当前位置:文档之家› 凝汽器真空低原因分析及处理措施

凝汽器真空低原因分析及处理措施

凝汽器真空低原因分析及处理措施
凝汽器真空低原因分析及处理措施

凝汽器现状及应对凝汽器真空低的方法

大唐鲁北发电有限责任公司汽轮机为北京汽轮电机有限责任公司生产, 其配套的凝汽器为单壳体对分单流程表面式凝汽器。设计以海水为冷却介质,开放直流式冷却、TA1钛管为冷却管材、与TA2端板全部采用胀焊连接。目前凝汽器无配套的二次滤网、在线胶球清洗装置、无循环水加药杀生装置。至今1号机凝汽器已运行7个月,2号机凝汽器已运行4个月。

一、现状:

前期利用停机机会分别清理过1、2机凝汽器水侧入口,发现水室内壁粘有黄色泥状物,疑为海生物机体残留或氧化镁所致,如下图所示(以下各图系发电部化验人员于2010年2月所摄):

水室内截流有数量较多、不同形态、直径大于管径的水泥块、塑料袋等杂物,如下图所示:

钛管内壁结垢严重,影响传热效果,如下图所示:

近期随着天气转暖,循环水温度的不断上升,使我厂1、2机凝汽器真空降低,严重影响机组的经济和安全运行。其中1号机凝汽器端差由2010 .1.12的3.99℃上升到现在的11.97℃左右,2号机凝汽器端差由2010 .1.12的6.86℃上升到现在的9.87℃左右.说明现凝汽器脏污结垢情况严重,严重影响了传热效果,应及时清理。

附单台凝汽器主要参数:

二、分析:1号机凝汽器真空分析

下表是机组刚投入运行时与现在真空情况对比:

对照两个表格并结合1、2机上次停机清理凝汽器水室情况分析凝

汽器真空低主要有两个方面原因:

1、由于海水较脏且产生海生物使凝汽器部分管束堵塞或粘有泥状

物,就像闭式水板式换热器一样两板片之间粘有一层黄泥,这层泥严重

影响了冷却钛板的传热效果,造成凝汽器排汽压力升高,导致其真空下降,特别指出的是1号机组凝汽器部分冷却水管内部卡住一些煤矸石和

小水泥块(基建时循环水管道破裂导致),由于管束长12米,取出这些

碎块十分困难,严重影响凝汽器的传热效果。

2、循环水压力和流量不足,没有满足机组设备运行要求。

3、鲁北机组虽为海水直冷,但是实际为内河循环冷却,海水经过凝

结器后经自然冷却后又回到循环水泵入口,温度高,尤其夏天得不到有

效冷却,将严重影响机组真空。

三、解决办法:

1、长远打算应该加装胶球清洗系统,增设海水循环水杀生加药装置,防止系统内各部有机物滋生,如果有必要可改造或更换循环泵。此外,对氧化镁脱硫外排废水进行净化,防止亚硫酸镁废液掺和海水后进

入凝汽器,在水室中形成垢类沉积。

2、利用停机时间请专业清洗公司彻底清洗凝汽器。

附:300MW机组小指标对机组效率影响量参考表

由上表可知凝汽器真空每提高1KPa,发电煤耗会降低3.2g/kWh标煤,清理凝汽器完全有必要。

凝汽器管束漏泄原因分析及处理

凝汽器管束漏泄原因分析及处理 [ 摘要 ] 某电厂凝汽器管束频繁泄漏,且日趋严重;表现为机组运行时,凝结水导电度严重超标。根据这一难题,结合现场实际,从管束本身质量存在问题、管束安装时出现问题;管束镀膜质量问题;凝汽器安装时出现问题等导致凝汽器管束发生泄漏的几种原因进行阐述、分析,解析其判断方法;并针对其泄漏的原因做出相应的检修处理方案和运行中所应采取的适当的措施。通过一系列整改措施从根本上解决了凝汽器管束的频繁漏泄问题。 [ 关键词 ] 凝汽器、管束、漏泄 abstract the condenser piping of power plant frequently leaks, and the situation is more and more serious. therefore, when the set is operating, the electric conductivity of condensed water exceeds standard badly. according to this problem, and combining with the actual, we discuss, analysis and judge the causes leading to the leakage from following aspects: problems with the pipelines and its installation; piping bundle coating quality problem; problems with the installation of condenser. and making corresponding maintenance scheme and appropriate measures should be taken during operation according to its various leakage reasons. as a result, through a series of reforming measures, we

燃机电厂凝汽器真空系统泄漏原因分析、处理

燃机电厂凝汽器真空系统泄漏原因分析、处理 发表时间:2019-09-17T11:05:14.663Z 来源:《电力设备》2019年第7期作者:沈思宇杨云龙 [导读] 摘要:凝汽器真空系统真空好坏与汽轮机的的安全和经济运行紧密相关,但影响机组真空的因素多、真空系统范围广,真空漏点排查困难。 (华能重庆两江燃机发电有限责任公司重庆 400700) 摘要:凝汽器真空系统真空好坏与汽轮机的的安全和经济运行紧密相关,但影响机组真空的因素多、真空系统范围广,真空漏点排查困难。本文结合华能重庆两江燃机电厂凝汽器真空系统泄漏排查、分析、处理案例,将燃机电厂真空泄漏现象、真空泄露原因分析、处理方案和轴封加热器疏水多级水封问题进行深入剖析,拟为其他公司机组凝汽器真空系统泄漏的处理解决提供参考。 关键词:真空泄露、原因分析、处理方案、多级水封 1 前言: 凝汽器真空下降,对机组振动,胀差,轴向位移,推力瓦温度和回油温度,低压缸的排汽温度等都会造成影响,关乎机组安全运行;同时,凝汽器在漏入空气后,排汽压力升高,蒸汽焓降减小,同时不凝结气体分压升高,对蒸汽换热、凝结的影响,加大了排汽损失。对机组经济运行也至关重要。 2 机组概况 华能重庆两江燃机发电有限责任公司两套2*470MW燃气-蒸汽联合循环蒸汽轮机为东方电气集团生产的联合循环冲动式、三压、再热、双缸、向下排汽、抽凝供热汽轮机,额定功率133.7MW。每台机组配备两台100%容量的水环式真空泵,型号:2BE1 253。启动时,两台真空泵并列运行,满足启动时间要求,正常运行时一台运行,一台备用。真空泵的排汽管连接方式为顶排式。 3 两江燃机电厂凝气器真空系统漏真空案例分析 按照DL/T932-2005《凝汽器与真空系统运行维护导则》【1】要求,机组正常运行时,每月进行一次真空严密性试验,机组容量>100 MW,真空严密合格标准为:凝汽器背压上升速率≤270pa/min(华能重庆两江燃机要求凝汽器背压上升率≤200pa/min合格)。华能重庆两江燃机电厂最近出现两次凝汽器真空系统漏真空问题,通过一系列的查漏消缺工作进行了消除。 案例一 2018年7月份,两江燃机电厂两台机组真空严密性试验均超过合格值,试验结果不合格。以一次实验结果为例,试验数据为:#1机背压上升率为600pa/min。针对#1机组真空严密性试验数值超标问题,进行相应的运行调整操作:增启循环水泵真空无明显变化;增启真空泵真空下降0.4kPa左右;调整轴封压力及轴加风机负压真空无明显变化。确认#1机组真空系统存在泄漏。针对这一问题,电厂进行了一系列查漏工作,如灌水查漏、法兰接头等喷肥皂水检漏、低压轴封系统割管检查等,最终通过氦质仪检漏查明漏点: 氦质谱仪器查漏:在真空泵排气管出口采用型氦质谱检漏仪监测氦气浓度,对#1机凝汽器抽真空系统管道法兰、阀门,与凝汽器疏水扩容器连接的疏水管道法兰、阀门,轴封系统管道阀门及轴封加热器、疏水管道阀门,凝汽器膨胀节,连通管及低压缸中分面结合面通过喷氦气进行检漏。检漏发现:低压缸进汽膨胀节处法兰处喷氦检测排气氦气含量高达3.2×10-4远高于检漏仪本底值2.0×10-7Pa/L.s。 1)针对漏点的解决方案: 针对喷氦查漏发现漏点,结合机组运行情况,机组连续启停时,采取了涂专用密封胶堵漏消缺方案;并于年底,利用机组停运检修机会,起吊汽轮机中低压缸连通管后更换了法兰垫片消缺(消缺方案见图1、图2)。 结合消缺后真空严密性试验数据比较,可以确认导致本次#1机真空严密性试验不合格的原因为低压缸进汽膨胀节处法兰垫片损坏漏真空所致。 图1:低压缸进汽膨胀节结构图(为1根螺栓带三密封垫形式,如果13两个密封垫损坏将出现内缸蒸汽外漏,14处密封垫损坏将导致外缸处漏真空) 图2:低压缸进汽法兰面实物图(检修时对此处下部法兰进行了改良:在精确控制两片垫片厚度一致的情况下,由齿形垫改型为压缩性、回弹性更好的缠绕垫,以保证内外均可严密密封) 2)缺陷处理效果: 在明确低压缸进汽膨胀节处法兰垫片损坏漏真空为主要漏点后,电厂采取了对泄露法兰缝隙涂胶堵漏临时消缺方案。临时堵漏后真空严密性试验,#1机真空严密性试验:凝汽器背压上升速率87pa/min ,合格。后续#1机利用检修机会更换低压缸进汽膨胀节处法兰垫片后做真空严密性试验,凝汽器背压上升率64.2pa/min,远优于合格值。至此两江燃机电厂#1机组漏真空问题圆满解决。 案例二 2019年1月28日,华能重庆两江燃机电厂#2机组做真空严密性试验,凝汽器背压上升率618 pa/min,不合格。针对#2机组真空严密性试验数值超标问题,两江电厂再次开展相关真空查漏工作: 氦质谱仪器查漏:结合之前真空系统查漏经验,首先对之前易出问题的漏点查起,运用氦质谱检漏仪对#2低压缸前、后轴封、低压缸

凝汽器真空度对汽轮机效率的影响分析

凝汽系统及凝汽器真空影响因素 摘要 凝汽设备是汽轮机组的重要辅机之一,是朗肯循环中的重要一节。对整个电厂的建设和安全、经济运行都有着决定性的影响。 从循环效率看,凝汽器真空的好坏,即汽轮机组最终参数的高低,对循环效率所产生的影响是和机组初参数的影响同等重要的。虽然提高凝汽器真空可以使汽轮机的理想焓降增大,电功率增加,但不是真空越高越好。影响凝汽器真空的原因是多方面的,主要有:汽轮机排气量、循环水流量、循环水入口温度等。 关键词:朗肯循环;汽轮机;凝汽器;真空

2凝汽器性能计算及真空度影响因素分析 提高朗肯循环热效率的途径 ①提高平均吸热温度的直接方法是提高初压和初温。在相同的初温和背压下, 提高初压可使热效率增大,但提高初压也产生了一些新的问题,如设备的强度问题。在相同的初压及背压下,提高新汽的温度也可使热效率增大,但温度的提高受到金属材料耐热性的限制。。 ②降低排汽温度在相同的初压、初温下降低排汽温度也能使效率提高,这是 由于循环温差加大的缘故。但其温度下降受到环境温度的限制。

2.2 凝汽系统的工作原理 图6.1是汽轮机凝汽系统示意图,系统由凝汽器5、抽气设备1、循环水泵4、凝结水泵6以及相连的管道、阀门等组成。 图6.1 汽轮机凝汽系统示意图 1-抽气设备;2-汽轮机;3-发电机;4-循环水泵;5-凝汽器;6-凝结水泵 凝汽设备的作用主要有以下四点[9]: (1)凝结作用凝汽器通过冷却水与乏汽的热交换,带走乏汽的汽化潜热而使其凝结成水,凝结水经回热加热而作为锅炉给水重复使用。 (2)建立并维持一定的真空这是降低机组终参数、提高电厂循环效率所必需的。 (3)除氧作用现代凝汽器,特别是不单设除氧器的燃气蒸汽联合循环的装置中的凝汽器和沸水堆核电机组的凝汽器,都要求有除氧的作用,以适应机组的防腐要求。 (4)蓄水作用凝汽器的蓄水作用既是汇集和贮存凝结水、热力系统中的各种疏水、排汽和化学补给水的需要,也是缓冲运行中机组流量急剧变化、增加系统调节稳定性的需求,同时还是确保凝结水泵必要的吸水压头的需要。 为了达到上述作用,仅有凝汽器是不够的。要保证凝汽器的正常工作,必须随时维持三个平衡:○1热量平衡,汽轮机排汽放出的热量等于循环水带走的热量,故在凝汽系统中设置循环水泵。○2质量平衡,汽轮机排汽流量等于抽出的凝结水流量,所以在凝汽系统中必须设置凝结水泵。○3空气平衡,在凝汽器和汽轮机低压部分漏入的空气量等于抽出的空气量,因此必须设置抽气设备[14]。 凝汽器内的真空是通过蒸汽凝结过程形成的。当汽轮机末级排汽进入凝汽器后,受到循环水的冷却而凝结成凝结水,放出汽化潜热。由于蒸汽凝结成水的过

热电厂汽轮机凝汽器真空度下降成因及处理措施探究(2021)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 热电厂汽轮机凝汽器真空度下降成因及处理措施探究(2021)

热电厂汽轮机凝汽器真空度下降成因及处理 措施探究(2021) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 凝汽设备是凝汽式汽轮机的重要组成部分,而凝汽器真空度直接影响整个热电厂的运行稳定性、经济性、可靠性与安全性,因此为了防止凝汽器出现真空下降的状况,应该准确的分析引起凝汽器真空下降的原因,并采取相应的措施进行处理,保证汽轮机正常的运行。 1.热电厂汽轮机凝汽器真空下降的原因 1.1.凝汽器真空系统不严密。真空系统存在小漏点时,不凝结的汽体会进入处于真空转台的位置,泄露到凝汽器中,如果不凝结的汽体过多,并滞留在凝汽器中影响传热,很容易造成真空异常下降。凝汽器真空系统不严密造成的真空下降的主要表现为:凝汽器出口循环水温与汽轮机排汽温度的差值增大,凝结水冷却度增大。 1.2.凝汽器水侧泄露。凝汽器铜管泄露会导致硬度较高的冷却水进入凝汽器汽测,提升凝汽器水位,引起凝汽器真空下降,此外,其还会导致水质变坏,腐蚀或锅炉或其他设备,甚至会引起锅炉爆管。

凝汽器工作原理

凝汽器工作原理 凝汽器:使驱动汽轮机做功后排出的蒸汽变成凝结水的热交换设备。蒸汽在汽轮机内完成一个膨胀过程后,在凝结过程中,排汽体积急剧缩小,原来被 蒸汽充满的空间形成了高度真空。凝结水则通过凝结水泵经给水加热 器、给水泵等输送进锅炉,从而保证整个热力循环的连续进行。为防止 凝结水中含氧量增加而引起管道腐蚀,现代大容量汽轮机的凝汽器内还 设有真空除氧器。 凝汽器的主要作用: 1)在汽轮机排汽口造成较高真空,使蒸汽在汽轮机中膨胀到最低压力,增大蒸汽在汽轮机中的可用焓降,提高循环热效率; 2)将汽轮机的低压缸排出的蒸汽凝结成水,重新送回锅炉进行循环; 3)汇集各种疏水,减少汽水损失。 4)凝汽器也用于增加除盐水(正常补水) 表面式凝汽器的工作原理:凝汽器中装有大量的铜管,并通以循环冷却水。当汽轮机的排汽与凝汽器铜管外表面接触时,因受到铜管内水流的冷却,放出汽化潜热变成凝结水,所放潜热通过铜管管壁不断的传给循环冷却水并被带走。 这样排汽就通过凝汽器不断的被凝结下来。排汽被冷却时,其比容急剧缩小,因此,在汽轮机排汽口下凝汽器内部造成较高的真空。 凝汽器是火力发电厂的大型换热设备。图1为表面式凝汽器的结构示意图。

凝汽器运行时,冷却水从前水室的下半部分进来,通过冷却水管(换热管)进入后水室,向上折转,再经上半部分冷却水管流向前水室,最后排出。低温蒸汽则由进汽口进来,经过冷却水管之间的缝隙往下流动,向管壁放热后凝结为水。真空度定义: 从真空表所读得的数值称真空度。真空度数值是表示出系统压强实际数值低于大气压强的数值,即: 真空度=大气压强—绝对压强 凝汽器中真空的形成主要原因 在启动过程中凝汽器真空是由主、辅抽汽器将汽轮机和凝汽器内大量空气抽出而形成的。 在正常运行中,凝汽器真空的形成是由于汽轮机排汽在凝汽器内骤然凝结成水时其比容急剧缩小而形成的。如蒸汽在绝对压力4kpa时蒸汽的体积比水的体积大3万倍,当排汽凝结成水后,体积就大为缩小,使凝汽器内形成高度真空。凝结器的真空形成和维持必须具备三个条件: 1)凝汽器铜管必须通过一定的冷却水量; 2)凝结水泵必须不断地把凝结水抽走,避免水位升高,影响蒸汽的凝结; 3)抽汽器必须把漏入的空气和排汽中的其它气体抽走。 真空降低的原因: (1)循环水量减少或中断: ①循环水泵跳闸、循进阀门误关、循环水泵出口蝶阀阀芯落、循进滤网堵:水量中断,进水压力下降,出水真空至零,循泵电流至零或升高,须不破坏真空停机;若未关死,立即减负荷恢复; ②循出阀门误关、凝汽器水侧板管堵塞、收球大网板不在运行位置:循环水压上升,温升增大; ③进水不畅:循泵电流晃动,进水压力下降,出水真空降低,循环水温升增大,水量不足;. |4 Q1 j- {3 u ④虹吸破坏(进水压力低、板管堵塞、出水侧漏空气):虹吸作用减小时,会使水量减少,却又提高了循环水母管压力,而压力高对维持水量是有利的,所以虹吸破坏必然是个过程。出水真空晃动且缓慢下降,温升增大。操作:提高循环水压力(关小出水门),对循出放空气,重新建立出水真空。 (2)轴封汽压力低:提高压力,关小轴加排汽风机进气门;冷空气会使转子收缩,负差胀增大。 (3)凝汽器水位高:排汽温度升高同时,凝水温度下降,过冷度增加。端差增大;水位﹥抽汽口高度、运行凝泵跳闸、管路堵、备用泵逆止门坏、系统主要

_汽轮机凝汽器真空度下降原因分析

汽轮机凝汽器真空度下降原因分析在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。汽轮机的真空下降会使汽轮机的可用热焓降减少器综合性.凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。因此保持凝汽器良好的运行工况,保证凝汽器的最有利真空;是每个发电厂节能的重要内容。而凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,提高凝汽器性能,维持机组经济真空运行,直接提高整个汽轮机组的热经济性。 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述: 一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停机。 ⑵循环水量不足 循环水量不足的主要特征是:真空逐步下降;循环水出口和人口温差增大。由于引起循环水量不足的原因不同,因此有其不同的特点,所以可根据这些特征去分析判断故障所在,并加以解决: ①若此时凝汽器中流体阻力增大,表现为循环水进出口压差增大,循环水泵出口和凝汽器进口的循环水压均增高,冷却塔布水量减少,可断定是凝汽器内管板堵塞,此时可采用反冲洗、凝汽器半面清洗或停机清理的办法进行处理。

影响凝汽器真空地因素分析及对策

影响凝汽器真空的因素分析及对策 系统凝汽器换热效率等几个方面进行分析探讨,对其它大功率机组的安全经济运行有定参考价值。 凝汽器是凝汽式汽轮发电机组的个重要组成部分,凝汽器真空是影响机组经济安全运行的个重要指标。国产引进型3,触贾机组普遍存在真空度偏低的问,凝汽器真空度在9194之间,比设计值低3,6个百分点,使机组供电煤耗增加化识4.因此,采取措施提高凝汽器真空度,具有定经济价值。 汉电厂期工程2台300,贾汽轮机组为上海汽轮机厂制造的引进型机组,近几年来,凝汽器真空度偏低。为提高凝汽器真空,从以下几个方面进行了技术改造改进真空泵入口管及冷却管,提高真空泵出力;改造循环水滤网,提高循环水水质及循环水流量;部分更换凝汽器铜管,保持凝汽器管束内外面清洁;改进给水泵密封水幻型槽,提高真空系统严密性。通过以上系列改造措施,凝汽器真空度有所提高,确保了机组安全运行,降低了机组煤耗。 1影响凝汽器真空的因素凝汽器真空的形成是由于在凝汽器内蒸汽和凝结水汽液两相之间存在的个平衡压力。蒸汽凝结时的温度,越低,凝汽器内的绝对压力越低凝汽器的真空度为影响凝汽器真空的因素很多,如凝汽器结构和管材凝汽器冷凝面积冷却水量冷却水温真空系统严密性真空系统抽气能力热力系统疏水量等,其中有些参数已

在设计制造环节中确定,如凝汽器的内部结构管材抽气系统布置和容量等;有些是受气候和环境因素影响,如循环水温度;有些则是受安装运行的影响,如管系结垢漏空气循环水量等。 密性凝汽器抽气系统循环水系统凝汽器换热效率几方面进行初步分析与探讨。 2真空系统真空系统范围较大,所有处于低于大气压力运行的设备管道和阀门等不严密处都可能漏入空气,如果漏入的空气量较大,而抽气设备又无法及时地将其排出,则凝汽器汽侧的空气和其它非凝结气体会在凝汽器管束周围面形成气膜,使热阻增加,传热系数降低,会严重影响凝汽器的传热性能,导致凝汽器传热端差增大,真空降低,从而降低了循环效率。同时,凝汽器中非凝结气休积聚,使凝结水过冷度上升,影响低压加热器回热效率,对机组整体热效率不利。根据实际运行经验,真空系统易泄漏空气的薄弱环节有凝汽器汽侧入孔门及喉部焊缝;在潮湿的地方或地下管道发生锈蚀破损;管道的法兰接口处;凝汽器及低压加热器汽侧的水位计接头;疏水系统阀门容器等;低压缸结合面,低压缸轴封。 近两年来,汉电厂真空系统严密性试验不合格。经过长时间大量的消漏工作,真空度有所提高,但效果不甚理想。经与西安电力热工研宄院研究分析,给水泵密封水回水幻型槽漏空气可能性较大。汉电厂给水泵为上海电力修造总厂生产的0600240型锅炉给水泵,其密封水采用凝结水,回水通过型槽疏水至凝汽器,给水泵自由端密封水回水孔与大气相通。由于型槽原设计采用级结构,在机组动态运行过程

凝汽器钛管泄漏的分析处理

凝汽器钛管泄漏的分析处理 发表时间:2018-08-13T15:54:37.373Z 来源:《电力设备》2018年第8期作者:汤代荣 [导读] 摘要:介绍了某新建电厂调试过程中,凝汽器钛管泄漏事件分析及处理过程。 (中电投珠海横琴热电有限公司 519000) 摘要:介绍了某新建电厂调试过程中,凝汽器钛管泄漏事件分析及处理过程。为同类机组的运行维护提供参考和探讨。 关键词:凝汽器;钛管泄漏;分析处理 0 引言 某厂建有两套9FA燃气轮机联合循环发电机组,安装了2台LC85/N125-13.00/3.30/0.420/1.20 型抽凝式汽轮机。与其配套的N-9500-3 型凝汽器采用单壳体、双分流、表面式结构,主要部件有凝汽器加长段、凝汽器上部、凝汽器下部、前水室、后水室及凝结水聚集器等。主凝结区安装 8474 根D28.575mm×0.5mm,L=11238mm 的钛管,1012 根D28.575mm×0.7mm,L=11238mm 的钛管安装在空冷区及顶部圆周段,管子两端胀接在管板上,借助中间管板支撑。1号机组在调试期间并发生了两起凝汽器钛管泄漏事件,直接影响了机组调试进度。 1 凝汽器钛管泄漏的危害 凝结水是锅炉给水的主要组成部分,凝结水的水质直接影响锅炉的水质。锅炉补充水采用化学除盐工艺基本能保证水汽的质量,但当凝汽器钛管泄漏,冷却水进入凝结水中,将导致凝结水水质恶化,进而影响给水水质,通过减温水带入盐分,影响蒸汽品质,使炉水含盐量升高,造成锅炉腐蚀。如果冷却水为海水,则将引起酸腐蚀,甚至导致锅炉脆爆。 用海水冷却的凝汽器由于泄漏使海水漏入凝结水中,并随之进入锅炉,造成给水硬度高,炉水磷酸根降低甚至消失,导致水冷壁管结垢、腐蚀。海水中氯化镁进入锅炉,分解产生盐酸,造成炉水氯离子含量高,pH值降低,因此在氯离子存在下可发生闭塞电池腐蚀及pH值降低造成的全面酸腐蚀。 2 事件经过及检查情况 (1)8月3日,1号机组调试过程中凝结水硬度及钠离子超标(标准为硬度0,钠离子<10μg.L-1),具体数值见表1,判断凝汽器钛管发生泄漏。 表1 凝结水硬度及钠离子化验表 8月5日,利用1号机组停机消缺机会,对凝汽器进行灌水查漏。检查发现凝汽器北侧有3根钛管泄漏,安装单位对泄漏钛管的两端采用了铜头封堵。8月8日启动#1机组后化验凝结水硬度及钠离子指标正常。 (2)8月13日,1号机组168h试运第2天,凝结水硬度及钠离子指标再次超标,具体数值见表2。 表2 凝结水硬度及钠离子化验表 由于1号机组正处在168h试运阶段,在发现凝结水硬度及钠离子指标超标后,8月14日 09:00开大凝结水泵出口放水门,采取加大补排水方式来降低硬度及钠离子指标。23:15凝结水硬度及钠离子指标突然猛增,判断为凝汽器钛管大量泄漏,只能采取停机处理。停机后,同样对凝汽器进行灌水查漏。检查发现还是靠凝汽器北侧新增9根钛管发生泄漏(见图1),图中铜头封堵处为泄漏的钛管。 图1 1号机组凝汽器钛管泄漏分布图 3 凝汽器钛管泄漏原因分析及处理 为什么泄漏的钛管都是靠近凝汽器北侧本体处?大家对此提出了疑问。在放干凝汽器汽侧凝结水后,检修人员进入凝汽器内部检查发现,有三根钛管破损严重(见图2),且附近的钛管颜色都有不同程度的变色现象。仔细检查发现,正对着破损的钛管处有一排汽管口(见

影响凝汽式汽轮机真空度因素分析

影响凝汽式汽轮机真空度因素分析 离心式富气压缩机是催化裂化装置的心脏,是确保催化裂化装置安全平稳运行的核心设备。而作为它的驱动设备凝汽式汽轮机则是心脏中的心脏。保持合格的真空度是 凝汽式汽轮机正常运转的关键条件之一,凝汽器的真空度是影响汽轮机效率的重要因素,对整个汽轮机组的热经济性影响较大。真空度的保持和建立一般有几个影响因素。 为此,从抽气器抽气效果、凝汽器端差、循环水温升和凝汽器换热效果的角度,分析了影响凝汽器真空的因素,通过查找资料并参考一些汽轮机机组实际问题的分析处理方法,总结了几点影响凝汽器真空度下降的原因。 标签:传热端差;真空严密性;汽轮机抽汽器;轴端漏气 1凝汽器端差 凝汽器压力下的饱和温度(凝结水温)与循环冷却水出口温度之差称为端差。 理论上,端差越低越小,但实现困难,实际上综合循泵耗功(电)、复水器换热体积,最佳换热流速(及流量),确定出一定(4-6、6-8度)的经济控制指标。 影响凝汽器运行状况的好坏的一个重要因素是凝汽器传热端差值的变化,端差值的变化可作为判别凝汽器运行状态的依据。运行中凝汽器端差值越小,则运行情况越好,汽轮机的热效率就会越高。 从凝汽器实际的运行情况分析,凝汽器传热端差值越小对凝汽器的经济运行越是有利的,端差小,说明循环水吸收的热量多,凝汽器铜管的传热情况好,同一循环水流量可以获得相对较高的凝汽器真空度;在循环水流量,压力等参数不变,汽轮机负荷恒定的情况下,若端差值变大,则说明凝汽器铜管的传热效果变差。导致凝汽器铜管传热效率变差原因有两点:一是铜管表面的污染严重,因此严重影响传热效率的提升;二是由于真空系统不严密漏空气或抽气器工作不正常导致真空度下降,使铜管外表面形成空气膜因此阻碍了传热。因此,一般可把端差的大小作为凝汽器铜管清洁度及漏空气的一项重要的依据;凝汽器铜管传热量的增加,导致凝汽器真空上升,端差则有所增加。分析端差要在相同负荷,冷却水温度,冷却水量与正常情况下(即凝汽器铜管清洁,真空严密性良好)的数值进行比较。实际生产中若发现端差升高较快,往往是由于抽气器工作不正常,或者真空系统严密性差引起的。若端差值逐渐升高,则一般是由于凝汽器铜管表面清洁引起的。 2真空系统严密性

机组真空下降的原因分析与处理方法

机组真空下降的原因分析与处理方法 前言: 汽轮机的排汽进入凝汽器汽侧,大流量的循环水送入凝结器铜管内侧,通过铜管内循环水与排汽换热把排汽的热量带走,使排汽凝结成水,其比容急剧减小(约减小到原来的三万分之一),因此原为蒸汽所占的空间便形成了真空。而不凝结气体则通过真空泵抽出,从而起到维持真空的作用。 我厂曾经多次发生凝汽器的真空下降的异常情况,给汽轮机组的安全经济运行造成一定的影响,真空每下降1Kpa将增加约3g/kw.h 煤耗;各机组都不同程度发生过凝汽器真空下降的异常情况,只是真空下降的最低数值不同。造成凝汽器真空下降的原因较多,现在就生产实际工作中遇到的造成凝汽器真空下降常见的原因与处理方法介绍给大家仅供参考、交流。 一、在汽轮机组启动过程中,造成凝汽器真空下降的原因: 1、汽轮机轴封压力不正常 (1)、原因:在机组启动过程中,若轴封供汽压力不正常,则凝汽器真空值会缓慢下降,当轴封压力低时,汽轮机高、低压缸的前后轴封会因压力不足而导致轴封处倒拉空气进入汽缸内,使汽轮机的排汽缸温度升高,凝汽器真空下降。而造成轴封压力低的原因可能是轴封压力调节阀故障;轴封供汽系统上的阀门未开或开度不足。 (2)、象征:真空表指示值下降、汽轮机的排汽缸温度的指示值上升。(3)、处理:当确证为轴封供汽压力不足造成凝汽器真空为缓慢下降

时,值班员必须立即检查轴封压力、汽源是否正常,在一般情况下,只需要将轴封压力调至正常值即可。若是因轴封汽源本身压力不足,则应立即切换轴封汽源,保证轴封压在正常范围内即可,若是无效,则应该进行其它方面检查工作。 2、凝汽器热水井水位升高 (1)、原因:凝汽器的热水井水位过高时,淹没凝汽器铜管或者凝汽器的抽汽口,则导致凝汽器的内部工况发生变化,即热交换效果下降,这时真空将会缓慢下降。而造成凝汽器的热水井水位升高的原因可能是a、凝结水泵故障;b除盐水补水量过大;c、凝汽器铜管泄漏;d、凝结水启动放水排水不畅;e、凝结水系统上的阀门开度不足造成的。(2)、象征:真空表指示下降,汽轮机的排汽缸温度上升、而凝汽器水位计、就地水位计水位也会上升。 (3)、处理:当确证为凝汽器的热水井水位升高造成凝汽器真空为缓慢下降时,值班员必须立即检查究竟是什么原因使凝汽器水位上升,迅速想办法将凝汽器水位降至正常水位值。 3、凝汽器循环水量不足 (1)、原因:当循环水量不足时,汽轮机产生的泛汽在凝结器中被冷却的量将减小,进而使排汽缸温度上升,凝汽器真空下降,造成循环水量不足的原因可能是循环水泵发生故障;循环水进水间水位低引起循环水泵汽化,使循环水量不足;机组凝汽器两侧的进、出口电动门未开到位;在凝汽器通循环水时,系统内的空气未排完。 (2)、象征:真空表指示值会下降,汽轮机的排汽缸温度的指示值上

300MW发电机组凝汽器真空严密性不合格原因分析及处理

300MW发电机组凝汽器真空严密性不合格原因分析及处理 真空严密性不合格是威胁汽轮机安全经济运行的因素,文章对河北华电石家庄裕华热电有限公司1号机组发生过的真空严密性不合格现象进行分析,制定了合理的解决方案,实施后取得了良好的效果,彻底解决了真空严密性不合格的缺陷,对同类设备的问题处理具有有价值的借鉴意义。 标签:汽轮机;真空严密性;不合格;原因;疏水;砂眼 引言 河北华电石家庄裕华热电有限公司1号机组为C300/200-16.7/0.43/537/537亚临界、一次中间再热、凝汽式汽轮机,配套给水泵为2×50%B-MCR汽动给水泵及备用1×30%B-MCR电动调整给水泵。 根据《凝汽器与真空系统运行维护导则DL/T932-2005》规定,机组容量≥100MW,真空严密性指标应≤0.27kPa/min。裕华热电1号汽轮机组,于2014年6月份大修后启动,真空严密性试验在0.46kPa/min,不能达到合格水平。 经过分析原因并进行了治理,最终解决了该问题,保证了汽轮机的安全经济运行。 1 真空严密性差对发电机组运行的影响 汽轮机凝汽器真空严密性是凝汽器工作性能的重要指标,是影响汽轮机经济运行的主要因素之一。严密性下降会造成汽轮机低压缸排汽温度上升,热力系统循环效率降低,凝汽器真空度每下降1kPa,发电功率降低1%。空气进入凝汽器也会导致凝结水含氧量升高,腐蚀锅炉、汽轮机设备。因此,在机组运行过程中应密切监视汽轮机凝汽器的真空值,当真空降低时,分析引起真空降低的原因,并选择合理的处理方案,保证机组的安全、经济运行。 2 存在问题及现象 2009年1月裕华热电1号机正式投产,真空严密性均为优,2014年06月份1号机大修后启动,真空严密性试验在0.46kPa/min,再启动一台真空泵,真空值无变化,调整汽轮机汽封压力及小机、轴加水封筒补水等手段,真空均无明显改善。 3 原因分析 空气泄漏入凝汽器是引起凝汽器真空下降的根本原因,影响凝汽器真空值变化有两个方面的原因,凝汽器中蒸汽压力p1和泄漏至凝汽器中不凝结气体的份量p2,根据道尔顿定律,凝汽器中混合物的总压力为构成混合物的所有气体的

汽轮机真空下降原因的分析

第二章汽轮机真空下降的原 因 在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。而凝汽器真空度是汽轮机运行的重要指标,也是反映凝汽器综合性能的一项主要考核指标。凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,从而提高凝汽器性能,维持机组经济真空运行,以便直接提高整个汽轮机组的热经济性。 第一节汽轮机凝汽器真空度下降的主要特征 在汽轮机组的正常运行中我们可以通过各种仪表、数据来了解和分析汽轮机凝汽器的真空度好坏情况。一般汽轮机凝汽器真空度下降的主要特征有: (1)真空表指示降低; (2)排汽温度升高; (3)凝结水过冷度增加;

(4)凝汽器端差增大; (5)机组出现振动; 第二节汽轮机凝汽器真空度下降原因分析 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述:一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环 毕业设计(论文)说明书专用第7页 水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停

汽轮机凝汽器最佳真空的影响因素及确定方法

汽轮机凝汽器最佳真空的影响因素及确定方法 发表时间:2017-07-04T11:33:12.393Z 来源:《电力设备》2017年第7期作者:曲智超[导读] 摘要:凝汽器真空是汽轮机运行时的一个重要参数,对汽轮机的抽气设备安全有着重要的影响。现有的凝汽器最佳真空的确定方法只适用于凝汽器水侧管壁清洁、汽轮机真空系统严密性正常或抽气设备运行性能正常的情况。 (华电电力科学研究院浙江杭州 310030)摘要:凝汽器真空是汽轮机运行时的一个重要参数,对汽轮机的抽气设备安全有着重要的影响。现有的凝汽器最佳真空的确定方法只适用于凝汽器水侧管壁清洁、汽轮机真空系统严密性正常或抽气设备运行性能正常的情况。未考虑到循环水流量变化引起凝汽器真空变化的同时对汽轮机排汽阻力、凝结水过度冷却及凝结水含氧量的影响,同时还未考虑到锅炉补给水对凝汽器真空的影响。文中首先对凝汽器 清洁率对最佳真空的影响进行了分析,然后提出一种新的凝汽器最佳真空的确定方法,该方法利用凝汽器综合清洁系数来体现凝汽器水侧管壁脏污程度、汽轮机真空系统严密性及抽气设备运行性能对最佳真空的影响,从而提高了最佳真空的确定精度。结合其他的影响因素,归纳总结出确定汽轮机凝汽器最佳真空的方法。 关键词:汽轮机;凝汽器;最佳真空;方法 1前言 随着我国电力市场体制的逐渐完善,竞价上网的全面展开,对汽轮机运行经济性提出了更高的要求。其中,大容量汽轮机主要辅机的合理运行方式对汽轮机的运行经济性产生很大的影响。在汽轮机众多的辅助设备中,当给水泵采用小汽轮机带动后,冷却水系统中的循环水泵成为耗电量最大的设备,约占汽轮发电机组额定发电量的1%-1.5%。这就要求汽轮机运行部门根据当时的汽轮机负荷和冷却水温度,及时调整冷却水系统的运行方式,调整循环水泵的运行台数,实现冷却水系统的优化运行,保持凝汽器在最佳真空下运行,最大限度地提高汽轮机的运行经济性。 目前,凝汽器最佳真空的确定,一般都采用计算的方法,即通过计算得到对应当时冷却水温度、冷却水流量及汽轮机排汽量之间的关系,从而得到当时的凝汽器真空,再利用与前述试验方法类似的过程,得到凝汽器的最佳真空。但现有的计算方法在计算凝汽器端差时,均是在假定当时凝汽器水侧管壁的清洁、真空系统严密性状态正常或抽气设备性能良好的情况下进行计算,而对这些因素失常时的情况考虑不够。为此,首先对现有的通过凝汽器性能计算确定最佳真空的方法进行了分析,指出其存在的问题,最后,提出一种考虑水侧管壁清洁程度、真空系统严密性或抽气设备工作性能的最佳真空的确定方法。 2影响凝汽器真空的主要因素在设备运转正常的情况下,凝汽器的蒸汽压力可以通过饱和温度来确定,而饱和温度又直接受到循环水入口温度、循环水温升和凝汽器端差的影响,所以,这三者是影响凝汽器真空的主要因素。循环水入口温度主要受环境因素的影响较大,相同设备在冬天和夏天产生的循环水温度差异非常明显。冬天温度明显较低。入口温度还与冷却设备有一定关系,设备越好,冷却效果越好,相应的入口温度越低。根据凝汽器热平衡公式可以推算出,循环水温升主要取决于循环水的流量,循环水流量越小温升越高,真空越低。而现实生产中,循环水量主要由循环水泵决定,与循环水泵的流量和并联台数密切相关。凝汽器端差是凝汽器内汽轮机排汽压力对应的饱和温度与循环水出口温度之差,根据凝汽器热平衡公式可以推出,凝汽器端差主要受凝汽器传热系数、循环水量和排汽量的影响,凝汽器传热系数越高,凝汽器端越小,真空越高。一切影响凝汽器传热系数的因素都将影响真空。 3影响凝汽器最佳真空的因素传统的最佳真空就是指,改变循环水量使机组电功率的增加值与循环水泵所耗功率的增加值之间的差值达到最大时所对应的真空。而忽略了循环水费用、循环水最小流速、凝汽器脏污程度、真空泵损耗功率等带来的影响,从而使计算结果与现实理想结果产生偏差。 3.1最佳循环水量的影响 根据传统的最佳真空确定方法而推算出的最佳循环水量,虽然考虑了输送循环水过程中所产生的单设备功率消耗,实现了循环水系统的经济优化,但在循环水运行费用上,没有考虑水资源的消耗,以及对河流大气造成的环境污染问题。随着社会的进步,人们对环境的重视程度越来越高,政府的相关部门对环境污染问题控制严格,凝汽器所消耗的循环水量以及因此而产生的热水、热气的排放对环境的污染,因此而带来的经济损失也是不容忽视的。所以说传统的最佳真空只是能量意义上的最佳真空,要想达到真正意义上的经济最佳真空,就必须要考虑循环水本身的费用,这样才能保证汽轮机运行时的经济收益最大化。 3.2清洁程度的影响 传统的最佳真空确定方法,是在理想的情况下,假定凝汽器管壁清洁,但现实生产中这此因素不可能完全符合要求,传统的最佳真空确定方法对以上因素没有考虑。当凝汽器管壁不够清洁时,虽然循环水流量以及循环水泵消耗的功率受到的影响非常小,但是凝汽器的传热系数却受到了较大的影响,进而使得凝汽器的端差发生变化,最终影响凝汽器的最佳真空的确定。可见清洁程度在最佳真空的确定过程中也是必须要考虑的因素。 3.3真空泵单耗的影响 在汽轮机的运行过程中,由于设备密封性能等原因,难免会有空气进入汽轮机当中,从而影响凝汽器的最佳真空。而正空泵的作用就是不停的将这部分空气抽走,使得凝汽器的真空保持在最佳状态下,当真空泵运转正常、容量适合的时候,凝汽器的最佳真空主要受循环水入口温度、循环水温升和凝汽器端差等因素影响,但是当真空泵运转不正常、容量偏小时,它就不能及时的将汽轮机内的空气抽走,从而使得汽轮机的背压升高,凝汽器的真空降低,从而使得汽轮机的循环热效率大大降低。可见真空泵等抽气设备也是影响凝汽器最佳真空的一个重要因素。 3.4过冷度和含氧量的影响 凝汽器中所含的空气是产生过冷度的主要原因,漏入的空气量越多,凝结水的温度就越低,产生的过冷度就愈大,从而造成的损失就愈大。另外背压的降低会使得凝结水中的氧气含量增加,氧气含量的增加又会加大凝结水对管路和低压加热器的腐蚀,从而使得整个机组的经济性和安全性大大降低,为了除去氧气含量,势必增加除氧费用。 4凝汽器最佳真空的确定方法

汽轮机凝汽器真空度下降原因论文

浅析汽轮机凝汽器真空度下降的原因摘要:凝气设备是汽轮机组重要辅机之一,凝汽器用来冷却汽轮机排汽,使之凝结为水,再由凝结水泵送到除氧器,经给水泵送到锅炉。凝结水在发电厂是非常珍贵的,尤其对高温、高压设备。在汽轮机排汽口造成高度真空,使蒸汽中所含的热量尽可能被用来发电,因此,凝汽器工作的好坏,对发电厂经济性影响极大。在正常运行中凝汽器有除气作用,能除去凝结水中的含氧,从而提高给水质量防止设备腐蚀。因此在汽轮机运行中,监视和保证凝结水是非常重要的。 关键词:汽轮机、凝汽器真空度 abstract: the gas equipment of the steam turbine unit is one of important auxiliary machine, condensed steam turbine exhaust steam used for cooling, condenses into water, then the condensate pumps to the deaerator, the pump to the boiler. condensate in the power plant is a very precious thing, especially for high temperature and high pressure equipment. in the steam turbine exhaust steam mouth cause high vacuum, make steam as far as possible contains quantity of heat is used to make electricity, therefore, condenser work is good or bad, the economy influence on power stations is great. in normal operation of condenser have in addition to gas effect, can remove condensate of oxygen, so as to improve the quality

怎样判断凝汽器泄漏的位置

怎样准确判断凝汽器泄漏的位置 运行部陆继民 (摘要)凝汽器检漏设备是我厂正确快速判断凝汽器泄漏位置的重要依据对机组的安全经济运行有着重要的作用本文要叙述的内容是怎样才能做到快速准确判断泄漏位置 关键词凝汽器检漏泄漏 我厂每台机组的凝汽器都装有凝汽器泄漏检测设备该设备对凝汽器泄漏位置判断提供准确的依据缩短了机组查漏的时间为机组的安全经济运行提供了有力的保障近段时间 我厂的凝汽器泄漏较频繁特别是5机组7 8二个月共发生凝汽器泄漏8次之多给机组的安全经济运行带来了不利的因素同时在凝汽器泄漏位置的判断过程中也出现过不准确判断因此在实际操作中怎样做到迅速准确的判断出凝汽器的泄漏位置是运行人员应掌握的知识我本人根据工作实践认为要做到迅速准确判断出凝汽器泄漏位置应掌握以下知识 1 熟悉凝汽器泄漏检测设备和取样点的具体位置分布 2 掌握正确的判断方法 3 对凝汽器检漏水样的代表性和可信性作正确的判断下面以5机组为例说明 五号机组凝汽器检漏有4个取样点分别是低压B侧取样点单侧样低压热井取样点低压侧混合样高压B侧取样点单侧样高压热井取样点高低压侧混合样判断的方法是 1 根据高低热井取样点阳电导和钠离子的大小判断高压侧漏还是低压侧漏哪侧大就是哪侧漏 2 假如是低压热井的取样点数据大则把取样切换到低压B侧取样点测得低压B侧取样点数据 3 根据低压B侧取样点数据和低压热井取样点数据作比较如果是低压B侧取样点数据大于低压热井取样点数据则泄漏位置是低压B侧反之是低压A侧高压侧的判断也同样以上的判断是基于化学分析数据具有代表性的前提如果取样数据失真 没有真实反应凝汽器泄漏情况则上述的判断方法都是无效的不可信因此下面主要探讨凝汽器取样数据可信性的问题 凝汽器检漏取样设备的参数取样泵设计流量是30L/min 阳电导的设计流量是 0.3L/min 钠表的设计流量是0.025L/min 以低压侧为例管道布置流程图如下附图高压侧的取样管道布置与低压侧相同 下面计算各段管道的水容积 凝汽器热井到低压取样泵入口V1=0.2*0.2*3.14*350=44L 泵出口的25A管道容积V2=0.125*0.125*3.14*100 4.9L 泵出口15A管道容积V3=0.125*0.125*3.14*20 0.35L 树脂交换柱的水容积按体积的二分之一估算 V4=0.25*0.25*3.14*7/2 0.7L V V1 V2 V3 V4 50L 按正常的想法取样泵启动后化学表计分析数值具有代表性的时间50/30=1.7min 但实际运行中不能这样计算正确的计算方法是以低压热井取样点为例说明取样点是低压热井水样时取样泵的出力达到正常设计值即30L/min 从阀门切换到水样具有代表性的时间是(44+4.9)/50+(0.35+0.7)/0.3 4.5min 也就是说阀门切换5分钟后在线凝汽器检漏阳电导表的数据是可信具有参考价值如果取样点是低压B侧的水样则情况就不同原因是取低压B侧的水样时取样泵的出力达不到设计值30L/min 而只有0.3L/min 仅供阳电导在线表计的流量如想开启手动取样阀或回流阀来增大取样流量则取样泵入口的低水位保护动作跳取样泵因此水样分析数据具有代表性的时间是50/0.3 167min 即约需三小时左右的时间凝汽器在线的阳电导才能准确反应凝汽器低压B侧的泄漏情况这样要准确判断一次凝汽器泄漏情况考虑到中间的阀门操作切换时间约需3个多小时这与生产快速要求有较大的差距 为了缩短凝汽器泄漏判断的时间我们从两方面着手 1 在设备没有改造的条件下 即上部取样的流量达不到设计值改变运行方式规定凝汽器检漏取样泵在正常的条件下取样点为单侧上部样这样可以大大缩短判断时间如运行中发现凝泵出口的水样阳电导和钠离

相关主题
文本预览
相关文档 最新文档