑轮与钩码相连;正确连接所需电路; ②将小车停在C 点,______,小车在细线拉动下运动,记录细线拉力及小车通过A 、B 时的速度。 ③在小车中增加砝码,或_______,重复②的操作。 (2)右表是他们测得的一组数据,其中M 是M 1与小车中砝码质量m 之和,|v 22-v 2 1| 是两个速度传感器记录速度的平方差,可以据此计算出动能变化量△E ,F 是拉力传感器受到的拉力,W 是F 在A 、B 间所作的功。表格中△E 3=____,W 3=____.(结果保留三位有效数字) (3)根据上表中的数据,请在图2中的方格纸上作出△E-W 图线。 四、设计性实验: 6.如图6所示,水平桌面有斜面体A ,小铁块B ,斜面体的斜面是曲面,下端切线是水平。现提供的实验工具只有:天平、直尺。其他的实验器材可根据实验需要自选。设计一个实验,测出小铁块B 自斜面顶端由静止下滑到底端的过程中,摩擦力对小铁块B 做的功。要求: (1)请在原图中补充画出简要实验装置图。 (2)简要说明实验要测的物理量。 (3)简要说明实验步骤。 (4)写出实验结果的表达式(重力加速度g 已知) 五、创新型实验: 7.某同学想利用DIS 测电风扇的转速和叶片长度,他设计的实验装置如左下图所示.他先在某一叶片边缘粘上一小条弧长为△l 的反光材料,当该叶片转到某一位置时,用光传感器接收反光材料反射的激光束,并在计算机屏幕上显示出矩形波,如右下图所示,屏幕横向每大格表示的时间为5.00×10-2s .则矩形波的“宽度”所表示的物理意义是___________________;电风扇的转速为______转/s ;若△l 为10cm ,则叶片长度为________m . 图6 图1

高级高中物理力学实验专题汇总

高级高中物理力学实验 专题汇总 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

实验一研究匀变速直线运动 考纲解读 1.练习正确使用打点计时器.2.会计算纸带上各点的瞬时速度.3.会利用纸带计算加速度.4.会用图象法探究小车速度与时间的关系,并能根据图象求加速度. 基本实验要求 1.实验器材 电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片. 2.实验步骤 (1)按照实验原理图所示实验装置,把打点计时器固定在长木板无滑轮的一端,接好电源; (2)把一细绳系在小车上,细绳绕过滑轮,下端挂合适的钩码,纸带穿过打 点计时器,固定在小车后面; (3)把小车停靠在打点计时器处,接通电源,放开小车; (4)小车运动一段时间后,断开电源,取下纸带; (5)换纸带反复做三次,选择一条比较理想的纸带进行测量分析. 3.注意事项 (1)平行:纸带、细绳要和长木板平行. (2)两先两后:实验中应先接通电源,后让小车运动;实验完毕应先断开电源,后取纸带. (3)防止碰撞:在到达长木板末端前应让小车停止运动,防止钩码落地和小车与滑轮相撞. (4)减小误差:小车的加速度宜适当大些,可以减小长度的测量误差,加速 度大小以能在约50 cm的纸带上清楚地取出6~7个计数点为宜. 规律方法总结 1.数据处理 (1)目的 通过纸带求解运动的加速度和瞬时速度,确定物体的运动性质等. (2)处理的方法 ①分析物体的运动性质——测量相邻计数点间的距离,计算相邻计数点距离 之差,看其是否为常数,从而确定物体的运动性质. ②利用逐差法求解平均加速度

精选高中物理《量子世界》教案.doc

既然我们已经掌握了探究微观世界的有力武器——量子,下面我们就来更深入地研究微观世界的物质体现的特性,看看和我们再熟悉不过的宏观世界有哪些不同的地方? 三、物质的波粒二象性 教师活动:请同学们阅读教材P119-P121,找出历史上对光的认识,并说出你自己的认识. 学生活动:交流、讨论自学后的收获,并阐述自己对这些假说的认识. 教师总结:人类历史上对光的本质有两种不同的认识,其实不管是牛顿的微粒说还是惠更斯的波动说都是为了解释某一特定的现象才引入的.所以它们都有各自的弊端.一些问题的难以解决又将人们带入了对光的本质的重新认识. 关键时刻又是爱因斯坦带来了新鲜的血液.他将普朗克的量子化理论用在了解释光的本质上. 请同学们再仔细阅读教材,看看爱因斯坦是如何解释这个问题的. 学生活动:交流、讨论自学后的收获,并阐述自己对这些假说的认识. 教师活动:是的,光具有波粒二象性.在一定条件下,突出

的表现为微粒性实质为不连续性;而在另一些条件下,又突出表现出波动性. 问题好像到此应该结束了,人们将光的本质已经很好地解释了,接下来有发生了什么事情呢?大家接着看书思考. 学生活动:交流、讨论自学后的收获,并阐述自己对这些假说的认识. 【教师精讲】 法国物理学家德布罗意进一步提出了物质波的理论(获1929年诺贝尔物理学奖),根据这一理论,每个物质粒子都伴随着一种波,即物质波,又称为概率波.这个理论揭示了物质的统一性. 总之,物质具有波粒二象性,我们要注意粒子性的本质在于不连续;波动性的实质在于对微观物体状态及运动描述的不确定性,不能把物质波理解为经典的机械波和电磁波. 学生总结光本性学说发展史: (1)17世纪牛顿的微粒说:光是从光源发出的一种物质微粒,在均匀介质中以一定的速度传播.能解释光的反射等现象,不能解释光的互不干扰、同时发生的反射和折射、在介质中v c 等问题. (2)17世纪惠更斯的波动说:光是在空间传播的某种波.能解释光的互不干扰、同时发生的反射和折射,但不能解释影子的形成、传播不需要介质等问题.

高中物理力学综合试题及答案

物理竞赛辅导测试卷(力学综合1) 一、(10分)如图所时,A 、B 两小球用轻杆连接,A 球只能沿竖直固定杆运动,开始时,A 、B 均静止,B 球在水平面上靠着固定杆,由于微小扰动,B 开始沿水平面向右运动,不计一切摩擦,设A 在下滑过程中机械能最小时的加速度为a ,则a= 。 二、(10分) 如图所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可 伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在 O 的正上方,OB 之间的距离为H ,某一时刻,当绳的BA 段与 OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速度v M 三、(10分)在密度为ρ0的无限大的液体中,有两个半径为 R 、密度为ρ的球,相距为d ,且ρ>ρ0,求两球受到的万有引力。 四、(15分)长度为l 的不可伸长的轻线两端各系一个小物体,它们沿光滑水平面运动。在某一时刻质量为m 1的物体停下来,而质量为m 2的物体具有垂直连线方向的速度v ,求此时线的张力。 五、(15分)二波源B 、C 具有相同的振动方向和振幅, 振幅为0.01m ,初位相相差π,相向发出两线性简谐波,二波频率均为100Hz ,波速为430m/s ,已知B 为坐标原点,C 点坐标为x C =30m ,求:①二波源的振动表达式;②二波的 表达式;③在B 、C 直线上,因二波叠加而静止的各点位置。 六、(15分) 图是放置在水平面上的两根完全相同的轻 质弹簧和质量为m 的物体组成的振子,没跟弹簧的劲度系数均为k ,弹簧的一端固定在墙上,另一端与物体相连,物体与水平面间的静摩擦因数和动摩擦因数均为μ。当弹簧恰为原长时,物体位于O 点,现将物体向右拉离O 点至x 0处(不超过弹性限度),然后将物体由静止释放,设弹簧被压缩及拉长时其整体不弯曲,一直保持在一条直线上,现规定物体从最右端运动至最左端(或从最左端运动至最右端)为一个振动过程。求: (1)从释放到物体停止运动,物体共进行了多少个振动过程;(2)从释放到物体停止运动,物体共用了多少时间?(3)物体最后停在什么位置?(4)整个过程中物体克服摩擦力做了多少功? 七、(15分)一只狼沿半径为R 圆形到边缘按逆时针方向匀速 跑动,如图所示,当狼经过A 点时,一只猎犬以相同的速度从圆心 出发追击狼,设追击过程中,狼、犬和O 点在任一时刻均在同一直线上,问猎犬沿什么轨迹运动?在何处追击上? M O C y x v v B 0 v 0

北京四中高中物理实验(一)

北京四中 编稿:王运淼审稿:陈素玉责编:郭金娟 高中物理实验(一) 力学实验 本周主要内容: 1、互成角度的两个共点力的合成 2、测定匀变速直线运动的加速度(含练习使用打点计时器) 3、验证牛顿第二定律 4、研究平抛物体的运动 5、验证机械能守恒定律 6、碰撞中的动量守恒 7、用单摆测定重力加速度 本周内容讲解: 1、互成角度的两个共点力的合成 [实验目的] 验证力的合成的平行四边形定则。 [实验原理] 此实验是要用互成角度的两个力与一个力产生相同的 效果(即:使橡皮条在某一方向伸长一定的长度),看其用 平行四边形定则求出的合力与这一个力是否在实验误差允 许范围内相等,如果在实验误差允许范围内相等,就验证了 力的平行四边形定则。 [实验器材] 木板一块,白纸,图钉若干,橡皮条一段,细绳套,弹 簧秤两个,三角板,刻度尺,量角器等。 [实验步骤] 1.用图钉把一张白纸钉在水平桌面上的方木板上。 2.用图钉把橡皮条的一端固定在板上的A点,用两条细绳套结在橡皮条的另一端。 3.用两个弹簧秤分别钩住两个细绳套,互成一定角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O(如图所示)。 4.用铅笔描下结点O的位置和两个细绳套的方向,并记录弹簧秤的读数。在白纸上按比例作出两个弹簧秤的拉力F1和F2的图示,利用刻度尺和三角板,根椐平行四边形定则用画图法求出合力F。 5.只用一个弹簧秤,通过细绳套把橡皮条的结点拉到与前面相同的位置O,记下弹簧秤的读数和细绳的方向。按同样的比例用刻度尺从O点起做出这个弹簧秤的拉力F'的图示。

6.比较F'与用平行四边形定则求得的合力F,在实验误差允许的范围内是否相等。 7.改变两个分力F1和F2的大小和夹角。再重复实验两次,比较每次的F与F'是否在实验误差允许的范围内相等。 [注意事项] 1.用弹簧秤测拉力时,应使拉力沿弹簧秤的轴线方向,橡皮条、弹簧秤和细绳套应位于与纸面平行的同一平面内。 2.同一次实验中,橡皮条拉长后的结点位置O必须保持不变。 [例题] 1.在本实验中,橡皮条的一端固定在木板上,用两个弹簧秤把橡皮条的另一端拉到某一位置O点,以下操作中错误的是 A.同一次实验过程中,O点位置允许变动 B.在实验中,弹簧秤必须保持与木板平行,读数时视线要正对弹簧秤刻度 C.实验中,先将其中一个弹簧秤沿某一方向拉到最大量程,然后只需调节另一弹簧秤拉力的大小和方向,把橡皮条的结点拉到O点 D.实验中,把橡皮条的结点拉到O点时,两弹簧之间的夹角应取90°不变,以便于算出合力的大小 答案:ACD 2.做本实验时,其中的三个实验步骤是: (1)在水平放置的木板上垫一张白张,把橡皮条的一端固定在板上,另一端拴两根细线,通过细线同时用两个弹簧秤互成角度地拉橡皮条,使它与细线的结点达到某一位置O点,在白纸上记下O点和两弹簧秤的读数F1和F2。 (2)在纸上根据F1和F2的大小,应用平行四边形定则作图求出合力F。 (3)只用一个弹簧秤通过细绳拉橡皮条,使它的伸长量与用两个弹簧秤拉时相同,记下此时弹簧秤的读数F'和细绳的方向。 以上三个步骤中均有错误或疏漏,指出错在哪里? 在(1)中是________________。 在(2)中是________________。 在(3)中是________________。 答案:本实验中验证的是力的合成,是一个失量的运算法则,所以即要验证力大小又要验证力的方向。弹簧秤的读数是力的大小,细绳套的方向代表力的方向。 (1)两绳拉力的方向;(2)“的大小”后面加“和方向”;(3)“相同”之后加“使橡皮条与绳的结点拉到O点” 2、测定匀变速直线运动的加速度(含练习使用打点计时器) [实验目的] 1.练习使用打点计时器,学习利用打上点的纸带研究物体的运动。 2.学习用打点计时器测定即时速度和加速度。 [实验原理] 1.打点计时器是一种使用交流电源的计时仪器,它每隔0.02s打一次点(由于电源频率是

【名师精品】高中物理经典题库-力学实验题30个

力学实验题集粹(30个) 1.(1)用螺旋测微器测量某金属丝的直径,测量读数为0.515mm,则此时测微器的可动刻度上的A、B、C刻度线(见图1-55)所对应的刻度值依次是________、________、________. 图1-55 (2)某同学用50分度游标卡尺测量某个长度L时,观察到游标尺上最后一个刻度刚好与主尺上的6.2cm刻度线对齐,则被测量L=________cm.此时游标尺上的第30条刻度线所对应的主尺刻度值为________cm.2.有一个同学用如下方法测定动摩擦因数:用同种材料做成的AB、BD平面(如图1-56所示),AB面为一斜面,高为h、长为L1.BD是一足够长的水平面,两面在B点接触良好且为弧形,现让质量为m的小物块从A点由静止开始滑下,到达B点后顺利进入水平面,最后滑到C点而停止,并测量出BC=L2,小物块与两个平面的动摩擦因数相同,由以上数据可以求出物体与平面间的动摩擦因数μ=________. 图1-56 3.在利用自由落体来验证机械能守恒定律的实验中,所用的打点计时器的交流电源的频率为50Hz,每4个点之间的时间间隔为一个计时单位,记为T.在一次测量中,(用直尺)依次测量并记录下第4点、第7点、第10点、第13点及模糊不清的第1点的位置,用这些数据算出各点到模糊的第1点的距离分别为d1=1.80cm、d2=7.10cm、d3=15.80cm、d4=28.10cm.要求由上述数据求出落体通过与第7点、第10点相应位置时的即时速度v1、v2.注意,纸带上初始的几点很不清楚,很可能第1点不是物体开始下落时所打的点.v1、v2的计算公式分别是:v1=________,v2=________,它们的数值大小分别是v1=________,v2=________.4.某同学在测定匀变速运动的加速度时,得到了几条较为理想的纸带,已在每条纸带上每5个打点取好一个计数点,即两计数之间的时间间隔为0.1s,依打点先后编为0,1,2,3,4,5.由于不小心,纸带被撕断了,如图1-57所示,请根据给出的A、B、C、D四段纸带回答(填字母) 图1-57 (1)在B、C、D三段纸带中选出从纸带A上撕下的那段应该是________. (2)打A纸带时,物体的加速度大小是________m/s2. 5.有几个登山运动员登上一无名高峰,但不知此峰的高度,他们想迅速估测出高峰的海拔高度,但是他们只带了一些轻质绳子、小刀、小钢卷尺、可当作秒表用的手表和一些食品,附近还有石子、树木等.其中一个人根据物理知识很快就测出了海拔高度.请写出测量方法,需记录的数据,推导出计算高峰的海拔高度的计算式.6.如图1-58中A、B、C、D、E、F、G为均匀介质中一条直线上的点,相邻两点间的距离都是1cm,如果波沿它们所在的直线由A向G传播,已知波峰从A传至G需要0.5s,且只要B点振动方向向上,D点振动方向就向下,则这列波的波长为________cm,这列波的频率为________Hz.

高中物理奥赛必看讲义——量子论

量子论 第一讲黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结构,因而它对外来辐 射的吸收以及它本身对外的辐射都不相同.但是有一类物体其表面 不反射光,它们能够在任何温度下,吸收射来的一切电磁辐射,这 类物体就叫做绝对黑体,简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际

上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J .Stefan ,1835~1893年)从实验观察到黑体的辐出度与绝对温度T 的四次方成正比,即: 4J T σ= 1884年玻尔兹曼从理论上给出这个关系式.其中8245.6703210/()W m K δ-=??. 对一般物体而言,()412J T Js m εσ--=,ε为发射率,J 为辐出度, () 412J T Js m εσ--=,式中() 81245.67010Js m K σ----=?,称为斯特藩-玻尔兹曼常数.通常ε<1,但对黑体而言,e = 1 (即为完全辐射). 如果物体周围的环境温度为0T ,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为40T σ,a 为物体表面的吸收率,则该物体表面所吸收的辐射能通量密度为 40J a T σ'=,通常a < 1,但对黑体而言,1a =(即为完全吸收).因此物体表面对入射能量的反 射率为1r a =-. 从理论上我们不难证明物体表面的放射率和吸收率相等,即e a =,此称为我们可以说:容易辐射能量的物体,也容易吸收入射的能量. 处于热平衡时,黑体具有最大的吸收比,因而它也就有最大的单色辐出度. 4.紫外灾难 (1)基尔霍夫定律(Kirchhoff's Law): 热平衡状态时,任何物体的单色辐出度与单色吸收比之比,等于同温度条件下绝对黑体的单色辐出度 因此,“绝对黑体的单色辐出度”,是当时研究的尖端课题. 推论: a.若T A =T B ,则辐射多的吸收也多,不能辐射亦不能吸收; b.λ一定时,绝对黑体辐射和吸收的能量比同温度下的其它物体都多.

《大学物理aii》作业 no08 量子力学基出 参考解答

《大学物理AII 》作业No.08量子力学基础 班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求**************************** 1、掌握物质波公式、理解实物粒子的波粒二象性特征。 2、理解概率波及波函数概念。 3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。 4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。 5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧穿效应。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量E 和动量P 的实物粒子也具波动性,这种波称为(物质)波;其联系的波长λ和频率ν与粒子能量E 和动量P 的关系为(νh E =)、(λh p =)。德布罗意的假设,最先由(戴维 孙-革末)实验得到了证实。因此实物粒子与光子一样,都具有(波粒二象性)的特征。 2、玻恩提出一种对物质波物理意义的解释,他认为物质波是一种(概率波),物质波的强度能够用来描述(微观粒子在空间的概率密度分布)。 3、对物体任何性质的测量,都涉及到与物体的相互作用。对宏观世界来说,这种相互作用可以忽略不计,但是对于微观客体来说,这种作用却是不能忽略。因此对微观客体的测量存在一个不确定关系。其中位置与动量不确定关系的表达式为(2 ≥???x p x );能量与时间不确定关系的表达式为(2 ≥???t E )。 4、薛定谔将(德布罗意公式)引入经典的波函数中,得到了一种既含有能量E 、动量P ,又含有时空座标的波函数),,,,,(P E t z y x ψ,这种波函数体现了微观粒子的波粒二象的特征,因此在薛定谔建立的量子力学体系中,就将这种波函数用来描述(微观粒子的运动状态)。

高中物理力学综合试题及答案教学文案

物理竞赛辅导测试卷(力学综合1) 一、(10分)如图所时,A 、B 两小球用轻杆连接,A 球只能沿竖直固定杆运动,开始时,A 、B 均静止,B 球在水平面上靠着固定 杆,由于微小扰动,B 开始沿水平面向右运动,不计一切摩擦,设A 在下滑过程中机械能最小时的加速度为a ,则a= 。 二、(10分) 如图所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可 伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在 O 的正上方,OB 之间的距离为H ,某一时刻,当绳的BA 段与 OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速度v M 三、(10分)在密度为ρ0的无限大的液体中,有两个半径为R 、密度为ρ的球,相距为d ,且ρ>ρ0,求两球受到的万有引力。 四、(15分)长度为l 的不可伸长的轻线两端各系一个小物体,它们沿光滑水平面运动。在某一时刻质量为m 1的物体停下来,而质量为m 2的物体具有垂直连线方向的速度v ,求此时线的张力。 五、(15分)二波源B 、C 具有相同的振动方向和振幅,振幅为0.01m ,初位相相差π,相向发出两线性简谐波,二波频率均为100Hz ,波速为430m/s ,已知B 为坐标原点,C 点坐标为x C =30m ,求:①二波源的振动表达式;②二波的表达式;③在B 、C 直线上,因二波叠加而静止的各点位置。 六、(15分) 图是放置在水平面上的两根完全相同的轻 质弹簧和质量为m 的物体组成的振子,没跟弹簧的劲度系数均为k ,弹簧的一端固定在墙上,另一端与物体相连,物体与水平面间的静摩擦因数和动摩擦因数均为μ。当弹簧恰为原长时,物体位于O 点,现将物体向右拉离O 点至x 0处(不超过弹性限度),然后将物体由静止释放,设弹簧被压缩及拉长时其整体不弯曲,一直保持在一条直线上,现规定物体从最右端运动至最左端(或从最左端运动 至最右端)为一个振动过程。求: (1)从释放到物体停止运动,物体共进行了多 少个振动过程;(2)从释放到物体停止运动,物 体共用了多少时间?(3)物体最后停在什么位置?(4)整个过程中物体克服摩擦力做了多少 功? 七、(15分)一只狼沿半径为R 圆形到边缘按逆时针方向匀速跑动,如图所示,当狼经过A 点时,一只猎犬以相同的速度从圆心 出发追击狼,设追击过程中,狼、犬和O 点在任一时刻均在同一直线上,问猎犬沿什么轨迹运动?在何处追击上? M O C y x v v B 0 v 0

高中物理中的,力学实验与创新

高中物理中的力学实验与创新 高考对学生力学实验的考查,主要有以下十一个实验:①研究匀变速直线运动;②探究弹力和弹簧伸长量的关系;③验证力的平行四边形定则;④验证牛顿第二定律;⑤探究做功和物体速度变化的关系; ⑥验证机械能守恒定律;⑦测定金属丝的电阻率(同时练习使用螺旋测微器);⑧描绘小灯泡的伏安特性曲线;⑨测定电源的电动势和内阻;⑩练习使用多用电表;?传感器的简单使用. 高考除了对课本中原有的学生实验进行考查外,还增加了对演示实验的考查,利用学生所学过的知识,对实验器材或实验方法加以重组,来完成新的实验设计.设计型实验将逐步取代对课本中原有的单纯学生实验的考查. 力学试验的解题策略在于:1.熟知各种器材的特性.2.熟悉课本实验,抓住实验的灵魂——实验原理,掌握数据处理的方法,熟知两类误差分析. 一、力学试验解析: 1、游标卡尺和螺旋测微器的读数 【例1】用游标卡尺测得某样品的长度如图1甲所示,其读数L=________mm;用螺旋测微器测得该样品的外边长a如图乙所示,其读数a=________mm. 图1

解析:根据游标卡尺的读数方法,读数为20 mm+3×0.05 mm =20.15 mm.根据螺旋测微器的读数方法,读数为 1.5 mm+23.0×0.01 mm=1.730 mm. 答案20.15 1.730 【题后反思】1.游标卡尺的读数方法:由主尺读出整毫米数l0,从游标尺上读出与主尺上某一刻度对齐的格数n,则测量值(mm)=(l0+n×精确度) mm.注意:(1)游标卡尺的精确度一般为游标尺上总刻度数的倒数.(2)游标卡尺不需要估读. 2.螺旋测微器的读数方法:测量值(mm)=固定刻度指示的毫米数(注意半毫米刻度线是否露出)+可动刻度上与固定刻度基线所对的刻度值(注意刻度值要估读一位)×0.01 mm. 【强化训练1】(1)用螺旋测微器测量一小球的直径,结果如图2甲所示,则小球的直径d=________ mm. 图2 (2)知识的迁移能力是非常重要的,应用螺旋测微器的原理,解决下面的问题:在一些用来测量角度的仪器上,有一个可转动的圆盘,圆盘的边缘标有角度刻度.为了较准确地测量出圆盘转动的角度,在圆盘外侧有一个固定不动的游标,上面共有10个分度,对应的总角度为9度.如图乙中画出了游标和圆盘的一部分.读出此时圆盘的零刻度线相对于游标零刻度线转过的角度为________度. 答案(1)10.975 (2)20.6 解析:(1)螺旋测微器主尺读数为10.5 mm,可动刻度一共50

高中物理力学实验专题训练(有答案)

力学实验专题训练 2017、04 1.在“验证动量守恒定律”的实验中,气垫导轨上放置着带有遮光板的滑块A、B,遮光板的宽度相同,测得的质量分别为m1和m2.实验中,用细线将两个滑块拉近使轻弹簧压缩,然后烧断细线,轻弹簧将两个滑块弹开,测得它们通过光电门的时间分别为t1、t2. (1)图22⑴为甲、乙两同学用螺旋测微器测遮光板宽度d时所得的不同情景。由该图可知甲同学测得的示数为mm,乙同学测得的示数为mm。 (2)用测量的物理量表示动量守恒应满足的关系式: 被压缩弹簧开始贮存的弹性势能P E 2.为验证“动能定理”,某同学设计实验装置如图5a所示,木板倾斜构成固定斜面,斜面B处装有图b所示的光电门. (1)如图c所示,用10分度的游标卡尺测得挡光条的宽度d= (2)装有挡光条的物块由A处静止释放后沿斜面加速下滑,读出挡光条通过光电门的挡光时间t,则物块通过B处时的速度为________ (用字母d、t表示); (3)测得A、B两处的高度差为H、水平距离L.已知物块与斜面间的动摩擦因数为μ,当地的重力加速度为g,为了完成实验,需要验证的表达式为_______________ _.(用题中所给物理量符号表示) 3.在“验证机械能守恒定律”的实验中,小明同学利用传感器设计实验:如图10甲所示,将质量为m、直径为d的金属小球在一定高度h由静止释放,小球正下方固定一台红外线计时器,能自动记录小球挡住红外线的时间t,改变小球下落高度h,进行多次重复实验.此方案验证机械能守恒定律方便快捷. (1)用螺旋测微器测小球的直径如图乙所示,则小球的直径d=________mm; (2)为直观判断小球下落过程中机械能是否守恒,应作下列哪一个图象________; A.h-t图象 B.h-1 t图象 C.h-t2图象 D.h- 1 t2图象 甲 0123401234 5 45 5 45 可动刻度 固 定 刻 度 固 定 刻 度

高中物理力学和电学综合检测

力学综合检测 一、单项选择题 1.(2014·一模)如图所示,一只小鸟沿着较粗的均匀树枝从右向左缓慢爬行,在小鸟从A运动到B的过程中( ) A.树枝对小鸟的合作用力先减小后增大 B.树枝对小鸟的摩擦力先减小后增大 C.树枝对小鸟的弹力先减小后增大 D.树枝对小鸟的弹力保持不变 解析:选B.树枝对小鸟的合作用力是支持力和摩擦力的合力,由二力平衡得,它与小鸟重力等大反向,因小鸟所受重力不变,所以树枝对小鸟的合作用力不变,A项错误.由受力分析图可知,树枝对小鸟的摩擦力先减小后增大,对小鸟的弹力先增大后减小,所以B 项对,C、D两项均错误. 2.(2014·教学测试)如图所示为通过轻杆相连的A、B两小球,用两根细线将其悬挂在水平天花板上的O点.已知两球重力均为G,轻杆与细线OA长均为L.现用力F作用于小球B上(图上F未标出),使系统保持静止状态且A、B两球在同一水平线上.则力F最小值为( ) A. 2 2 G B.2G C.G D.2G 解析:选A.由于系统处于静止状态时,A、B两球在同一水平线上,因此悬线OA竖直,轻杆中的弹力为零,小球B受竖直向下的重力、沿悬线OB斜向上的拉力和F的作用而处于静止状态,三力的合力为零,表示三力的线段构成封闭三角形,由于重力的大小及方向不变,悬线拉力的方向不变,由几何关系可知,当F的方向与OB垂直且斜向右上方时,F最 小,由几何关系可知,此时F=G sin 45°= 2 2 G,选项A正确.

3.嫦娥三号携带“玉兔”探测车在月球虹湾实施软着陆过程中,嫦娥三号离月球表面4 m 高时最后一次悬停,确认着陆点.若总质量为M 的嫦娥三号在最后一次悬停时,反推力发动机对其提供的反推力为F ,已知引力常量为G ,月球半径为R ,则月球的质量为( ) A.FR 2 MG B. FR MG C. MG FR D. MG FR 2 解析:选A.嫦娥三号悬停时,其合力为零,设月球的质量为m ,由平衡条件可得:F -G Mm R 2=0,则m =FR 2MG ,选项A 正确,选项B 、C 、D 错误. 4.(2014·检测)如图所示,在竖直放置的半圆形容器的中心O 点分别以水平初速度v 1、 v 2抛出两个小球(可视为质点),最终它们分别落在圆弧上的A 点和B 点,已知OA 与OB 互相垂直,且OA 与竖直方向成α角,则两小球初速度之比为( ) A .tan α B .sin α C .tan α tan α D .cos α 解析:选C.两小球被抛出后都做平抛运动,设半圆形容器的半径为R ,两小球运动时间分别为t 1、t 2,对A 球:R sin α=v 1t 1,R cos α=1 2gt 21.对B 球:R cos α=v 2t 2,R sin α =12gt 22.联立解得:两小球初速度之比为v 1 v 2 =tan αtan α,选项C 正确. 5.(2014·一中一模)如图所示为某中学科技小组制作的利用太阳能驱动小车的装置.当太照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进.若质量为m 的小车在平直的水泥路上从静止开始沿直线加速行驶,经过时间t 前进的距离为x ,且速度达到最大值v m .设这一过程中电动机的功率恒为P ,小车所受阻力恒为F ,那么这段时间( ) A .小车做匀加速运动 B .小车受到的牵引力逐渐增大 C .小车受到的合外力所做的功为Pt

高一物理必修一力学测试题。带答案

1.关于重力的说法,正确的是( )A.重力就是地球对物体的吸引力B.只有静止的物体才受到重力 C.同一物体在地球上无论怎样运动都受到重力D.重力是由于物体受到地球的吸引而产生的 2.下列说法正确的是( )A.马拉车前进,马先对车施力,车后对马施力,否则车就不能前进 B.因为力是物体对物体的作用,所以相互作用的物体一定接触 C.作用在物体上的力,不论作用点在什么位置,产生的效果均相同D.某施力物体同时也一定是受力物体 3.下列说法中正确的是()A.射出枪口的子弹,能打到很远的距离,是因为子弹离开枪口后受到一个推力作用B.甲用力把乙推倒说明甲对乙有力的作用,乙对甲没有力的作用 C.只有有生命或有动力的物体才会施力,无生命或无动力的物体只会受到力,不会施力 D.任何一个物体,一定既是受力物体,也是施力物体 4.下列说法正确的是( )A.力是由施力物体产生,被受力物体所接受的 B.由磁铁间有相互作用力可知,力可以离开物体而独立存在 C.一个力必定联系着两个物体,其中任意一个物体既是受力物体又是施力物体 D.一个受力物体可以对应着一个以上的施力物体 5.铅球放在水平地面上处于静止状态,下列关于铅球和地面受力的叙述正确的是( ) A.地面受到向下的弹力是因为地面发生了弹性形变;铅球坚硬没发生形变 B.地面受到向下的弹力是因为地面发生了弹性形变;铅球受到向上的弹力,是因为铅球也发生了形变 C.地面受到向下的弹力是因为铅球发生了弹性形变;铅球受到向上的弹力,是因为地面发生了形变 D.铅球对地面的压力即为铅球的重力 6.有关矢量和标量的说法中正确的是( )A.凡是既有大小又有方向的物理量都叫矢量 B.矢量的大小可直接相加,矢量的方向应遵守平行四边形定则 C.速度是矢量,但速度不能按平行四边形定则求合速度,因为物体不能同时向两个方向运动 D.只用大小就可以完整描述的物理量是标量 7.关于弹力的下列说法中,正确的是( )A.①②B.①③ C.②③ D.

高中物理力学实验专题

高中力学实验专题 高中物理《考试说明》中确定的力学实验有:研究匀变速直线运动、探究弹力和弹簧伸长的关系、验证力的平行四边形定则、验证牛顿运动定律、探究动能定理、验证机械能守恒定律。其中有四个实验与纸带的处理有关,可见力学实验部分应以纸带的处理,打点计时器的应用为核心来展开复习。近几年力学实验中与纸带处理相关的实验、力学创新实验是高考的热点内容,以分组或演示实验为背景,考查对实验方法的领悟情况、灵活运用学过的实验方法设计新的实验是高考实验题的新趋势。要求考生掌握常规实验的数据处理方法,能将课本中分组实验和演示实验的实验原理、实验方法迁移到新的背景中,深刻理解物理概念和规律,并能灵活运用,要求考生有较强的创新能力。 在复习过程中,应以掌握常规实验原理、实验方法、规范操作程序、数据处理方法等为本,同时从常规实验中,有意识的、积极的提取、积累一些有价值的方法。逐步过渡到灵活运用学过的实验方法设计新的实验。 (一)打点计时器系列实验中纸带的处理 1.纸带的选取:一般实验应用点迹清晰、无漏点的纸带中选取有足够多点的一段作为实验纸带。在“验证机械能守恒定律”实验中还要求纸带包含第一、二点,并且第一、二两点距离接近2.0mm 。 2.根据纸带上点的密集程度选取计数点。打点计时器每打n 个点取一个计数点,则计数点时间间隔为n 个打点时间间隔,即T=0.02n (s )。一般取n =5,此时T=0.1s 。 3.测量计数点间距离。为了测量、计算的方便和减小偶然误差的考虑,测量距离时不要分段测量,尽可能一次测量完毕,即测量计数起点到其它各计数点的距离。如图所示,则由图可得: 1s S I =,12s s S II -=,23s s S III -=,34s s S IV -=,45s s S V -=,56s s S VI -=

高中物理中的量子概率事件

高中物理中的量子概率事件 一、概率波 1、基本内容 微观粒子的运动规律不再能够用经典力学(牛顿定律加运动学)来描述,而要用量子力学来描述,其基本特征是不连续性和概率性,这两点都可以用波函数来表达——粒子在各种条件下,都有相应的波函数,粒子在空间各点出现的概率或相应事件发生的概率,用相应波函数的模的平方来计算。 我们把这种物质粒子的波(物质波)称之为概率波。 2、典型事例 电子的衍射(如右图所示为电子束通过晶格的衍射花样)、干涉现象是 概率波的典型事例。下面以电子的双缝干涉来谈概率波概念。 如图1所示是光波的双缝干涉现象,同一点光源a发出的光,经过挡板 S2上两个相距很近的狭缝后,在右侧叠加区域发生干涉,光屏F上就可以观 察到明暗相间的干涉条纹。 图1图2 如图2所示,当我们让电子枪发出的大量电子也经过双缝时,我们发现,在检测器上,我们看到了和光波双缝干涉一模一样的双缝干涉图样。 如果我们让电子枪一个一个的发射电子,我们可以看到,检测器的确只能检测到单个单个的电子,且其到达探测器的落点位置看似没有规律,但是当我们观测足够长的时间,我们就会发现检测器上出现了和大量电子同时穿过双缝时看到的一模一样的双缝干涉图样,如图3所示。 图3 这个实验现象表明,单个电子实际上就具有“波动性”——其到达空间各点的概率按波动规律计算,但是由于单个电子到达探测器时显然只能是一个确定的位置,无法显示出其在空间各点出现的概率特征;但是,大量具有同一概率特征的电子同时经过双缝,或者一个又一个具有同一概率特征的电子经过足够长时间累积到数量足够大时,每个电子的概率特征就变为了大量电子的统计特征了,其结果就是按波函数计算出来概率较大的地方电子出现得就多,概率较小的地方电子出现得就少。

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

高中物理力学部分知识点归纳

高中物理力学部分知识点归纳 1、基本概念:力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速 2、基本规律:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变 化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);功能原理(非重力做功与物体机械能变化之间的关系);机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

3、基本运动类型:运动类型受力特点备注直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析匀变速直线运动同上且所受合外力为恒力 1. 匀加速直线运动 2. 匀减速直线运动曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向合外力指向轨迹内侧(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心(合外力充当向心力)一般圆周运动的受力特点向心力的受力分析简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析 4、基本方法:力的合成与分解(平行四边形、三角形、多边形、正交分解);三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);针对简谐运动的对称法、针对简谐波图像的描点法、平移法 5、常见题型:合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括

相关主题
文本预览
相关文档 最新文档