当前位置:文档之家› 真空下降的原因、现象和处理

真空下降的原因、现象和处理

真空下降的原因、现象和处理
真空下降的原因、现象和处理

真空下降

现象

1.1“凝汽器真空”指示下降,就地真空表:DEH-CRT或DCS-CRT显示凝汽器真空下降;

1.2 DEH-CRT或DCS-CRT显示汽轮机排汽温度上升;

1.3“凝汽器真空低”声光报警;

原因

2.1循环水泵工作不正常、系统阀门误操作,造成循环水中断或不足;

2.2轴封供汽量不足,或轴封汽带水;

2.3凝汽器水位过高;

2.4射水泵及射水抽气器工作失常;

2.5真空系统泄漏或系统阀门误操作;

2.6凝汽器管系脏污;

2.7射水池水温高;

2. 8轴加无水位或满水;

处理

3.1发现凝汽器真空下降,迅速核对各排汽温度,确定真空下降。

3.2 凝汽器真空下降,应适当降低机组负荷直至报警消失,及时查明原因进行处理。

3.3当汽轮机背压升至16.9KPa(a)或射水泵出口压力降至0. 25MPa时,检查备用射水泵应自启动,否则手操启动备用射水泵。

3.4联系循环泵房值班人员检查循环水泵:;

3.4.1检查循环水泵运行是否正常,否则切换备用循环泵或增开一台循环泵,若两台泵运行,其中一台故障停运引起凝汽器真空下降,则应迅速关闭

故障泵出口阀。

3.4.2检查循环水泵出口蝶阀,若误关,应手动开启。

3.4.3检查循环水压力是否正常,若循环水压力低,检查循环水系统是否泄漏、堵塞。

3.4.4检查凝汽器循环水进出口差压是否正常,差压高则进行凝汽器半边清洗。3.4.5检查射水箱水位是否正常,对水池水温是否正常。

3.4.6检查循环水管及凝汽器水室放空气门。

3.5 检查轴封系统:

3.5.1若轴封母管压力低,检查轴封三路汽源和溢流阀门是否正常,及时调整轴封母管压力至正常。

3.5.2若低压轴封蒸汽温度低,关小轴封减温器喷水隔离门,手动调节低压轴封蒸汽温度在148.9℃。

3.5.3若轴封加热器负压低,启动备用轴加风机,检查轴加多级水封是否破坏,水位是否正常。

3.6检查凝汽器热井水位是否高,若热井水位高,应尽快查明原因进行处理。

3.7检查低压抽汽法兰、低压缸结合面是否有漏气的地方,真空系统是否严密,若真空系统泄漏,则进行封堵,并联系检修处理。

3.8检查真空破坏阀是否误开。

3.9检查各真空阀及法兰是否漏气。

3.10检查凝汽器进出口蝶阀是否误关,否则应立即开启。

3.11 汽轮机背压继续上升超过18.63KPa(a)应以大负荷变化率减负荷,直至报警消失,减负荷过程中的检查与操作见停机步骤。

3.12若汽轮机背压升至27.6KPa(a),汽轮机自动脱扣,否则手动脱扣,按事故停机步骤处理。

热电厂汽轮机凝汽器真空度下降成因及处理措施探究(2021)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 热电厂汽轮机凝汽器真空度下降成因及处理措施探究(2021)

热电厂汽轮机凝汽器真空度下降成因及处理 措施探究(2021) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 凝汽设备是凝汽式汽轮机的重要组成部分,而凝汽器真空度直接影响整个热电厂的运行稳定性、经济性、可靠性与安全性,因此为了防止凝汽器出现真空下降的状况,应该准确的分析引起凝汽器真空下降的原因,并采取相应的措施进行处理,保证汽轮机正常的运行。 1.热电厂汽轮机凝汽器真空下降的原因 1.1.凝汽器真空系统不严密。真空系统存在小漏点时,不凝结的汽体会进入处于真空转台的位置,泄露到凝汽器中,如果不凝结的汽体过多,并滞留在凝汽器中影响传热,很容易造成真空异常下降。凝汽器真空系统不严密造成的真空下降的主要表现为:凝汽器出口循环水温与汽轮机排汽温度的差值增大,凝结水冷却度增大。 1.2.凝汽器水侧泄露。凝汽器铜管泄露会导致硬度较高的冷却水进入凝汽器汽测,提升凝汽器水位,引起凝汽器真空下降,此外,其还会导致水质变坏,腐蚀或锅炉或其他设备,甚至会引起锅炉爆管。

汽轮机真空高的原因分析及防范措施(最新版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 汽轮机真空高的原因分析及防 范措施(最新版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

汽轮机真空高的原因分析及防范措施(最 新版) 摘要:本文对EHNKS50/80/16冷凝式汽轮机开车以来真空高的几个原因进行了分析,以便操作人员了解汽轮机真空高的原因,对其进行防范措施 关键词:汽轮机真空分析防范措施 EHNKS50/80/16冷凝式汽轮机T7612,用于神华宁煤45000Nm3/h 空分装置压缩机组驱动用抽汽凝汽式汽轮机组。 其中,凝汽器真空度对凝汽式汽轮机组运行安全性和热经济性有很大影响。在运行中,凝汽器工作状态恶化将直接引起汽轮机热耗、汽耗增大和出力降低。另外,真空下降使汽轮机排汽缸温度升高,引起汽机轴承中心偏移,严重时还引起汽轮机组振动。为保证机组出力不变,真空降低时会增加蒸汽流量,这样导致了轴向推力增大,使

推力轴承过负荷,影响机组安全运行。因此,对造成汽轮机组真空高的原因进行分析并采取预防措施十分必要。 为保持凝汽系统中蒸汽凝结时建立的真空和良好的换热效果,由抽气器将漏入空气冷却器系统的空气(包括未凝蒸汽)不断抽出,汽轮机配置有起动抽气器和双联两级抽气器,在起动抽气器的排空管路上装有消音器以降低噪声。抽气器均是射汽抽气式,以辅助蒸汽作汽源。 为防止汽缸前汽封处高温蒸汽漏入轴承箱造成轴承温度升高及润滑油中带水;防止后汽封处空气漏入排缸而使真空恶化,汽轮机采用了封闭式汽封系统,主要由气动汽封压力调节器以及管道、阀门等组成,正常运行时封汽压力0.108Mpa。 2011年大修后汽轮机真空降低,严重影响机组的带负荷能力,影响机组的经济运行及全厂的安全生产。针对以上情况,组织有关人员对上述问题进行调研、分析,得出真空高的原因并进行了处理。 1.真空高原因分析 1.1机组真空系统空气渗漏

凝汽器真空度对汽轮机效率的影响分析

凝汽系统及凝汽器真空影响因素 摘要 凝汽设备是汽轮机组的重要辅机之一,是朗肯循环中的重要一节。对整个电厂的建设和安全、经济运行都有着决定性的影响。 从循环效率看,凝汽器真空的好坏,即汽轮机组最终参数的高低,对循环效率所产生的影响是和机组初参数的影响同等重要的。虽然提高凝汽器真空可以使汽轮机的理想焓降增大,电功率增加,但不是真空越高越好。影响凝汽器真空的原因是多方面的,主要有:汽轮机排气量、循环水流量、循环水入口温度等。 关键词:朗肯循环;汽轮机;凝汽器;真空

2凝汽器性能计算及真空度影响因素分析 提高朗肯循环热效率的途径 ①提高平均吸热温度的直接方法是提高初压和初温。在相同的初温和背压下, 提高初压可使热效率增大,但提高初压也产生了一些新的问题,如设备的强度问题。在相同的初压及背压下,提高新汽的温度也可使热效率增大,但温度的提高受到金属材料耐热性的限制。。 ②降低排汽温度在相同的初压、初温下降低排汽温度也能使效率提高,这是 由于循环温差加大的缘故。但其温度下降受到环境温度的限制。

2.2 凝汽系统的工作原理 图6.1是汽轮机凝汽系统示意图,系统由凝汽器5、抽气设备1、循环水泵4、凝结水泵6以及相连的管道、阀门等组成。 图6.1 汽轮机凝汽系统示意图 1-抽气设备;2-汽轮机;3-发电机;4-循环水泵;5-凝汽器;6-凝结水泵 凝汽设备的作用主要有以下四点[9]: (1)凝结作用凝汽器通过冷却水与乏汽的热交换,带走乏汽的汽化潜热而使其凝结成水,凝结水经回热加热而作为锅炉给水重复使用。 (2)建立并维持一定的真空这是降低机组终参数、提高电厂循环效率所必需的。 (3)除氧作用现代凝汽器,特别是不单设除氧器的燃气蒸汽联合循环的装置中的凝汽器和沸水堆核电机组的凝汽器,都要求有除氧的作用,以适应机组的防腐要求。 (4)蓄水作用凝汽器的蓄水作用既是汇集和贮存凝结水、热力系统中的各种疏水、排汽和化学补给水的需要,也是缓冲运行中机组流量急剧变化、增加系统调节稳定性的需求,同时还是确保凝结水泵必要的吸水压头的需要。 为了达到上述作用,仅有凝汽器是不够的。要保证凝汽器的正常工作,必须随时维持三个平衡:○1热量平衡,汽轮机排汽放出的热量等于循环水带走的热量,故在凝汽系统中设置循环水泵。○2质量平衡,汽轮机排汽流量等于抽出的凝结水流量,所以在凝汽系统中必须设置凝结水泵。○3空气平衡,在凝汽器和汽轮机低压部分漏入的空气量等于抽出的空气量,因此必须设置抽气设备[14]。 凝汽器内的真空是通过蒸汽凝结过程形成的。当汽轮机末级排汽进入凝汽器后,受到循环水的冷却而凝结成凝结水,放出汽化潜热。由于蒸汽凝结成水的过

_汽轮机凝汽器真空度下降原因分析

汽轮机凝汽器真空度下降原因分析在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。汽轮机的真空下降会使汽轮机的可用热焓降减少器综合性.凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。因此保持凝汽器良好的运行工况,保证凝汽器的最有利真空;是每个发电厂节能的重要内容。而凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,提高凝汽器性能,维持机组经济真空运行,直接提高整个汽轮机组的热经济性。 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述: 一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停机。 ⑵循环水量不足 循环水量不足的主要特征是:真空逐步下降;循环水出口和人口温差增大。由于引起循环水量不足的原因不同,因此有其不同的特点,所以可根据这些特征去分析判断故障所在,并加以解决: ①若此时凝汽器中流体阻力增大,表现为循环水进出口压差增大,循环水泵出口和凝汽器进口的循环水压均增高,冷却塔布水量减少,可断定是凝汽器内管板堵塞,此时可采用反冲洗、凝汽器半面清洗或停机清理的办法进行处理。

影响凝汽器真空地因素分析及对策

影响凝汽器真空的因素分析及对策 系统凝汽器换热效率等几个方面进行分析探讨,对其它大功率机组的安全经济运行有定参考价值。 凝汽器是凝汽式汽轮发电机组的个重要组成部分,凝汽器真空是影响机组经济安全运行的个重要指标。国产引进型3,触贾机组普遍存在真空度偏低的问,凝汽器真空度在9194之间,比设计值低3,6个百分点,使机组供电煤耗增加化识4.因此,采取措施提高凝汽器真空度,具有定经济价值。 汉电厂期工程2台300,贾汽轮机组为上海汽轮机厂制造的引进型机组,近几年来,凝汽器真空度偏低。为提高凝汽器真空,从以下几个方面进行了技术改造改进真空泵入口管及冷却管,提高真空泵出力;改造循环水滤网,提高循环水水质及循环水流量;部分更换凝汽器铜管,保持凝汽器管束内外面清洁;改进给水泵密封水幻型槽,提高真空系统严密性。通过以上系列改造措施,凝汽器真空度有所提高,确保了机组安全运行,降低了机组煤耗。 1影响凝汽器真空的因素凝汽器真空的形成是由于在凝汽器内蒸汽和凝结水汽液两相之间存在的个平衡压力。蒸汽凝结时的温度,越低,凝汽器内的绝对压力越低凝汽器的真空度为影响凝汽器真空的因素很多,如凝汽器结构和管材凝汽器冷凝面积冷却水量冷却水温真空系统严密性真空系统抽气能力热力系统疏水量等,其中有些参数已

在设计制造环节中确定,如凝汽器的内部结构管材抽气系统布置和容量等;有些是受气候和环境因素影响,如循环水温度;有些则是受安装运行的影响,如管系结垢漏空气循环水量等。 密性凝汽器抽气系统循环水系统凝汽器换热效率几方面进行初步分析与探讨。 2真空系统真空系统范围较大,所有处于低于大气压力运行的设备管道和阀门等不严密处都可能漏入空气,如果漏入的空气量较大,而抽气设备又无法及时地将其排出,则凝汽器汽侧的空气和其它非凝结气体会在凝汽器管束周围面形成气膜,使热阻增加,传热系数降低,会严重影响凝汽器的传热性能,导致凝汽器传热端差增大,真空降低,从而降低了循环效率。同时,凝汽器中非凝结气休积聚,使凝结水过冷度上升,影响低压加热器回热效率,对机组整体热效率不利。根据实际运行经验,真空系统易泄漏空气的薄弱环节有凝汽器汽侧入孔门及喉部焊缝;在潮湿的地方或地下管道发生锈蚀破损;管道的法兰接口处;凝汽器及低压加热器汽侧的水位计接头;疏水系统阀门容器等;低压缸结合面,低压缸轴封。 近两年来,汉电厂真空系统严密性试验不合格。经过长时间大量的消漏工作,真空度有所提高,但效果不甚理想。经与西安电力热工研宄院研究分析,给水泵密封水回水幻型槽漏空气可能性较大。汉电厂给水泵为上海电力修造总厂生产的0600240型锅炉给水泵,其密封水采用凝结水,回水通过型槽疏水至凝汽器,给水泵自由端密封水回水孔与大气相通。由于型槽原设计采用级结构,在机组动态运行过程

机组真空下降的原因分析与处理方法

机组真空下降的原因分析与处理方法 前言: 汽轮机的排汽进入凝汽器汽侧,大流量的循环水送入凝结器铜管内侧,通过铜管内循环水与排汽换热把排汽的热量带走,使排汽凝结成水,其比容急剧减小(约减小到原来的三万分之一),因此原为蒸汽所占的空间便形成了真空。而不凝结气体则通过真空泵抽出,从而起到维持真空的作用。 我厂曾经多次发生凝汽器的真空下降的异常情况,给汽轮机组的安全经济运行造成一定的影响,真空每下降1Kpa将增加约3g/kw.h 煤耗;各机组都不同程度发生过凝汽器真空下降的异常情况,只是真空下降的最低数值不同。造成凝汽器真空下降的原因较多,现在就生产实际工作中遇到的造成凝汽器真空下降常见的原因与处理方法介绍给大家仅供参考、交流。 一、在汽轮机组启动过程中,造成凝汽器真空下降的原因: 1、汽轮机轴封压力不正常 (1)、原因:在机组启动过程中,若轴封供汽压力不正常,则凝汽器真空值会缓慢下降,当轴封压力低时,汽轮机高、低压缸的前后轴封会因压力不足而导致轴封处倒拉空气进入汽缸内,使汽轮机的排汽缸温度升高,凝汽器真空下降。而造成轴封压力低的原因可能是轴封压力调节阀故障;轴封供汽系统上的阀门未开或开度不足。 (2)、象征:真空表指示值下降、汽轮机的排汽缸温度的指示值上升。(3)、处理:当确证为轴封供汽压力不足造成凝汽器真空为缓慢下降

时,值班员必须立即检查轴封压力、汽源是否正常,在一般情况下,只需要将轴封压力调至正常值即可。若是因轴封汽源本身压力不足,则应立即切换轴封汽源,保证轴封压在正常范围内即可,若是无效,则应该进行其它方面检查工作。 2、凝汽器热水井水位升高 (1)、原因:凝汽器的热水井水位过高时,淹没凝汽器铜管或者凝汽器的抽汽口,则导致凝汽器的内部工况发生变化,即热交换效果下降,这时真空将会缓慢下降。而造成凝汽器的热水井水位升高的原因可能是a、凝结水泵故障;b除盐水补水量过大;c、凝汽器铜管泄漏;d、凝结水启动放水排水不畅;e、凝结水系统上的阀门开度不足造成的。(2)、象征:真空表指示下降,汽轮机的排汽缸温度上升、而凝汽器水位计、就地水位计水位也会上升。 (3)、处理:当确证为凝汽器的热水井水位升高造成凝汽器真空为缓慢下降时,值班员必须立即检查究竟是什么原因使凝汽器水位上升,迅速想办法将凝汽器水位降至正常水位值。 3、凝汽器循环水量不足 (1)、原因:当循环水量不足时,汽轮机产生的泛汽在凝结器中被冷却的量将减小,进而使排汽缸温度上升,凝汽器真空下降,造成循环水量不足的原因可能是循环水泵发生故障;循环水进水间水位低引起循环水泵汽化,使循环水量不足;机组凝汽器两侧的进、出口电动门未开到位;在凝汽器通循环水时,系统内的空气未排完。 (2)、象征:真空表指示值会下降,汽轮机的排汽缸温度的指示值上

汽轮机真空高的原因分析及防范措施示范文本

汽轮机真空高的原因分析及防范措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

汽轮机真空高的原因分析及防范措施示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 摘要:本文对EHNKS50/80/16冷凝式汽轮机开车以 来真空高的几个原因进行了分析,以便操作人员了解汽轮 机真空高的原因,对其进行防范措施 关键词:汽轮机真空分析防范措施 EHNKS50/80/16冷凝式汽轮机T7612,用于神华宁 煤45000Nm3/h空分装置压缩机组驱动用抽汽凝汽式汽轮 机组。 其中,凝汽器真空度对凝汽式汽轮机组运行安全 性和热经济性有很大影响。在运行中,凝汽器工作状态恶化 将直接引起汽轮机热耗、汽耗增大和出力降低。另外,真空

下降使汽轮机排汽缸温度升高,引起汽机轴承中心偏移,严重时还引起汽轮机组振动。为保证机组出力不变,真空降低时会增加蒸汽流量,这样导致了轴向推力增大,使推力轴承过负荷,影响机组安全运行。因此,对造成汽轮机组真空高的原因进行分析并采取预防措施十分必要。 为保持凝汽系统中蒸汽凝结时建立的真空和良好的换热效果,由抽气器将漏入空气冷却器系统的空气(包括未凝蒸汽)不断抽出,汽轮机配置有起动抽气器和双联两级抽气器,在起动抽气器的排空管路上装有消音器以降低噪声。抽气器均是射汽抽气式,以辅助蒸汽作汽源。 为防止汽缸前汽封处高温蒸汽漏入轴承箱造成轴承温度升高及润滑油中带水;防止后汽封处空气漏入排缸而使真空恶化,汽轮机采用了封闭式汽封系统,主要由气动汽封压力调节器以及管道、阀门等组成,正常运行时封汽压力0.108Mpa。

火电厂汽轮机低真空运行的原因及对策

火电厂汽轮机低真空运行的原因及对策 当前火电厂作为我国非常重要的发电形式,在火电厂生产运行过程汽轮机作为非常重要的设备之一,其正常的运行是提升发电效率的关键所在。在当前火电厂汽轮机运行过程中,低真空运行作为一种较为常见的问题,对汽轮机组运行的安全系数带来了较大的影响,而且也不利于火电厂发电成本的降低。这就需要我们在实际工作中,对导致汽轮机低真空运行原因进行深入调查,并采取切实可行的措施来有效地保障汽轮机运行的可行性,满足社会发展过程正常的用电需求。 标签:火电厂;汽轮机组;低真空运行;安全;原因;对策 前言 在当前火电厂汽轮机运行过程中,当其真空度过低时,则会对机组正常的运行带来较大的影响,甚至会导致经济损失和人员伤亡事故发生。由于导致汽轮机组低真空运行的原因较多,其中汽轮机组真空系统气密性达不标准作为最为常见的原因,在实际工作中需要进行特别关注,及时发现问题所在,并采取切实有效的措施加以解决,确保机组能够安全、稳定的运行。 1 机组低真空运行安全问题 1.1 低真空运行对汽缸膨胀的影响 在汽轮机组在低真空运行状态下时,由于其排汽温度会不断升高,这必然会导致汽缸膨胀量增加,会导致通流部分的动静间隙发生变化。在静子膨胀及转子不断拉伸过程中,如果在溫度变化不大的情况下,动静间隙变化所产生的摩擦和振动还会处于可控范围内,一旦排汽温度长高时,则在热应用作用下动静间隙会出现不同程度的变形,从而导致接合面连接螺栓出同松动及变形的情况,使机组出现不同程度的振动,严重时还会对接合面的严密性带来较大的破坏。当凝汽器有膨胀产生时,则会导致汽轮机轴承升高,从而对汽轮发电机组的轴向中心还来不同程度的破坏,而且处于低真空运行的汽轮机,其轴向推力也会受到较大的影响,从而使轴承存在过负荷的情况,严重时还会导致轴承受到损坏。 1.2 低真空运行对凝结水系统的影响 处于低真空状态下运行的汽轮机组,当其排汽温度升高时,凝汽器的膨胀也会随之增加,在这种情况下,管束和管板的接口由于膨胀不同,势必会对其密封性带来较大的破坏,从而对凝汽器的换热效果带来较大的影响。同时还会导致汽轮机后轴承长高,导致不必要的振动发生,由于振动值增加,机组运行的稳定性必然会降低。 1.3 低真空运行对功率的影响

影响凝汽式汽轮机真空度因素分析

影响凝汽式汽轮机真空度因素分析 离心式富气压缩机是催化裂化装置的心脏,是确保催化裂化装置安全平稳运行的核心设备。而作为它的驱动设备凝汽式汽轮机则是心脏中的心脏。保持合格的真空度是 凝汽式汽轮机正常运转的关键条件之一,凝汽器的真空度是影响汽轮机效率的重要因素,对整个汽轮机组的热经济性影响较大。真空度的保持和建立一般有几个影响因素。 为此,从抽气器抽气效果、凝汽器端差、循环水温升和凝汽器换热效果的角度,分析了影响凝汽器真空的因素,通过查找资料并参考一些汽轮机机组实际问题的分析处理方法,总结了几点影响凝汽器真空度下降的原因。 标签:传热端差;真空严密性;汽轮机抽汽器;轴端漏气 1凝汽器端差 凝汽器压力下的饱和温度(凝结水温)与循环冷却水出口温度之差称为端差。 理论上,端差越低越小,但实现困难,实际上综合循泵耗功(电)、复水器换热体积,最佳换热流速(及流量),确定出一定(4-6、6-8度)的经济控制指标。 影响凝汽器运行状况的好坏的一个重要因素是凝汽器传热端差值的变化,端差值的变化可作为判别凝汽器运行状态的依据。运行中凝汽器端差值越小,则运行情况越好,汽轮机的热效率就会越高。 从凝汽器实际的运行情况分析,凝汽器传热端差值越小对凝汽器的经济运行越是有利的,端差小,说明循环水吸收的热量多,凝汽器铜管的传热情况好,同一循环水流量可以获得相对较高的凝汽器真空度;在循环水流量,压力等参数不变,汽轮机负荷恒定的情况下,若端差值变大,则说明凝汽器铜管的传热效果变差。导致凝汽器铜管传热效率变差原因有两点:一是铜管表面的污染严重,因此严重影响传热效率的提升;二是由于真空系统不严密漏空气或抽气器工作不正常导致真空度下降,使铜管外表面形成空气膜因此阻碍了传热。因此,一般可把端差的大小作为凝汽器铜管清洁度及漏空气的一项重要的依据;凝汽器铜管传热量的增加,导致凝汽器真空上升,端差则有所增加。分析端差要在相同负荷,冷却水温度,冷却水量与正常情况下(即凝汽器铜管清洁,真空严密性良好)的数值进行比较。实际生产中若发现端差升高较快,往往是由于抽气器工作不正常,或者真空系统严密性差引起的。若端差值逐渐升高,则一般是由于凝汽器铜管表面清洁引起的。 2真空系统严密性

汽轮机真空下降原因的分析

第二章汽轮机真空下降的原 因 在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。而凝汽器真空度是汽轮机运行的重要指标,也是反映凝汽器综合性能的一项主要考核指标。凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,从而提高凝汽器性能,维持机组经济真空运行,以便直接提高整个汽轮机组的热经济性。 第一节汽轮机凝汽器真空度下降的主要特征 在汽轮机组的正常运行中我们可以通过各种仪表、数据来了解和分析汽轮机凝汽器的真空度好坏情况。一般汽轮机凝汽器真空度下降的主要特征有: (1)真空表指示降低; (2)排汽温度升高; (3)凝结水过冷度增加;

(4)凝汽器端差增大; (5)机组出现振动; 第二节汽轮机凝汽器真空度下降原因分析 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述:一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环 毕业设计(论文)说明书专用第7页 水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停

汽轮机凝汽器最佳真空的影响因素及确定方法

汽轮机凝汽器最佳真空的影响因素及确定方法 发表时间:2017-07-04T11:33:12.393Z 来源:《电力设备》2017年第7期作者:曲智超[导读] 摘要:凝汽器真空是汽轮机运行时的一个重要参数,对汽轮机的抽气设备安全有着重要的影响。现有的凝汽器最佳真空的确定方法只适用于凝汽器水侧管壁清洁、汽轮机真空系统严密性正常或抽气设备运行性能正常的情况。 (华电电力科学研究院浙江杭州 310030)摘要:凝汽器真空是汽轮机运行时的一个重要参数,对汽轮机的抽气设备安全有着重要的影响。现有的凝汽器最佳真空的确定方法只适用于凝汽器水侧管壁清洁、汽轮机真空系统严密性正常或抽气设备运行性能正常的情况。未考虑到循环水流量变化引起凝汽器真空变化的同时对汽轮机排汽阻力、凝结水过度冷却及凝结水含氧量的影响,同时还未考虑到锅炉补给水对凝汽器真空的影响。文中首先对凝汽器 清洁率对最佳真空的影响进行了分析,然后提出一种新的凝汽器最佳真空的确定方法,该方法利用凝汽器综合清洁系数来体现凝汽器水侧管壁脏污程度、汽轮机真空系统严密性及抽气设备运行性能对最佳真空的影响,从而提高了最佳真空的确定精度。结合其他的影响因素,归纳总结出确定汽轮机凝汽器最佳真空的方法。 关键词:汽轮机;凝汽器;最佳真空;方法 1前言 随着我国电力市场体制的逐渐完善,竞价上网的全面展开,对汽轮机运行经济性提出了更高的要求。其中,大容量汽轮机主要辅机的合理运行方式对汽轮机的运行经济性产生很大的影响。在汽轮机众多的辅助设备中,当给水泵采用小汽轮机带动后,冷却水系统中的循环水泵成为耗电量最大的设备,约占汽轮发电机组额定发电量的1%-1.5%。这就要求汽轮机运行部门根据当时的汽轮机负荷和冷却水温度,及时调整冷却水系统的运行方式,调整循环水泵的运行台数,实现冷却水系统的优化运行,保持凝汽器在最佳真空下运行,最大限度地提高汽轮机的运行经济性。 目前,凝汽器最佳真空的确定,一般都采用计算的方法,即通过计算得到对应当时冷却水温度、冷却水流量及汽轮机排汽量之间的关系,从而得到当时的凝汽器真空,再利用与前述试验方法类似的过程,得到凝汽器的最佳真空。但现有的计算方法在计算凝汽器端差时,均是在假定当时凝汽器水侧管壁的清洁、真空系统严密性状态正常或抽气设备性能良好的情况下进行计算,而对这些因素失常时的情况考虑不够。为此,首先对现有的通过凝汽器性能计算确定最佳真空的方法进行了分析,指出其存在的问题,最后,提出一种考虑水侧管壁清洁程度、真空系统严密性或抽气设备工作性能的最佳真空的确定方法。 2影响凝汽器真空的主要因素在设备运转正常的情况下,凝汽器的蒸汽压力可以通过饱和温度来确定,而饱和温度又直接受到循环水入口温度、循环水温升和凝汽器端差的影响,所以,这三者是影响凝汽器真空的主要因素。循环水入口温度主要受环境因素的影响较大,相同设备在冬天和夏天产生的循环水温度差异非常明显。冬天温度明显较低。入口温度还与冷却设备有一定关系,设备越好,冷却效果越好,相应的入口温度越低。根据凝汽器热平衡公式可以推算出,循环水温升主要取决于循环水的流量,循环水流量越小温升越高,真空越低。而现实生产中,循环水量主要由循环水泵决定,与循环水泵的流量和并联台数密切相关。凝汽器端差是凝汽器内汽轮机排汽压力对应的饱和温度与循环水出口温度之差,根据凝汽器热平衡公式可以推出,凝汽器端差主要受凝汽器传热系数、循环水量和排汽量的影响,凝汽器传热系数越高,凝汽器端越小,真空越高。一切影响凝汽器传热系数的因素都将影响真空。 3影响凝汽器最佳真空的因素传统的最佳真空就是指,改变循环水量使机组电功率的增加值与循环水泵所耗功率的增加值之间的差值达到最大时所对应的真空。而忽略了循环水费用、循环水最小流速、凝汽器脏污程度、真空泵损耗功率等带来的影响,从而使计算结果与现实理想结果产生偏差。 3.1最佳循环水量的影响 根据传统的最佳真空确定方法而推算出的最佳循环水量,虽然考虑了输送循环水过程中所产生的单设备功率消耗,实现了循环水系统的经济优化,但在循环水运行费用上,没有考虑水资源的消耗,以及对河流大气造成的环境污染问题。随着社会的进步,人们对环境的重视程度越来越高,政府的相关部门对环境污染问题控制严格,凝汽器所消耗的循环水量以及因此而产生的热水、热气的排放对环境的污染,因此而带来的经济损失也是不容忽视的。所以说传统的最佳真空只是能量意义上的最佳真空,要想达到真正意义上的经济最佳真空,就必须要考虑循环水本身的费用,这样才能保证汽轮机运行时的经济收益最大化。 3.2清洁程度的影响 传统的最佳真空确定方法,是在理想的情况下,假定凝汽器管壁清洁,但现实生产中这此因素不可能完全符合要求,传统的最佳真空确定方法对以上因素没有考虑。当凝汽器管壁不够清洁时,虽然循环水流量以及循环水泵消耗的功率受到的影响非常小,但是凝汽器的传热系数却受到了较大的影响,进而使得凝汽器的端差发生变化,最终影响凝汽器的最佳真空的确定。可见清洁程度在最佳真空的确定过程中也是必须要考虑的因素。 3.3真空泵单耗的影响 在汽轮机的运行过程中,由于设备密封性能等原因,难免会有空气进入汽轮机当中,从而影响凝汽器的最佳真空。而正空泵的作用就是不停的将这部分空气抽走,使得凝汽器的真空保持在最佳状态下,当真空泵运转正常、容量适合的时候,凝汽器的最佳真空主要受循环水入口温度、循环水温升和凝汽器端差等因素影响,但是当真空泵运转不正常、容量偏小时,它就不能及时的将汽轮机内的空气抽走,从而使得汽轮机的背压升高,凝汽器的真空降低,从而使得汽轮机的循环热效率大大降低。可见真空泵等抽气设备也是影响凝汽器最佳真空的一个重要因素。 3.4过冷度和含氧量的影响 凝汽器中所含的空气是产生过冷度的主要原因,漏入的空气量越多,凝结水的温度就越低,产生的过冷度就愈大,从而造成的损失就愈大。另外背压的降低会使得凝结水中的氧气含量增加,氧气含量的增加又会加大凝结水对管路和低压加热器的腐蚀,从而使得整个机组的经济性和安全性大大降低,为了除去氧气含量,势必增加除氧费用。 4凝汽器最佳真空的确定方法

汽轮机凝汽器真空度下降原因论文

浅析汽轮机凝汽器真空度下降的原因摘要:凝气设备是汽轮机组重要辅机之一,凝汽器用来冷却汽轮机排汽,使之凝结为水,再由凝结水泵送到除氧器,经给水泵送到锅炉。凝结水在发电厂是非常珍贵的,尤其对高温、高压设备。在汽轮机排汽口造成高度真空,使蒸汽中所含的热量尽可能被用来发电,因此,凝汽器工作的好坏,对发电厂经济性影响极大。在正常运行中凝汽器有除气作用,能除去凝结水中的含氧,从而提高给水质量防止设备腐蚀。因此在汽轮机运行中,监视和保证凝结水是非常重要的。 关键词:汽轮机、凝汽器真空度 abstract: the gas equipment of the steam turbine unit is one of important auxiliary machine, condensed steam turbine exhaust steam used for cooling, condenses into water, then the condensate pumps to the deaerator, the pump to the boiler. condensate in the power plant is a very precious thing, especially for high temperature and high pressure equipment. in the steam turbine exhaust steam mouth cause high vacuum, make steam as far as possible contains quantity of heat is used to make electricity, therefore, condenser work is good or bad, the economy influence on power stations is great. in normal operation of condenser have in addition to gas effect, can remove condensate of oxygen, so as to improve the quality

汽轮机调节级压力过大的危害有哪些#精选、

汽轮机调节级压力过大的危害有哪些? 汽轮机调节级压力过大将使调节级焓降增加,将造成调节级动叶片过负荷,轴向推力增大,使轴向位移增大,损坏推力瓦,造成轴向碰摩故障 当汽轮机采用喷嘴调节时,第一级的进汽截面积随负荷的变化在相应变化,因此通常称喷嘴调节汽轮机的第一级为调节级。其它各级统称为非调节级或压力级。压力级是以利用级组中合理分配的压力降或焓降为主的级,是单列冲动级或反动级。 汽轮机调节级压力异常的原因及处理方法。 ⑴变化原因: A:汽门开大而升高; ①负荷增加; ②汽压或汽温下降,使蒸汽流量增加; ③真空严重下降,使蒸汽流量增加; ④通流部分磨损,调节级或第一、二压力级叶片进口打坏; ⑤抽汽量增加。 B:汽机叶片通流部分结垢,调节级压力升高。 ⑵调节级压力变化的影响: ①正常运行时,调节级压力可代表机组负荷变化,负荷突降至0,调节级压力也跌至0,调节级汽压是随蒸汽流量的增加而上升的,如负荷不变,调节级压力上升是说明蒸汽流量增加。机组经济性发生变化,调节级压力过高,汽轮机通流部件强度易发生严重超限,因此一般汽轮机除规定最高负荷外,

还规定调节级最高汽压的限额。 ②调节级压力上升,可以判断汽机通流部分的清洁状况,分析叶片是否结垢,在分析叶片有否结垢情况时,不宜选择同一负荷比较,因为负荷受汽压、汽温或真空等因素影响,应选择同一蒸汽流量下与大修后通汽部分清洁时比较,如果上升,说明通流部分结了盐垢。 ③ΔP=(P—P净)/P净×100%; P:实测的调节级汽压; P净:叶片在大修后洁净状况下的调节级汽压 ΔP:调节级压力相对增大值; 一般要求调节级压力相对增长值不超过5%,如果超过15%,应设法带低负荷清洗叶片。叶片结垢严重会影响机组出力不足,由于效率下降,蒸汽流量上升,机组运行经济性变差叶片结垢使反动度上升,轴向推力增加,叶片长期结垢运行易发生断叶片事故 叙述汽轮机调节级压力异常的原因及处理方法叙述汽轮机调节级压力异常的原因及处理方法。 在正常运行中,调节级压力与主汽流量基本成正比,引起调节级压力异常的原因有: (1)有于仪表测量原因,造成指示失准。 (2)汽轮机通流部分积盐垢,造成通流面积减小。 (3)由于金属零件碎裂或机械杂物堵塞通流部分或叶片损伤变形。

简析火电厂汽轮机低真空运行的原因及对策

简析火电厂汽轮机低真空运行的原因及对策 发表时间:2019-03-12T11:18:49.550Z 来源:《电力设备》2018年第28期作者: 1赵文 2姚建宝 [导读] 摘要:汽轮机内部的真空程度是决定整个汽轮机凝汽器的成本高低、是否安全、运行是否流畅稳定的重要因素。 (华电新疆发电有限公司红雁池分公司新疆乌鲁木齐 830047) 摘要:汽轮机内部的真空程度是决定整个汽轮机凝汽器的成本高低、是否安全、运行是否流畅稳定的重要因素。导致汽轮机组低真空运行的原因较多,在实际工作中需要进行特别关注,及时发现问题所在,并采取切实有效的措施加以解决,确保机组能够安全、稳定的运行。 关键词:火电厂;汽轮机;低真空运行;原因;对策 一、火电厂汽轮机真空低的理论依据 现在电厂发电设备大多用的是凝气式汽轮设备。但是这种发电设备有很多不足,比如说真空系统不够严密导致漏气,从而使发电设施一直在较低的真空状态下运行,这就导致了发电设备无法正常使用,效益降低。在较低真空状态下,很容易造成人力物力的浪费,因为我们需要不断对发电系统定期进行检查并且不断维修,从而会降低汽轮机的使用年限,发电能力也会随之下降。经过分析可知,为确保经济效益的增长和汽轮机的正常运行,我们必须对汽轮机发电过程遇到的低真空问题进行分析,并找出相应的解决措施,有依据、有技术地处理此类问题。凝气式汽轮机在使用过程中由于低真空的影响,往往会很大程度上降低整个系统的工作效益,并且导致系统内部温度的不断上升,使得汽轮机内部设备如排气缸等变形或者不正常振动,从而影响发电设施使用时间的长短。 二、火电厂汽轮机低真空运行的原因 2.1凝汽器真空的严密性不足 这个原因是导致真空系统受影响的最重要因素,究其原因,主要是在系统内部,因为是真空的,内部压力相比较与外部大气压,要小得多,一旦出现密封性能无法达到要求时就会出现空气泄露进凝汽式汽轮机内部的情况,比如空气通过凝汽器壁、接入凝汽器径部的相关管道发生泄漏的情况,还有部分结合面没有结合紧密,导致空气泄漏,以及由于一些系统之间没有很好地进行密封,导致空气在系统与系统之间贯穿,不利于加热系统的正常加热、加压系统的良好加压。在凝汽器内,漏入的空气并不能凝结,这是导致真空度降低的科学依据。 2.2抽气器工作恶化 一旦出现抽气器中的相关部件运行不正常的情况时,就需要注意可能是故障泵的温度过高导致的,比如,水箱内的存水位低于正常水位时,就不能有效降低水泵的温度,导致系统温度升高,出现运行故障。有效处理方案是:一、及时开启水箱,让水位回归正常,有效降低温度。二、检查相关部件是否存在堵塞情况,一旦有这样的情况发生,就需要及时疏通,避免因堵塞严重造成器械故障。还有,定期对尾管进行检测,一旦存在大量污垢,就需要及时清除,如果有生锈情况,就需要考虑及时更换,不能因为这些原因导致的阻力增大,影响抽气效果。 2.3循环冷却水的进水温度高 在机组运行中,由于冷却塔的运行状况不正常而导致水塔的出水温度升高时,就会造成真空恶化的情况。同时由于空气湿度大或环境的温度高而使冷却塔的循环水温降有所减少,从而引起凝汽器的循环水进水温度大大升高,也会导致真空恶化。另外循环冷却水的用量不足也会造成真空降低。当循环冷却水的使用量低于设计的限值时,就会造成排汽的压力升高,此时凝汽器的排汽温度也会随之升高,从而降低了汽轮机真空。当凝汽器两侧的通水量分配不均时,也会造成真空降低。 2.4凝结水系统的影响 导致系统不能正常运行的因素是多方面的,但具体来说,主要有这两点:污垢因素。它是造成系统内的水流量受限的主要因素,因为一旦管道内壁结成的污垢过多,就会缩小管道容量,单位时间内的管道输水量就会减少,从而导致循环水达不到预定的量,使得系统的使用效率下降了。还有就是传热效果达不到预期,污垢太多,对热能的传导有一定的阻碍作用,热能不能及时地传递出去,不利于凝汽器的正常运行。如果是凝结水泵的逆止门发生故障就会使凝汽器中的水倒流,最终造成的结果就是凝汽器的水位升高淹没铜管,从而令汽轮机处于一种低真空状态的运行,若铜管管壁出现裂纹甚至劈裂就会加大凝结水的硬度,随之令结水泵的出口水压及电流同时上升或下降,如果火电厂的工作人员不能准确分析而是将凝结水管的再循环阀门开大就会造成严重后果。一般情况下,如果疏水膨胀箱内出现负荷异常情况,很可能是由于阀门没有很好地密封处理,这是因为,一旦蒸汽系统内的几个阀门处理不到位,很可能导致疏水不畅,疏水量与正常值偏离过大,导致负荷过大。 三、提升火电厂汽轮机真空度的相关对策 3.1按时将沉积淤泥进行清洗 因为沉积的淤泥与污垢,会使火电厂凝汽器等各种不同设备的正常运行,受到非常重大的影响,所以很有必要按时将冷却管当中的沉积淤泥或者是污垢等杂质进行清洗。不过,在对凝汽器的铜管进行清洗的过程中,一定要让所有设备的运行处于停止状态,而这针对火电厂来讲比较困难。因此,火电厂员工可通过机组维修的空隙时间开展清洗工作,从而使凝汽器的铜管顺畅得到保障。 3.2凝结水系统的处理方法 应该在循环水系统中,将与之相应的胶球清洗器进行安装,从而使循环水在凝汽器当中产生的附着物或者是锈蚀情况得到下降。并且,将此种类型的清洗器进行安装,也能够在很大程度上加大传热效果,使机器的运行效率得到提升。想要确保凝汽器当中具有稳定且可以控制的冷却水压,那么便可将管网的补水泵加以安装,同时还可将报警器安置于凝汽器的进水压力表当中等。通过这种方式,当凝汽器压力未达到标准时,报警器便会自动发出警报。除此之外,还需按时检查凝结器的真空系统,在进行大规模维修过程中,可把已被腐蚀的阀门和疏水管道换新,进而使真空系统的密封性能得到有效提升,并尽量让机组真空严密性达到规范标准。想要使机组一直保持在平稳状态中运行,那么可通过大规模维修机组,把凝汽器的低真空问题做出技术改动,例如,可把一些凝结器的胶球清洗装备适当增加。 3.3确保机组的冷却循环水量 针对火电厂的汽轮机机组来讲,通常在初入春天或是冬季的时候,循环水与其它季节相比,入口温度会相对比较低。在这个时候,单机循环泵只要在运行过程中,便可以让凝汽器初中处在比较低的真空状态下开展工作。所以,对于火电厂机组的有关人员,可按照具体形

真空断路器真空下降原因的详细分析

https://www.doczj.com/doc/fb17894852.html, 真空断路器真空下降原因的详细分析 目前,在10kV及以下电压等级的配电网络中,真空断路器已逐步取代油断路器。真空断路器具有适合频繁操作、电寿命长、检修维护工作量小、防燃、防爆、运行可靠性高等优点。由于生产厂家不同,有部分真空断路器性能很差,特别是断路器的特性方面,存在的问题较多。断路器的部分缺陷容易造成重大事故,或造成事故越级导致大面积停电。 由于这几年在真空断路器的检修、维护工作中,使用真空测试仪、特性测试仪等先进的科学仪器进行测试,使藏而不露的问题以科学数据的形式显现出来。在处理这些问题的过程中,也积累了一些经验,做到了综合性检修,防患于未然,保证了真空断路器的安全可靠运行。 一,真空断路器真空度下降的主要原因 真空断路器就是利用消除电弧赖以持续的物理因素,使电弧不能形成或不能持续。在真空断路器中配用的真空管保持一定的真空度——使开关的动、静触头在开断负荷电流时,因没有或存在非常少的可电离介质而使电弧不能产生或持续,达到熄弧的目的。而目前国内生产的真空断路器不象现使用较多的sF6断路器本身配有介质压力闭锁等保护,没有定性、定量监测真空度特性的装置,所以断路器配用的真空管真空度降低在实际运行中不可能被发现,故障为隐性故障,其危险程度远远大于显性故障。通过对我厂使用的真空断路器故障性质规类分析,同时与黑龙江省内的几家电厂的工程技术人进行技术交流后总结出了引起真空断路器真空下降及真空管漏气的几种原因如下: 1、弹跳的影响

https://www.doczj.com/doc/fb17894852.html, 真空断路器的触头多为平面对接式结构,在分合闸操作中不可避免地产生不同程度的反弹现象。不论分闸反弹还是合闸反弹都会给运行带来危害:波纹管经受强迫振动可能产生裂纹,使灭弧室漏气;分合闸时断路器触头运动速度较高,动作终结时冲击力较大,引发弹跳,可能产生触头和导电杆的变形,甚至产生裂纹;切合电容器组的真空真空断路器如果发生合闸弹跳,还会导致电容器的损坏。因此目前部分真空断路器厂家已注意到真空断路器弹跳造成的危害,推出了所谓的“无弹跳”真空断路器,通过机械缓冲等手段,大大减少了断路器在分合闸时产生的机械冲击。 2、分合闸速度的影响 断路器的分合闸速度对真空断路器的灭弧起到了一定的作用,也决定着真空断路器的使用寿命。所以断路器在投运前均应测量分合闸速度,可以及时发现产品质量和调试上的一些问题。一方面防止分合闸速度过大,断路器触头动作终了时机械撞激烈,使灭弧室产生更为严重震动。 3、缓冲器的影响 应仔细检查缓冲器行程,不应有变形损伤现象或压缩超量,须留缓冲裕度。部分充油缓冲器应定时检查缓冲器油位情况,及时补油。 4、操作机构容量的影响 真空断路器现常见的操作机构主要有CDlO型、CDl7型、VSl型以及在上述型号的基础上,为适应不同的安装空间而改造的操作机构,近几年国内部分断路器又配用了“永磁式操作机构”。配置不同型式的操作机构,在安装或改造时,均应着重注意操作传动杆的动作距离,如果容量偏大,将对灭弧室产生严重撞击,造成真空灭弧室波纹管损坏,直接影响真空断路器的使用寿命,使断路器真空度降低速度加快。

相关主题
文本预览
相关文档 最新文档