当前位置:文档之家› 机械原理教案平面机构的力分析

机械原理教案平面机构的力分析

机械原理教案平面机构的力分析
机械原理教案平面机构的力分析

第四章 平面机构的力分析

§4-1机构力分析的目的和方法 1、作用在机械上的力

驱动力:∠VS 锐角(驱动力→原动力)

作功 生产阻力(有效阻力) (+、-) 阻力 : ∠VS 钝角

有害阻力

常见的作用力:原动力、摩擦力、运动副反力、重力、“惯性力”

2、机构力分析的目的和方法

影响及其运动的动力性能→运转性能、调速、平衡、振动、功率分析

力(力矩)

后续机械设计重要参数→尺寸、机构、强度 确定运动副反力→ 强度、摩擦磨损、效率

任务(目的)

确定机构的平衡力(或平衡力矩)→原动机功率?克服生产阻力?

§4-2构件惯性力的确定

假设已知构件质量、转动惯量(实际设计中可采用类比法,初估计,再逐步修正)及运动参数。 1、 做平面复合运动构件

两者可合二为一:力偶等效原理 2、做平面移动构件 0=ε 3、绕定轴转动构件

§4-3质量代换法

1、静代换问题求解

解决方法

图解法

(均不考虑构件的弹性变形,属于一般刚体运动学、动力学问题) 解析法

惯性力 s I a m P -= 惯性力矩 εs J M -= 绕质心轴转动 0=s a 绕非质心轴转动 只需考虑惯性力

刚体 几个集中质量 使问题简化 (有质量、转动惯量) (一般是2个) 用于平衡调速 代换代换前后总质量不变 代换前后质心不变 代换前后转动惯量不变 静代换 动代换

任取B 、C 为代换点:

解得:代换质量

2、 动代换问题的求解

解得

结论:

1) 静代换简单容易,其代换点B 、C 可随意选取。

2) 动代换只能随意选定一点,另外一点由代换条件确定。 3) 使用静代换,其惯性力偶矩将产生误差:

()[]

[][]ε

εε

εmb c k mbc I c b bc c b cb m I c m b m I M C C C B C I --=--=?????

????? ??+++--=?+?--=?2222

4)

m m m C B =+ c m b m c B ?=?

c b c m m B += c b b m

m c += m m m k B =+ k m b m k B ?=?

c k B I k m b m =+22 (原构件转动惯量)

k b k m m B += k b b m

m k += B

C

m I k =

§4-3用图解法作机构的动态静力分析(不考虑摩擦力)

(达朗贝尔原理在机构力分析中的应用) 1、机构组的静定条件

“未知力数目”= 平衡方程数目

结论:

1) 求一个低副反力,需求解两个未知量,而高副则只需一个。

故有静定条件:h l P P n +=23 即:023=--h l P P n 仅有低副时:023=-l P n

2) 杆组即是静定结构。(杆组中不含有未知的外力一定可求解) 2、机构的动态静力学分析

例题4-1 往复式运输机构简图及受力情况。求应加在1构件上X —X 方向上的平衡力。(图、解) 解:

1、作出机构简图并作出运动分析

2、确定各构件中的惯性力(矩),将其加在机构上

3、 取出构件

4、5进行力分析

平衡方程

654555=++++R R P P Q I r ρ

ρρρρ

确定运动副反力需求解的未知量 (不考虑摩擦)

转动副:(反力过轴心,大小、方向) 2 移动副:(反力垂直导路,大小、作用点)2 平面高副:(反力沿公法线)1

绘机构简图

作运动分析

将外力+惯性力以力的形式加在机构将机构看成静力平

衡系统加以分析

由外力已知构件开始,取杆组、杆为示力体分析

运动副反力 平衡力

图解→45R ρ、65R ρ

的大小 4、 取出构件2、3进行力分析

2构件对C 点取矩,→求出τ

12R 3构件对C 点取矩,→求出τ

63R 对2、3构件组有:

0121222436363=++++++n

I n R R Q P R R R ???????τ

τ

图解可解出→n R 63?、n

R 12?的大小 5、取构件2可直接求出32R

03212212=+++R R Q P ?

???

6、取构件1(三力汇交)有:

06121=++R P R b ?

??

图解可解出:→b P ?、61R ?

的大小

补充:茹可夫斯基杠杆法

茹可夫斯基杠杆法是求解平衡力的一种简易方法,不必求运动副反力。

①作出机构的转向速度多边形(转900

),无需知道真实运动规律。

②将所有外力(包括惯性力)以力的形式平移至速度矢量图上的对应点上。 ③这些力对极点P 的力矩之和为零。

*外力为惯性力偶矩时,应将惯性力平移后将其替代;外力为力矩时,可将其用作用在选定点上的力来替代。

*实际上,可将作用力均按同一方向转900

,然后再移至速度矢量图上即可(免去转向速度多边形)。 *此法不必求运动副反力就可以求出平衡力(即使需要求运动副反力时,先求出平衡力,再求运动副反力,问题也将简化)。 例1、曲柄滑块机构,已知驱动力矩M ,求滑块在方向上的平衡b P 。

例2、铰链四杆机构,已知外力1P 、3P ,求X —X 方向上的平衡力b P 。

该机构中待求平衡力b P 作用于不与机架相连的构件2上F 点X —X 方向,不论怎样取杆组均不静定,但使用茹可夫斯基杠杆法可顺利求解。

茹可夫斯基杠杆法证明 静力平衡状态,根据虚位移原理

0cos =??∑i i

i

dS

F α上式除以dt 得此时瞬心功率为零

0cos =??∑i

i

i

v F α

i i i v n αcos ?=

i F 对P 点求矩 i i i i i v F n F αcos ??=?

动态静力分析方法难点及注意事项

1、 外力为力矩形式(包括惯性力)应将其转化成力形式加在机构上,这样解题会更方便。

2、 对复杂机构进行力分析,一般应由远离待求平衡里端按杆组取示力体进行分析(即取出的杆组示力

体上不含未知力)。

3、 对杆组和构件示力体,反力的表达:

4、 移动副中反力问题深入的理解

F '' 平衡于r P

杆端受作用力F

F '

=-R (与移动副大小相等方向相反)

实际上,用一个反力R 表示移动副的反力,只是移动副反力的合力(且经过平移),移动副中的真实反力(1R ,2R 或分布力)与移动副的结构有关,它可能大于R 。

5、 如杆组(示力体)未知力因素(大小、方向)超过2个,首先需借助

力或力矩平衡方程针对某一构件求出某些未知力(图解+解析)。

6、 对含有高级杆组(如III 级)的机构,力分析可能困难些(需用其他

方法:如茹科夫斯基杠杆法,特殊点法)

运动学上的III 级机构:若5ω为原动件 力学上的III 级机构:若5M 为待求平衡力矩

(但是:5ω为原动件,1M 为待求平衡力矩,并非力分析上的III 级组)

转动副

n ij

R t ij

R

尽可能利用二力杆,三立汇交

移动副

反力垂直导路

作用点需判定

解法:

2构件对E 取矩:→t

R 12, 3构件对F 取矩:→t

R 63, 4构件对G 取矩:→t R 64,

整个杆组对特殊点S 取矩:→n

R 64,然后再进行图解法求另外两个作用力,即可顺利求解。 7、 实际上,机构设计初期,m 、s J 均未知,只能类比估算出来(极不准确),在此基础上

§4-3用解析法作机构的动态静力分析(可自学,或讲力矩矢量表示法和首解副的概念)

1、 矢量方程解析法

复习:力矩的矢量表达式

P r M ????=0

P r rP P r M ???=-=??=τ

αα)90cos(sin 0

以下用例题说明如何用解析法作机构动态静力分析

例题:图示为四杆结构,设力P ?

为作用在构件2上E 点处的已知外力(包括惯性力),r M 为作用在构

反复三次,精度足够

类似 运动分析解析法 力分析解析法 数学上均是处理矢量方程 运动学建立方程 力平衡条件建立方程 求反力 确定构件尺寸 m 、s

J (修正)

件3上的已知生产阻力。现在需要确定各运动副中的反力以及需要加于主动件1 上的平衡力矩b M 。

j R i R R R R y x A ?

?ρ??41411441+=-== j R i R R R R y x B ?

?ρ??12122112+=-== j R i R R R R y x C ?

?ρ??23233223+=-== j R i R R R R y x A ?

?ρ??41411441+=-==

1、 取杆组

2、3为隔离体(其上外力均已知,其上未知量6个,可解方程为6 格,静定结构),先解决

C 副反力(C 副为首解副,该副连接两构件上外力均已知)。 ①以构件3 为隔离体:

0=∑D

M

,得

cos sin )(32333233232333233=-+-=-+?=-?r y x r y x t

r t M R l R l M j R i R e l M R l θθ????? (a)

②同理,对2 构件:

0=∑B

M

,得:

)cos()sin(cos sin )()()(2222322232232322322=-----=?+++?-=?++?p p y x t

a t a y x t t t t bP aP R l R l P e

b e a j R i R e l P b a R l θθθθθθ??????????? (b)

联立(a) (b)式,解得:

③求反力D R 0=∑F ?

得:

2343R R ?

?-=

④求反力B R 0=∑F ?

得:

03212=++P R R ???

分别用i ?及j ?

点积上式,可求得:

p x x P R R θcos 2312-= p y y P R R θsin 2312-=

j R i R R y x ???121212+=

2、 取构件1为隔离体

①由0=∑F ?

04121=+R R ?? 得: 2141R R ??=

1

2111211212111211cos sin )(θθy x y x t

b R l R l j R i R e l R l M +-=+?=?=?????

**用解析法作机构动态分析一般方法(运动分析、惯性力分析略)

1) 矢量方程的建立

0=∑M P r M t

???=

0=∑F ?

2)运动副反力的表达

移动副:反力N 方向垂直导路,作用点也是未知量。(N 代表平移后的反力合力,其真实反力与运动副尺寸结构有关)。

3)“首解副”的选择

就选II 级杆组(外力均已知)的内接副。若其中含有多个II 级杆组,则由远离位置平衡力端开始,可以顺利求解。

其主要形式:

0=∑x

F

0=∑

y F 用矢量i 、j 点积或者向X 、Y 轴投影

jix ijx R R -=(X 方向+)

jiy ijy R R -=(Y 方向+)

转动副 对1构件0=∑A M x x R R 2112-=

对2构件0=∑

C M y y R R 2112-= ① 再对1构件0=∑F A R 再对2构件0=∑

F C R 对1构件0=∑A

M N

对2构件

0=∑C

M

L

联立

再对1构件0=∑F A R

再对2构件

0=∑F C

R

联立

2、矩阵法

图示教练四杆机构的一般受力模型,已知外力:1F

1M 2F 2M 3F 3M ,阻力矩r M ,求平衡力矩b M 。

1) 基本情况分析:

对整个机构:活动构件为3,可以列出3×3=9个方程

未知量的数目:共 9 个

A R (R 41x , R 41y )、

B R (R 12x , R 12y )、

C R (R 23x , R 23y )、

D R (R 12x , R 12y )、 b M

2) 力矩的直角坐标表示法

作用力I F ,作用点I ,对K 点之矩:

IY I K IX I K K P X X P Y Y M )()(-+-=

3)对构件1列平衡方程式

对1构件0=∑A

M

x R 12

对2构件

0=∑F (平行导路 y

R

12

联立

再对1构件

0=∑F A R

再对2构件 0=∑F (垂直导路) N

0=∑C

M

L

0=∑X

F 0=∑Y

F

0=∑M

111111212)()()()(M P X X P Y Y M R X X R Y Y Y A S X A S b Y A B X A B ----=+---

X X X P R R 11214-=-- Y Y Y P R R 11214-=-- 对于构件2、3可得类似方程

222222323)()()()(M P X X P Y Y R X X R Y Y Y B S X B S Y B C X B C ----=---

X X X P R R 22312-=-- Y Y Y P R R 22312-=--

r Y D S X D S Y D C X D C M M P X X P Y Y R X X R Y Y +----=---333333434)()()()(

X X X P R R 22312-=-- Y Y Y P R R 33423-=--

将以上方程缩写成: }]{[}]{[P D R C =

未知力列阵T

Y X Y X Y X Y X b R R R R R R R R M R ),,,,,,,,(}{3434232312121414=

已知力列阵T Y X r Y X Y X P P M M P P M P P M P ),,,,,,,,(}{333222111-=

已知的系数矩阵][C 构件1

构件2

构件3

阵][D

已知的系数矩

矩阵法小结:

①矩阵上各元素排列规律性很强,可以方便的套用,并推广到多杆机构。

②此法也针对杆组列出矩阵式,将矩阵法用于更广泛的机构分析。

③此法不涉及矢量分析,方法简便,易于理解。

④尤其适合计算机求解,可同时解出所有未知量(高斯消去)。

第四章平面机构的力分析

第4章-平面机构力分析习题解答

第四章 平面机构的力分析解答 典型例题解析 例4-1 图4-1所示以锁紧机构,已知各部分尺寸和接触面的摩擦系数f ,转动副的摩擦圆图上虚线圆,在P 力作用下工作面上产生夹紧力Q,试画此时各运动副中的总反力作用线位置和方向(不考虑各构件的质量和转动惯量) 。 图4-1 解 [解答] (1) BC 杆是二力杆,由外载荷P 和Q 判断受压,总反力23R F 和43R F 的位置和方向见图。 (2) 楔块4所受高副移动副转动副的三个总反力相平衡,其位置方向及矢量见图。 (3) 杆2也是三力杆,所受的外力P 与A,B 转动副反力相平衡,三个力的位置见图。 例4-2 图示摇块机构,已知,90 =∠ABC 曲柄长度,86,200,1002mm l mm l mm l BS AC AB ===连 杆的质量,22kg m =连杆对其质心轴的转动惯量22.0074.0m kg J S =,曲柄等角速转动s rad /401=ω, 求连杆的总惯性力及其作用线。

[解答] (1) 速度分析 ,/41s m l v AB B ==ω其方向垂直于AB 且为顺时针方向 32322C C C B C B C +=+= 大小: s m /4 0 0 ? 方向: AB ⊥ BC 取mm s m v /2 .0=μ作速度图如(b ),得 02232===B C B C l v ωω (2)加速度分析 ,/1602 21s m l a AB B ==ω其方向由B 指向A 。 32323t C2B n C2B 2 C C r C C k C B C ++=++= 大小: 160 0 ? 0 0 ? 方向:A B → B C →2 BC ⊥ BC ⊥ BC 取mm s m a 2/8=μ作加速度图如图(C) 22 2/80s m s p a a s =''=μ 222 2/100s m C C a a B C t ='''=μ 222222/76.923160s rad l l l a AB AC B C t B C =-== α,逆时针方向。 (3)计算惯性力,惯性力矩 N a m F S I 160222=-=,方向如图( )所示。 m N J M S I .836.6222-=-=α,方向为顺时针方向。 例4-3 在图示的摆动凸轮机构中,已知作用于摆杆3上的外载荷Q,各转动副的轴颈半径r 和当量摩擦系数v f ,C 点的滑动摩擦因素f 以及机构的各部分尺寸。主动件凸轮2的转向如图,试求图示位置时作用于凸轮2上的驱动力矩M 。

机械原理教案 平面机构的力分析

第四章 平面机构的力分析 §4-1机构力分析的目的和方法 1、作用在机械上的力 驱动力:∠VS 锐角(驱动力→原动力) 作功 生产阻力(有效阻力) (+、-) 阻力 : ∠VS 钝角 有害阻力 常见的作用力:原动力、摩擦力、运动副反力、重力、“惯性力” 2、机构力分析的目的和方法 影响及其运动的动力性能→运转性能、调速、平衡、振动、功率分析 力(力矩) 后续机械设计重要参数→尺寸、机构、强度 确定运动副反力→ 强度、摩擦磨损、效率 任务(目的) 确定机构的平衡力(或平衡力矩)→原动机功率?克服生产阻力? §4-2构件惯性力的确定 假设已知构件质量、转动惯量(实际设计中可采用类比法,初估计,再逐步修正)及运动参数。 1、 做平面复合运动构件 两者可合二为一:力偶等效原理 2、做平面移动构件 0=ε 3、绕定轴转动构件 §4-3质量代换法 1、静代换问题求解 解决方法 图解法 (均不考虑构件的弹性变形,属于一般刚体运动学、动力学问题) 解析法 惯性力 s I a m P -= 惯性力矩 εs J M -= 绕质心轴转动 0=s a 绕非质心轴转动 只需考虑惯性力 刚体 几个集中质量 使问题简化 (有质量、转动惯量) (一般是2个) 用于平衡调速 代换代换前后总质量不变 代换前后质心不变 代换前后转动惯量不变 静代换 动代换

任取B 、C 为代换点: 解得:代换质量 2、 动代换问题的求解 解得 结论: 1) 静代换简单容易,其代换点B 、C 可随意选取。 2) 动代换只能随意选定一点,另外一点由代换条件确定。 3) 使用静代换,其惯性力偶矩将产生误差: ()[] [][]ε εε εmb c k mbc I c b bc c b cb m I c m b m I M C C C B C I --=--=????? ????? ??+++--=?+?--=?2222 4) m m m C B =+ c m b m c B ?=? c b c m m B += c b b m m c += m m m k B =+ k m b m k B ?=? c k B I k m b m =+22 (原构件转动惯量) k b k m m B += k b b m m k += B C m I k =

平面机构的力分析

第四章平面机构的力分析 4-1 选择或填空题 (1)如果作用在径向轴颈上的外力加大,那么轴颈上摩擦圆。 A.变大;B.变小;C.不变;D.不确定。 (2)两运动副的材料一定时,当量摩擦系数取决于。 A.运动副元素的几何形状;B.运动副元素间的相对运动速度大小; C.运动副元素间作用力的大小;D.运动副元素间温差的大小。 (3)机械中采用环形支承的原因是。 A.加工方便;B.避免轴端中心压强过大;C.便于跑合轴端面;D.提高承载能力。(4)移动副中总反力与其相对运动方向的夹角是____。 A.锐角;B.钝角;C.直角;D.不确定。 (5)风机发动机的叶轮受到空气的作用力,此力在机械中属于____。 A.驱动力;B.工作阻力;C.有害阻力;D.摩擦力。 (6)轴径1与轴承2组成转动副,设初始状态时轴径相对轴承静止,轴径受单外力Q作用,当外力Q的作用线与摩擦圆相交时,轴承对轴径的总反力R12的作用线与摩擦圆____;当外力Q的作用线与摩擦圆相切时,轴承对轴径的总反力R12的作用线与摩擦圆____;当外力Q的作用线与摩擦圆相离时,轴承对轴径的总反力R12的作用线与摩擦圆____。 A.相切;B.相交;C.相离;D.不确定。 (7)在外载荷和接触表面状况相同的条件下,三角螺纹的摩擦力要比矩形螺纹的大,是因为____。 A.当量摩擦角大;B.当量摩擦角小;C.摩擦系数大;D.不确定。 4-2图a所示导轨副为由拖板1与导轨2组成的复合移动副,拖板的运动方向垂直于纸面;图b所示为由转动轴1与轴承2组成的复合转动副,轴1绕其轴线转动。现已知各运动副的尺寸如图所示,并设G为外加总载荷,各接触面间的摩擦系数均为f。试分别求导轨副的当量摩擦系数f v和转动副的摩擦圆半径ρ。 解: a) 2θ b) 想一想:①采用当量摩擦系数f v及当量摩擦角?v的意义何在? ②当量摩擦系数f v与实际摩擦系数f不同,是因为两物体接触面几何形状的改变,从而引起摩擦系数改变的结果对 吗? 4-3 在图示的曲柄滑块机构中,设已知l AB=0.1m,l BC=0.33m,n1=1500r/min(常数),活塞及其附件的重量G3=21N,连杆重量G2=25N,J S2=0.0425kg·m2,连杆质心S2至曲柄销B的距离重量l BS2=l BC/3。试确定在图示位置时活塞的惯性力以及连杆的总惯性力。 解:(1)选取比例尺(μl=0.005m/mm)做机构运动简图 (2)运动分析:(μv=0.5(m/s)/mm),(μa=75(m/s2)/mm) (3)确定惯性力: 想一想:构件的惯性力的大小、方向及作用点和惯性力偶矩的大小及方向是怎样确定的?总惯性力的大小及作用线方向又如何确定? 4-4 在图示楔块机构中,已知γ=β=60o,Q=1000N,各接触面摩擦系数f=0.15。如Q为有效阻力,试求所需的驱动力F。

机械原理习题-(附答案)整理电子教案

第二章 4.在平面机构中,具有两个约束的运动副是移动副或转动副;具有一个约束的运动副是高副。5.组成机构的要素是构件和转动副;构件是机构中的_运动_单元体。 6.在平面机构中,一个运动副引入的约束数的变化范围是1-2。 7.机构具有确定运动的条件是_(机构的原动件数目等于机构的自由度)。 8.零件与构件的区别在于构件是运动的单元体,而零件是制造的单元体。 9.由M个构件组成的复合铰链应包括m-1个转动副。 10.机构中的运动副是指两构件直接接触所组成的可动联接。 1.三个彼此作平面平行运动的构件共有3个速度瞬心,这几个瞬心必定位于同一直线上。2.含有六个构件的平面机构,其速度瞬心共有15个,其中有5个是绝对瞬心,有10个是相对瞬心。 3.相对瞬心和绝对瞬心的相同点是两构件相对速度为零的点,即绝对速度相等的点, 不同点是绝对瞬心点两构件的绝对速度为零,相对瞬心点两构件的绝对速度不为零。 4.在由N个构件所组成的机构中,有(N-1)(N/2-1)个相对瞬心,有N-1个绝对瞬心。 5.速度影像的相似原理只能应用于同一构件上_的各点,而不能应用于机构的不同构件上的各点。 6.当两构件组成转动副时,其瞬心在转动副中心处;组成移动副时,其瞬心在移动方向的垂直无穷远处处;组成纯滚动的高副时,其瞬心在高副接触点处。 7.一个运动矢量方程只能求解____2____个未知量。 8.平面四杆机构的瞬心总数为_6__。 9.当两构件不直接组成运动副时,瞬心位置用三心定理确定。 10.当两构件的相对运动为移动,牵连运动为转动动时,两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为a*kc2c3,方向与将vc2c3沿ω2转90度的方向一致。 1.从受力观点分析,移动副的自锁条件是驱动力位于摩擦锥之内, 转动副的自锁条件是驱动力位于摩擦圆之内。 2.从效率的观点来看,机械的自锁条件是η<0。 3.三角形螺纹的摩擦力矩在同样条件下大于矩形螺纹的摩擦力矩,因此它多用于联接。 4.机械发生自锁的实质是无论驱动力多大,机械都无法运动。 F方向的方法是与2构件相5.在构件1、2组成的移动副中,确定构件1对构件2的总反力 12 R 对于1构件的相对速度V12成90度+fai。 6.槽面摩擦力比平面摩擦力大是因为槽面的法向反力大于平面的法向反力。 7.矩形螺纹和梯形螺纹用于传动,而三角形(普通)螺纹用于联接。 8.机械效率等于输出功与输入功之比,它反映了输入功在机械中的有效利用程度。 9.提高机械效率的途径有尽量简化机械传动系统,选择合适的运动副形式, 尽量减少构件尺寸,减少摩擦。 1.机械平衡的方法包括、平面设计和平衡试验,前者的目的是为了在设计阶段,从结构上保证其产生的惯性力最小,后者的目的是为了用试验方法消除或减少平衡设计后生产出的转子所存在的不平衡量_。 2.刚性转子的平衡设计可分为两类:一类是静平衡设计,其质量分布特点是可近似地看做在同一回转平面内,平衡条件是。∑F=0即总惯性力为零;另一类是动平衡设计,其质量分布特

(完整版)机械原理知识点归纳总结

第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。 (3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件; ②绕通过质心轴转动的构件;

机械原理电子教案

第一章绪论教学内容 *本课程研究的对象和内容 *本课程的性质、任务及作用 *机械原理学科的发展现状 学习要求 *明确本课程研究的对象和内容,及其在培养机械类高级工程技术人才全局中的地位、任务和作用。 *对机械原理学科的发展现状有所了解。 重点难点 本章的学习重点是:本课程研究的对象及内容。本章介绍了机器、机构、机械等名词,并通过实例说明各种机器的主要组成部分是各种机构,从而明确了机构是本课程研究的主要对 象。当然,由于此时尚未具体学习这些内容,故只能是一个概括的了解。 学习安排 学习方法 如何学好本课程。 要学好本课程,首先必须对机械在一个国家中的重要作用有明确的认识,机械现在是、将来仍是人类利用和改造自然界的直接执行工具,没有机械的支持, 一切现代工程(宇航工程、深海工程、生物工程、通信工程、跨江大桥、过海隧道、摩天大楼、……)都将无法实现。 了解机械原理学科发展现状和趋势,既有助于对机械原理课程的深入学习,也有助于让我们深信机械工业将永不停歇地日新月异地迅猛发展。 第二章机构的结构分析 学习内容 *机构的组成(构件、运动副、运动链及机构) *机构运动简图及其绘制 *机构具有确定运动的条件 *机构自由度的计算 *计算平面机构的自由度时应注意的事项 *虚约束对机构工作性能的影响及机构结构的合理设计 *平面机构的组成原理、结构分类及结构分析 *平面机构中的高副低副 学习要求 *搞清构件、运动副、约束、自由度、运动链及机构等重要概念。 *能绘制比较简单的机械机构运动简图。 *能正确计算平面机构的自由度并能判断其是否具有确定的运动;对空间机构自由度的计算有所了解。 *对虚约束对机构工作性能的影响及机构结构合理设计问题的重要性有所认识。 *对平面机构的组成原理有所了解。 重点难点 本章的学习重点是:构件、运动副、运动链及机构等概念,机构运动简图的绘制,机构

平面机构力分析习题解答

第四章平面机构的力分析解答 典型例题解析 例4-1 图4-1所示以锁紧机构,已知各部分尺寸和接触面的摩擦系数f ,转动副的摩擦圆图上虚线圆,在P 力作用下工作面上产生夹紧力Q,试画此时各运动副中的总反力作用线位置和方向(不考虑各构件的质量和转动惯量) 。 图4-1 解 [解答] (1) BC 杆是二力杆,由外载荷P 和Q 判断受压,总反力23R F 和43R F 的位置和方向见图。 (2) 楔块4所受高副移动副转动副的三个总反力相平衡,其位置方向及矢量见图。 (3) 杆2也是三力杆,所受的外力P 与A,B 转动副反力相平衡,三个力的位置见图。 例4-2 图示摇块机构,已知,90 ABC 曲柄长度,86,200,1002mm l mm l mm l BS AC AB 连 杆的质量,22kg m 连杆对其质心轴的转动惯量22.0074.0m kg J S ,曲柄等角速转动s rad /401 , 求连杆的总惯性力及其作用线。

[解答] (1) 速度分析 ,/41s m l v AB B 其方向垂直于AB 且为顺时针方向 32322C C C B C B C 大小: s m /4 0 0 ? 方向: AB BC 取mm s m v /2 .0 作速度图如(b ),得 02232 B C B C l v (2)加速度分析 ,/160221s m l a AB B 其方向由B 指向A 。 32323t C2B n C2B 2 C C r C C k C B C 大小: 160 0 ? 0 0 ? 方向:A B B C 2BC BC BC 取mm s m a 2 /8 作加速度图如图(C) 22 2/80s m s p a a s 222 2/100s m C C a a B C t 222222/76.923160s rad l l l a AB AC B C t B C ,逆时针方向。 (3)计算惯性力,惯性力矩 N a m F S I 160222 ,方向如图( )所示。 m N J M S I .836.6222 ,方向为顺时针方向。 例4-3 在图示的摆动凸轮机构中,已知作用于摆杆3上的外载荷Q,各转动副的轴颈半径r 和当量摩擦系数v f ,C 点的滑动摩擦因素f 以及机构的各部分尺寸。主动件凸轮2的转向如图,试求图示位置时作用于凸轮2上的驱动力矩M 。

3平面机构力分析(包括摩擦和自锁)

A0700003机械原理试卷 一、选择题 1. 在由若干机器并联构成的机组中,若这些机器中单机效率相等均为,则机组的总效率必有如下关系:。 A、B、 C、D、 (为单机台数)。 答案:C 2. 三角螺纹的摩擦矩形螺纹的摩擦,因此,前者多用于。 A、小于; B、等于; ( C、大于; D、传动; E、紧固联接。 答案: CE 3. 在由若干机器串联构成的机组中,若这些机器的单机效率均不相同,其中最高效率和最低效率分别为和,则机组的总效率必有如下关系:。 A、B、

C、D、。 答案: A 4. 构件1、2 间的平面摩擦的总反力的方向与构件2对构件1 的相对运动方向所成角度恒为。 A、 0; - B、 90; C、钝角; D、锐角。 答案: C 5. 反行程自锁的机构,其正行程效率,反行程效 率。 A、B、 C、D、 答案: CD 6. 图示平面接触移动副,为法向作用力,滑块在力作用下沿方向运动,则固定件给滑块的总反力应是图中所示的作用线和方向。

| 答案: A 7. 自锁机构一般是指的机构。 A、正行程自锁; B、反行程自锁; C、正反行程都自锁。 答案: B 8. 图示槽面接触的移动副,若滑动摩擦系数为,则其当量摩擦系数 。 A、 B、 C、 D、 答案: B 9. 在其他条件相同的情况下,矩形螺纹的螺旋与三角螺纹的螺旋相比,前者? A、效率较高,自锁性也较好;

? B、效率较低,但自锁性较好; C、效率较高,但自锁性较差; D、效率较低,自锁性也较差。 答案: C 10. 图示直径为的轴颈1与轴承2组成转动副,摩擦圆半径为,载荷为,驱动力矩为,欲使轴颈加速转动,则应使。 A、=, B、, C、=, D、。 * 答案: D 11. 轴颈1与轴承2 组成转动副,细实线的圆为摩擦圆,轴颈1 受到外力( 驱动力 ) 的作用,则轴颈1 应作运动。 A、等速; B、加速; C、减速。

中南大学《机械原理授课教案》教材

机械原理 绪论 机械-人造的用来减轻或替代人类劳动的多件实物的组合体。 任何机械都经历了:简单→复杂的发展过程 起重机的发展历程: 斜面→杠杆→起重轱辘→滑轮组→手动(电动)葫芦→现代起重机(包括:龙门吊、鹤式吊、汽车吊、卷扬机、叉车、电梯-电脑控制)。 机构-能够用来传递运动和力或改变运动形式的多件实物的组合体。如:连杆机构、机械凸轮机构、齿轮机构等。 机器-根据某种具体使用要求而设计的多件实物的组合体。 如: 缝纫机、洗衣机、各类机床、运输车辆、农用机器、起重机等。 一、典型机器的分析: 机器的种类繁多,结构、性能和用途等各不相同,但具有相同的基本特征。 1.内燃机 内燃机 工作原理: 1.活塞下行,进气阀开启,混合气体进入汽缸; 2.活塞上行,气阀关闭,混合气体被压缩,在顶部点火燃烧; 3.高压燃烧气体推动活塞下行,两气阀关闭; 4.活塞上行,排气阀开启,废气体被排出汽缸。 内燃机的工作过程: 进气压缩爆炸排气

内燃机各部分的作用: 活塞的往复运动通过连杆转变为曲轴的连续转动,该组合体称为:曲柄滑块机构 凸轮和顶杆用来启闭进气阀和排气阀;称为:凸轮机构 两个齿轮用来保证进、排气阀与活塞之间形成协调动作,称为:齿轮机构 各部分协调动作的结果:化学能机械能 二、机器的共有特征: ①人造的实物组合体; ②各部分有确定的相对运动; ③代替或减轻人类劳动完成有用功或实现能量的转换 三、机器的分类: 原动机-实现能量转换(如内燃机、蒸汽机、电动机) 工作机-完成有用功(如机床等) 机构 机械原动机 机器 工作机 四、机器的组成: 原动部分-是工作机动力的来源,最常见的是电动机和内燃机。 工作部分-完成预定的动作,位于传动路线的终点。 传动部分-联接原动机和工作部分的中间部分。 控制部分-保证机器的启动、停止和正常协调动作。 原动机传动工作 控制 §2本课程在教学中的地位 一、课程性质:技术基础课 二、作用:承前启后 同时,通过本课程的学习,可为今后学习诸如自动武器原理、机床夹具设计、机床、机械制造工艺学等专业课程打下基础, 通过本课程的学习和课程设计实践,可以培养同学们初步具备运用手册设计简单机械装备的能力,为今后操作、维护、管理、革新武器装备创造条件。

重庆大学机械原理结构分析习题3第二章 平面机构的结构分析

第二章平面机构的结构分析 1.填空题: (1)机构具有确定运动的条件是;根据机构的组成原理,任何机构都可看成是由和组成的。 (2)由M个构件组成的复合铰链应包括个转动副。 (3)零件是机器中的单元体;构件是机构中的单元体。 (4)构件的自由度是指;机构的自由度是指。 (5)在平面机构中若引入一个高副将引入个约束,而引入一个低副将引入个约束,构件数、约束数与机构自由度的关系是。 (6)一种相同的机构组成不同的机器。 A.可以 B.不可以 (7)Ⅲ级杆组应由组成。 A.三个构件和六个低副; B.四个构件和六个低副; C.二个构件和三个低副。(8)内燃机中的连杆属于。 A.机器 B.机构 C.构件 (9)有两个平面机构的自由度都等于1,现用一个有两铰链的运动构件将它们串成一个平面机构,这时自由度等于。 A .0 B.1 C.2 (10)图1.10所示的四个分图中,图所示构件系统是不能运动的。 2.画出图1.11所示机构的运动简图。

3.图1.12所示为一机构的初拟设计方案。试求: (1)计算其自由度,分析其设计是否合理?如有复合铰链,局部自由度和虚约束需说明。(2)如此初拟方案不合理,请修改并用简图表示。 4.计算图1.13所示机构的自由度,判断是否有确定运动;若不能,试绘出改进后的机构简图。修改的原动件仍为AC杆(图中有箭头的构件)。 5.计算图1.14所示机构的自由度。 6.计算图1.15所示机构的自由度。

7.计算图1.16所示机构的自由度。 8.判断图1.17所示各图是否为机构。 9.计算图1.18所示机构的自由度。 10.计算图1.19所示机构的自由度。

机械原理机构的结构分析复习题

第2章机构的结构分析 1.判断题 (1)机构能够运动的基本条件是其自由度必须大于零。 (错误 ) (2)在平面机构中,一个高副引入两个约束。 (错误 ) (3)移动副和转动副所引入的约束数目相等。 (正确 ) (4)一切自由度不为一的机构都不可能有确定的运动。 (错误 ) (5)一个作平面运动的自由构件有六个自由度。 (错误 ) 2.选择题 (1) 两构件构成运动副的主要特征是( D )。 A .两构件以点线面相接触 B .两构件能作相对运动 C .两构件相连接 D .两构件既连接又能作一定的相对运动 (2) 机构的运动简图与( D )无关。 A .构件数目 B .运动副的类型 C .运动副的相对位置 D .构件和运动副的结构 (3) 有一构件的实际长度0.5m L =,画在机构运动简图中的长度为20mm ,则画此机 构运动简图时所取的长度比例尺l μ是( D )。 A .25 B .25mm/m C .1:25 D .0.025m/mm (4) 用一个平面低副连接两个做平面运动的构件所形成的运动链共有(B )个自由度。 A .3 B .4 C .5 D .6 (5) 在机构中,某些不影响机构运动传递的重复部分所带入的约束为(A )。 A .虚约束 B .局部自由度 C .复合铰链 D .真约束 (6) 机构具有确定运动的条件是( D )。 A .机构的自由度0≥F B .机构的构件数4≥N C .原动件数W >1 D .机构的自由度F >0, 并且=F 原动件数W (7) 如图2-34所示的三种机构运动简图中,运动不确定是( C )。 A .(a )和(b ) B .(b )和(c ) C .(a )和(c ) D .(a )、(b )和(c ) (8) Ⅲ级杆组应由( B )组成。 (a) (c) (b) 图2-34

机械原理教案

《机械原理》教案开课单位:机械工程学院 教研室:机械原理及设计 授课班级:机制0011、0012 授课时间:2001-2002学年第2学期 机械原理课程教研组

1 课程的教学目的和要求 机械原理是研究机械基础理论的一门学科,是高等工业院校机械类各专业普遍开设的一门主干技术基础课程,在培养具有创造性设计新机械能力人才所需的知识结构中占有核心地位作用。 1.1 目的 通过本课程的学习,使学生掌握机构学和机械动力学的基本理论、基本知识和基本技能,学会各种常用基本机构的分析和综合方法,并初步具有拟定机械运动方案、分析和设计机构的能力。 1.2 要求 1.2.1 理论知识方面 1、掌握平面机构的结构分析; 2、掌握平面机构的运动分析; 3、掌握机器的动力学问题; 4、掌握常用机构(平面连杆机构、凸轮机构、齿轮机构等)的分析和综合; 5、了解机构的选型及机械传动系统的设计。 1.2.2 能力、技能方面 1、能对实际机械进行运动测绘,并能分析其结构组成原理; 2、根据实际需要进行机构的选型及机械传动系统的设计。 2 总学时 58学时,其中:讲课50学时,实验8学时。 3 教材及参考书目 3.1 教材 《机械原理》(第六版),孙恒、陈作模主编,高等教育出版社,20XX年5月 3.2 参考书目 1、《机械原理》,王知行、刘廷荣主编,高等教育出版社,2000年2月 2、《机械原理》,黄锡恺、郑文纬主编,高等教育出版社,1995年4月 3、《机械设计原理》,邹慧君主编,上海交通大学出版社,1995年8月 4、《机械原理学习指南》,陈作模等编,高等教育出版社,20XX年5月 5、《机械原理作业集》,葛文杰主编,高等教育出版社,20XX年6月; 6、《机械原理课程设计指导——题目及要求》,集美大学机械工程学院,20XX年5月; 7、《机械原理实验指导书》,郑文纬编,高等教育出版社; 4 习题、思考题 本课程在讲授完每次内容后,均安排有一定数量的习题、思考题,作业每周收一次,批改作业份数达到学校教务处所规定的要求。

机械原理题库第一章、机构结构分析(汇总)

00002、具有、、等三个特征的构件组合体称为机器。 00003、机器是由、、所组成的。 00004、机器和机构的主要区别在于。 00005、从机构结构观点来看,任何机构是由三部分组成。 00006、运动副元素是指。 00007、构件的自由度是指;机构的自由度是指。 … 00008、两构件之间以线接触所组成的平面运动副,称为副,它产生个约束,而保留了个自由度。 00009、机构中的运动副是指。 00010、机构具有确定的相对运动条件是原动件数机构的自由度。 00011、在平面机构中若引入一个高副将引入______个约束,而引入一个低副将引入_____个约束,构件数、约束数与机构自由度的关系是。 00012、平面运动副的最大约束数为,最小约束数为。 " 00013、当两构件构成运动副后,仍需保证能产生一定的相对运动,故在平面机构中,每个运动副引入的约束至多为,至少为。 00014、 00015、计算机机构自由度的目的是 __________________________________________________________。 00016、在平面机构中,具有两个约束的运动副是副,具有一个约束的运动副是副。

00017、计算平面机构自由度的公式为F ,应用此公式时应注意判断:(A)铰链,(B)自由度,(C)约束。 > 00018、机构中的复合铰链是指;局部自由度是指;虚约束是指。 00019、划分机构的杆组时应先按的杆组级别考虑,机构的级别按杆组中的级别确定。 00020、机构运动简图是的简单图形。 00021、在图示平面运动链中,若构件1为机架,构件5为原动件,则成为级机构;若以构件2为机架,3为原动件,则成为级机构;若以构件4为机架,5为原动件,则成为级机构。 00022、机器中独立运动的单元体,称为零件。- - - - - - - - - - - - - - - - - - - - - - - - - ( ) — 00023、具有局部自由度和虚约束的机构,在计算机构的自由度时,应当首先除去局部自由度和虚约束。( ) 00024、机构中的虚约束,如果制造、安装精度不够时,会成为真约束。( ) 00025、任何具有确定运动的机构中,除机架、原动件及其相连的运动副以外的从动件系统的自由度都等于零。( ) 00026、六个构件组成同一回转轴线的转动副,则该处共有三个转动副。- - - - - - - - ( )

机械原理教案模板

精品文档《机械原理》教案 开课单位:机械工程学院 教研室:机械原理及设计 授课班级:机制0011、0012 授课时间:2001-2002学年第2学期 机械原理课程教研组

1 课程的教学目的和要求 机械原理是研究机械基础理论的一门学科,是高等工业院校机械类各专业普遍开设的一门主干技术基础课程,在培养具有创造性设计新机械能力人才所需的知识结构中占有核心地位作用。 1.1 目的 通过本课程的学习,使学生掌握机构学和机械动力学的基本理论、基本知识和基本技能,学会各种常用基本机构的分析和综合方法,并初步具有拟定机械运动方案、分析和设计机构的能力。 1.2 要求 1.2.1 理论知识方面 1、掌握平面机构的结构分析; 2、掌握平面机构的运动分析; 3、掌握机器的动力学问题; 4、掌握常用机构(平面连杆机构、凸轮机构、齿轮机构等)的分析和综合; 5、了解机构的选型及机械传动系统的设计。 1.2.2 能力、技能方面 1、能对实际机械进行运动测绘,并能分析其结构组成原理; 2、根据实际需要进行机构的选型及机械传动系统的设计。 2 总学时 58学时,其中:讲课50学时,实验8学时。 3 教材及参考书目 3.1 教材 《机械原理》(第六版),孙恒、陈作模主编,高等教育出版社,2001年5月 3.2 参考书目 1、《机械原理》,王知行、刘廷荣主编,高等教育出版社,2000年2月 2、《机械原理》,黄锡恺、郑文纬主编,高等教育出版社,1995年4月 3、《机械设计原理》,邹慧君主编,上海交通大学出版社,1995年8月 4、《机械原理学习指南》,陈作模等编,高等教育出版社,2001年5月 5、《机械原理作业集》,葛文杰主编,高等教育出版社,2001年6月; 6、《机械原理课程设计指导——题目及要求》,集美大学机械工程学院,2003年5月; 7、《机械原理实验指导书》,郑文纬编,高等教育出版社; 4 习题、思考题 本课程在讲授完每次内容后,均安排有一定数量的习题、思考题,作业每周收一次,批改作业份数达到学校教务处所规定的要求。

机械原理教案

机械原理电子教案 第一章绪论 基本要求: 1.明确机械原理课程的研究对象和内容,以及学习本课程的目的。 2.了解机械原理在培养机械类高级工程技术人才全局中的地位、任务和作用。 3.了解机械原理学科的发展趋势。 教学内容: 1.机械原理课程的研究对象 2.机械原理课程的研究内容 3.机械原理课程的地位及学习本课程的目的 4.机械原理课程的学习方法 重点难点: 本章的学习重点是机械原理课程的研究对象和内容,机器、机构和机械的概念,机器和机构的用途以及区别;了解机械原理课程的性质和特点。 1.1机械原理课程的研究对象 机械是人类用以转换能量和借以减轻人类劳动、提高生产率的主要工具,也是社会生产力发展水平的重要标志。机械工业是国民经济的支柱工业之一。当今社会高度的物质文明是以近代机械工业的飞速发展为基础建立起来的,人类生活的不断改善也与机械工业的发展紧密相连。机械原理(Theory of Machines and Mechanisms)是机器和机构理论的简称。它以机器和机构为研究对象,是一门研究机构和机器的运动设计和动力设计,以及机械运动方案设计的技术基础课。 机器的种类繁多,如内燃机、汽车、机床、缝纫机、机器人、包装机等,它们的组成、功用、性能和运动特点各不相同。机械原理是研究机器的共性理论,必须对机器进行概括和抽象内燃机与机械手的构造、用途和性能虽不相同,但是从它们的组成、运动确定性及功能关系看,都具有一些共同特征: (1)人为的实物(机件)的组合体。 (2)组成它们的各部分之间都具有确定的相对运动。 (3)能完成有用机械功或转换机械能。

凡同时具备上述3个特征的实物组合体就称为机器 内燃机和送料机械手等机器结构较复杂,如何分析和设计这类复杂的机器呢?我们可以采取“化整为零”的思想,即首先将机器分成几个部分,对其局部进行分析。机构是传递运动和动力的实物组合体。最常见的机构有连杆机构、凸轮机构、齿轮机构、间歇运动机构、螺旋机构、开式链机构等。它们的共同特征是: (1)人为的实物(机件)的组合体。 (2)组成它们的各部分之间都具有确定的相对运动。 可以看出,机构具有机器的前两个特征。机器是由各种机构组成的,它可以完成能量的转换或做有用的机械功;而机构则仅仅起着运动传递和运动形式转换的作用。在开发设计新型机器时,我们采用“积零为整”的设计思想,根据机器要完成的工艺动作和工作性能,选择已有机构或创新设计新机构,构造新型机器。内燃机就是由曲柄滑块机构(由活塞、连杆、曲轴和机架组成)、凸轮机构(由凸轮、顶杆和机架组成)和齿轮机构等组成。 随着科学技术的发展,机械概念得到了进一步的扩展: 1.某些情况下,机件不再是刚体,气体、液体等也可参与实现预期的机械运动。我们将利用液、气、声、光、电、磁等工作原理的机构统称为广义机构。由于利用了一些新的工作介质和工作原理,较传统机构更能方便地实现运动和动力的转换,并能实现某些传统机构难以完成的复杂运动。 利用液体、气体作为工作介质,实现能量传递和运动转换的机构,分别称为液压机构和气动机构,它们广泛应用于矿山、冶金、建筑、交通运输和轻工等行业。利用光电、电磁物理效应,实现能量传递或运动转换或实现动作的一类机构,应用也十分广泛。例如,采用继电器机构实现电路的闭合与断开;电话机采用磁开关机构,提起受话器时,接通线路进行通话,当受话器放到原位时断路。 2.机器内部包含了大量的控制系统和信息处理、传递系统。 3.机器不仅能代替人的体力劳动,还可代替人的脑力劳动。除了工业生产中广泛使用的工业机器人,还有应用在航空航天、水下作业、清洁、医疗以及家庭服务等领域的"服务型"机器人。例如Sony公司新近推出的SDR-3X娱乐机器人。 1.2 研究内容 机械原理课程的研究内容分为以下三部分: (1)机构的运动设计 主要研究机构的组成原理以及各种机构的类型、特点、功用和运动设计方法。通过机构类型综合,探索创新设计机构的途径。主要内容包括机构的组成和机构

机械原理教案课程

机械原理教案课程公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

机械原理电子教案 第一章绪论 基本要求: 1.明确机械原理课程的研究对象和内容,以及学习本课程的目的。 2.了解机械原理在培养机械类高级工程技术人才全局中的地位、任务和作用。 3.了解机械原理学科的发展趋势。 教学内容: 1.机械原理课程的研究对象 2.机械原理课程的研究内容 3.机械原理课程的地位及学习本课程的目的 4.机械原理课程的学习方法 重点难点: 本章的学习重点是机械原理课程的研究对象和内容,机器、机构和机械的概念,机器和机构的用途以及区别;了解机械原理课程的性质和特点。 机械原理课程的研究对象

机械是人类用以转换能量和借以减轻人类劳动、提高生产率的主要工具,也是社会生产力发展水平的重要标志。机械工业是国民经济的支柱工业之一。当今社会高度的物质文明是以近代机械工业的飞速发展为基础建立起来的,人类生活的不断改善也与机械工业的发展紧密相连。机械原理(Theory of Machines and Mechanisms)是机器和机构理论的简称。它以机器和机构为研究对象,是一门研究机构和机器的运动设计和动力设计,以及机械运动方案设计的技术基础课。 机器的种类繁多,如内燃机、汽车、机床、缝纫机、机器人、包装机等,它们的组成、功用、性能和运动特点各不相同。机械原理是研究机器的共性理论,必须对机器进行概括和抽象内燃机与机械手的构造、用途和性能虽不相同,但是从它们的组成、运动确定性及功能关系看,都具有一些共同特征: (1)人为的实物(机件)的组合体。 (2)组成它们的各部分之间都具有确定的相对运动。 (3)能完成有用机械功或转换机械能。 凡同时具备上述3个特征的实物组合体就称为机器 内燃机和送料机械手等机器结构较复杂,如何分析和设计这类复杂的机器呢我们可以采取“化整为零”的思想,即首先将机器分成几个部分,对其局部进行分析。机构是传递运动和动力的实物组合体。最常见的机构有连杆机构、凸轮机构、齿轮机构、间歇运动机构、螺旋机构、开式链机构等。它们的共同特征是: (1)人为的实物(机件)的组合体。 (2)组成它们的各部分之间都具有确定的相对运动。

机械原理机构的结构分析复习题资料讲解

机械原理机构的结构分析复习题

第2章机构的结构分析 1.判断题 (1)机构能够运动的基本条件是其自由度必须大于零。(错误) (2)在平面机构中,一个高副引入两个约束。(错误) (3)移动副和转动副所引入的约束数目相等。(正确)(4)一切自由度不为一的机构都不可能有确定的运动。(错误) (5)一个作平面运动的自由构件有六个自由度。(错误)2.选择题 (1)两构件构成运动副的主要特征是( D )。 A.两构件以点线面相接触 B.两构件能作相对运动 C.两构件相连接 D.两构件既连接又能作一定的相对运动 (2)机构的运动简图与( D )无关。 A.构件数目 B.运动副的类型 C.运动副的相对位置 D.构件和运动副的结构 (3)有一构件的实际长度0.5m L=,画在机构运动简图中的长度为20mm, μ是( D )。 则画此机构运动简图时所取的长度比例尺 l A.25 B.25mm/m C.1:25 D.0.025m/mm (4)用一个平面低副连接两个做平面运动的构件所形成的运动链共有(B) 个自由度。 A.3 B.4 C.5 D.6 (5)在机构中,某些不影响机构运动传递的重复部分所带入的约束为 (A)。 A.虚约束B.局部自由度C.复合铰链 D.真约束 (6)机构具有确定运动的条件是( D )。 A.机构的自由度0 ≥ N ≥ F B.机构的构件数4 C.原动件数W>1 D.机构的自由度F>0, 并且= F原动件数W (7)如图2-34所示的三种机构运动简图中,运动不确定是( C )。

A.(a)和(b) B.(b)和(c) C.(a)和(c)D.(a)、(b)和(c) (8)Ⅲ级杆组应由( B )组成。 A.三个构件和六个低副 B.四个构件和六个低副 C.二个构件和三个低副 D.机架和原动件 (9)有两个平面机构的自由度都等于1,现用一个有两铰链的运动构件将它 们串成一个平面机构,这时自由度等于( B )。 A.0 B.1 C.2 D.3 (10)内燃机中的连杆属于( C )。 A.机器 B.机构 C.构件 D.零件 3.简答题 (1)何谓构件?何谓运动副及运动副元素?运动副是如何进行分类的? 解答:构件是机器中每一个独立运动的单元体,是组成机构的基本要素之一。 运动副是由两个构件直接接触而组成的可动连接,是组成机构的基本要素之一。 运动副元素是两构件能够参加接触而构成运动副的表面,如点线面等。 (a) (c) (b) 图2-34

机械原理教案机械的运转及速度波动调节

第七章机械的运转及其速度波动的调节

§7-1 概述 (1)研究机械运转及速度波动调节的目的 周期性速度波动 危害:①引起动压力,η↓和可靠性↓。 ②可能在机器中引起振动,影响寿命、强度。 ③影响工艺,↓产品质量。 2、非周期性速度波动 危害:机器因速度过高而毁坏,或被迫停车。 本章主要研究两个问题: 1) 研究单自由度机械系统在外力作用下的真实运动规律。通过动力学模型建立力与运动参数之间的运动微分方程来研究真实运动规律。 2) 研究机械运转速度波动产生的原因及其调节方法。 (2)机械运动过程的三个阶段 机械运转过程一般经历三个阶段:起动、稳定运转和停车阶段 a) 起动阶段:外力对系统做正功(W d-W r>0),系统的动能增加(E=W d-W r),机械的运转速度上升,并达到工作运转速度。 b)稳定运转阶段:由于外力的变化,机械的运转速 度产生波动,但其平均速度保持稳定。因此,系统 的动能保持稳定。外力对系统做功在一个波动周期 内为零(W d-W r=0)。 c)停车阶段:通常此时驱动力为零,机械系统由正 常工作速度逐渐减速,直至停止。此阶段内功能关 系为W d=0;W r=E。 (3)、作用在机械上的驱动力 驱动力由原动机产生,它通常是机械运动参数 (位移、速度或时间)的函数,称为原动机的机械 特性,不同的原动机具有不同的机械特性。如三相 异步电动机的驱动力便是其转动速度的函数,如图 所示。 B点:Mmax(最大的驱动力矩)、ωmin(最 小的角速度); N点:M n为电动机的额定转矩,ωn为电动机的额定角速度; C点:所对应的角速度ω0为电动机的同步角速度,这时的电动机的转矩为零。 BC段:外载荷Mˊ↑,ω↓,电机驱动力矩将增加 M dˊ↑,使M dˊ= Mˊ,机器重新达到稳定运转; AB段:外载荷Mˊ↑,ω↓,但电机驱动力矩却下降 M dˊ↓,使M dˊ< Mˊ,直至停车; 电机机械特性曲线的稳定运转阶段可以用一条通过N点和C点的直线近似代替。 M d = M n(ω0-ω)/( ω0-ωn) 式中M n、ωn、ω0可由电动机产品目录中查出。 (4)、生产阻力 生产阻力与运动参数的关系决定于机械的不同工艺过程,如: 车床:生产阻力近似为常数;

相关主题
文本预览
相关文档 最新文档