当前位置:文档之家› 表面粗糙度的选用原则

表面粗糙度的选用原则

表面粗糙度的选用原则
表面粗糙度的选用原则

表面粗糙度的选用

表面粗糙度的选用原则:

(1)在满足零件表面使用功能的前提下,表面粗糙度的要求尽可能低,即尽量选用大的参数值(除Rmr (c)外),以减小加工难度, 降低制造成本。

(2)在同一个零件上,非工作表面比工作表面的表面粗糙度值大。(3)受循环载荷的表面及容易引起应力集中的表面(如圆角、沟槽),表面粗糙度值要小。

(4)配合性质相同时,尺寸小的零件比尺寸大的表面粗糙度值小;

同一公差等级,小尺寸比大尺寸、轴比孔的表面粗糙度值要小。(5)运动速度高、单位压力大的摩擦表面比运动速度低、单位压力小的非摩擦表面的表面粗糙度值小。

(6)一般情况下,尺寸和表面形状要求精确程度高的表面,表面粗糙度值要小。

表面粗糙度参数值的适用表面:

轴和孔的表面粗糙度参数推荐值

各种常用加工方法可能达到的表面粗糙度

注:对于飯金类的冲裁

在普通冲裁中,材料都是从模具刃口处产生裂纹而剪切分离,

制件尺寸精度低(VIT11),断面粗糙(Ra二?uni),不平直,断面有一定斜度,往往不能满足零件较高的技术要求,有时还需再进行多道后续的机械加工。

精密冲裁是使材料呈纯剪切的形式进行冲裁,是通过改进模具来提高精度和改善断面质量的,制件尺寸精度可达到IT6?IT9,断面粗糙度Ra 二?urn,断面垂直度可达89° 30z或更佳。

表面粗糙度定义与检测

第五章表面粗糙度及其检测 学时:4 课次:2 目的要求: 1.了解表面粗糙度的实质及对零件使用性能的影响。 2.掌握表面粗糙度的评定参数(重点是轮廓的幅度参数)的含义及应用场合。 3.掌握表面粗糙度的标注方法。 4.初步掌握表面粗糙度的选用方法。 5.了解表面粗糙度的测量方法的原理。 重点内容: 1.表面粗糙度的定义及对零件使用性能的影响。 2.表面粗糙度的评定参数(重点是轮廓的幅度参数)的含义及应用场合。 3.表面粗糙度的标注方法。 4.表面粗糙度的选用方法。 5.表面粗糙度的测量方法 难点内容: 表面粗糙度的选用方法。 教学方法:讲+实验 教学内容:(祥见教案) 一、基本概念 1.零件表面的几何形状误差分为三类: (1)表面粗糙度:零件表面峰谷波距<1mm。属微观误差。 (2)表面波纹度:零件表面峰谷波距在1~10mm。 (3)形状公差:零件表面峰谷波距>10mm。属宏观误差。 图5-1 零件的截面轮廓形状 2.表面粗糙度对零件质量的影响: (1)影响零件的耐磨性、强度和抗腐蚀性等。 (2)影响零件的配合稳定性。 (3)影响零件的接触刚度、密封性、产品外观及表面反射能力等。 二.表面粗糙度的基本术语

1、取样长度lr : 取样长度是在测量表面粗糙度时所取的一段与轮廓总的走向一致的长度。 规定:取样长度范围内至少包含五个以上的轮廓峰和谷如图5-2所示。 图5-2 取样长度、评定长度和轮廓中线 1.评定长度ln : 评定长度是指评定表面粗糙度所需的一段长度。 规定:国家标准推荐ln = 5lr ,对均匀性好的表面,可选ln > 5lr, 对均匀性较差的表面,可选ln < 5lr 。 2.中线: 中线是指用以评定表面粗糙度参数的一条基准线。有以列两种: (1)轮廓的最小二乘中线 在取样长度内,使轮廓线上各点的纵坐标值Z (x )的平方和 为最小,如图5-2 a 所示。 (2)轮廓的算术平均中线 在取样长度内,将实际轮廓划分为上下两部分,且使上下面 积相等的直线。如图5-2 b 所示。 三.表面粗糙度的评定参数 国家标准GB/T3505—2000规定的评定表面粗糙度的参数有:幅度参数2个,间距参数1个,曲线和相关参数1个,其中幅度参数是主要的。 1、轮廓的幅度参数 (1) 轮廓的算术平均偏差Ra 在一个取样长度内,纵坐标Z (x )绝对值的算术平均值,如图5-3a 所示。 Ra 的数学表达式为: Ra = lr 1 lr x Z 0)(dx 测得的Ra 值越大,则表面越粗糙。一般用电动轮廓仪进行测量。

表面粗糙度的选用

第3章表面粗糙度

3.1 表面粗糙度标注识读 任务6 识读齿轮表面粗糙度标注 表面粗糙度是一种微观几何形状误差,是零件的几何参数的精度指标之一。 以如图3-1所示的零件图为例,识读表面粗糙度的标注。 图3-1 表面粗糙度标注实例 3.1.1 表面粗糙度概念 任何零件的表面都不是绝对的光滑的,零件表面总会存在着由较小间距的峰谷组成的微观高低不平的痕迹,表面粗糙度是一种微观几何形状误差,也称为微观不平度。 表面误差通常按(波距)的大小划分为三类误差:表面粗糙度、表面波度和表面上宏观形状误差。波距小于1mm 的属于表面粗糙度(微观几何形状误差),波距在l ~10 mm 的属于表面波度(中间几何形状误差),波距大于10 mm 的属于形状误差(宏观几何形状误差),如图3-2

所示。 图3-2 零件表面的几何形状误差 3.1.2 表面粗糙度对零件的影响 表面粗糙度的大小对零件的实用性能和使用寿命有很大的影响: 1.对摩擦和磨损的影响 表面越粗糙,摩擦系数就越大,两相对运动的表面磨损也越快,表面过于光滑,由于润滑油被挤出和分子见的吸附作用等原因,也会使摩擦阻力增大和加剧磨损。 2.对配合性能的影响 对于间隙配合,相对运动的表面因其粗糙不平而迅速磨损,致使间隙增大;对于过盈配合,表面轮廓峰顶在装配时容易被挤平,使实际有效过盈量减小,致使联接强度降低。 3.对抗腐蚀性的影响 粗糙的表面,易使腐蚀性物质存积在表面的微观凹谷处,并渗入到金属内部,致使腐蚀加剧。 4.对疲劳强度的影响 零件表面越粗糙,凹痕就越深,当零件承受交变荷载时,对应力集中很敏感。使疲劳强度降低,导致零件表面产生裂纹而损坏。 5.对接触刚度的影响 接触刚度影响零件的工作精度和抗振性。这是由于表面粗糙度使表面间只有一部分面积接触。一般情况下,实际接触面积只有公称接触面积的百分之几。因此,表面越粗糙受力后局部变形越大,接触刚度也越低。 6.对结合面密封性的影响 粗糙的表面结合时,两表面只在局部点上接触,中间有缝隙,影响密封性。因此,降低表面粗糙度,可提高其密封性。 7.对零件其他性能的影响 表面粗糙度对零件其他性能,如对测量精度、流体流动的阻力及零件外形的美观等都有

表面粗糙度及其标注方法

表面粗糙度及其标注方法 零件图除了图形、尺寸这外,还必须有制造零件应达到的一些质量要求,一般称为技术要求。技术要求的内容通常有:表面粗糙度、尺寸公差、形状和位置公差、材料及其热处理、表面处理等。下面先介绍表面粗糙度及其注法。 一、表面粗糙度的概念 无论采用哪种加工方法所获得的零件表面,都不是绝对平整和光滑的,放在显微镜(或放大镜)下观察,都不得可以看到微观的峰谷不平痕迹,如图1所示。表面上这种微观不平滑情况,一般是受刀具与零件间的运动、摩擦,机床的振动及零件的塑性变形等各种因素的影响而形成的。表面上所具有的这种较小间距和峰谷所组成的微观几何形状特征,称为表面粗糙度。 图1 表面粗糙度概念 表面粗糙度是评定零件表面质量的一项技术指标,它对零件的配合性质、耐磨性、抗腐象征性、接触刚度、抗疲劳强度、密封性质和外观等都不得有影响。因此,图样上要根据零件的功能要求,对零件的表面粗糙度做出相应的规定。评定表面粗糙度的主要参数是轮廓算术平均偏差Ra,它是指在取样长度L范围内,补测轮廓线上各点至基准线的距离yi(如图2)的算术平均值,它是指在取样长度L范围内,被测轮廓线上各点至基准线的距离yi (如图12)的算术平均值,可用下表示:-----------或近似表示为:----------- 轮廓算术平均偏差可用电动轮廓仪测量,运算过程由仪器自动完成。根据GB/T1031—1995F规定(另外还有GB/T3525——2000以可同时查阅),Ra数值愈小,零件表面愈趋平整光滑;Ra的数值,零件表面愈粗糙。 图2 轮廓算术平均编差

图3 轮廓算术平均编差值 二、表面粗糙度的选用 表面粗糙度参数值的选用,应该既要满足零件表面的功能要求,又要考虑经济合理性。具体选用时,可参照已有的类似零件图,用类比法确定。在满足零件功能要求前提下,应尽量选用较大的表面粗糙度参数值,以降低加工成本。一般地说,零件的工作表面、配合表面、密封表面、运动速度高和单位压力大的摩擦表面等,对表面平整光滑程度要求高,参数值应取小些。非工作表面、非配合表面、尺寸精度低的表面,参数值应参数Ra值与加工方法的关系及其应用实例,可供选用时参考。 图4 表面粗糙度获得方法 三、表面粗糙度的注法(GB—T131——1993) (一)表面粗糙度代(符)号 表面粗糙度代号由表面粗糙度符号和在其周围标注的表面粗糙度数值及有关规定符号所组成。 (1)表面粗糙度符号及其画法,如图5所示。表面粗糙度符号的尺寸大小,按图6规定对应选取。

表面粗糙度新国标

表面结构的图样表示法 加工零件时,由于刀具在零件表面上留下刀痕和切削分裂时表面金属的塑性变形等影响,使零件表面存在着间距较小的轮廓峰谷。这种表面上具有较小间距的峰谷所组成的微观几何形状特性,称为表面粗糙度。机器设备对零件各个表面的要求不一样,如配合性质、耐磨性、抗腐蚀性、密封性、外观要求等,因此,对零件表面粗糙度的要求也各有不同。一般说来,凡零件上有配合要求或有相对运动的表面,表面粗糙度参数值小。因此,应在满足零件表面功能的前提下,合理选用表面粗糙度参数。 1.评定表面结构常用的轮廓参数 ①算术平均偏差Ra是指在一个取样长度内纵坐标值Z(x)绝对值的算术平均值 ② 轮廓的最大高度Rz是指在同一取样长度内,最大轮廓峰高和最大轮廓谷深之和的高度 图9-27 评定表面结构常用的轮廓参数 2.有关检验规范的基本术语 检验评定表面结构参数值必须在特定条件下进行。国家标准规定,图样中注写参数代号及其数值要求的同时,还应明确其检验规范。有关检验规范方面的基本术语有取样长度、评定长度、滤波器和传输带以及极限值判断规则。本有关检验规范仅介绍取样长度与评定长度和极限值判断规则。 (1)取样长度和评定长度 以粗糙度高度参数的测量为例,由于表面轮廓的不规则性,测量结果与测量段的长度密切相关,当测量段过短,各处的测量结果会产生很大差异,但当测量段过长,则测得的高度值

中将不可避免地包含了波纹度的幅值。因此,在X轴上选取一段适当长度进行测量,这段长度称为取样长度。但是,在每一取样长度内的测得值通常是不等的,为取得表面粗糙度最可靠的值,一般取几个连续的取样长度进行测量,并以各取样长度内测量值的平均值作为测得的参数值。这段在X轴方向上用于评定轮廓的并包含着一个或几个取样长度的测量段称为评定长度。当参数代号后未注明时,评定长度默认为5 个取样长度,否则应注明个数。例如:Rz0.4、Ra30.8、Rz13.2分别表示评定长度为5个(默认)、3个、1个取样长度。 (2)极限值判断规则 完工零件的表面按检验规范测得轮廓参数值后,需与图样上给定的极限比较,以判定其是否合格。极限值判断规则有两种: ① 16%规则运用本规则时,当被检表面测得的全部参数值中,超过极限值的个数不多于总个数的16%时,该表面是合格的。 ②最大规则运用本规则时,被检的整个表面上测得的参数值一个也不应超过给定的极限值。 16%规则是所有表面结构要求标注的默认规则。即当参数代号后未注写“max”字样时,均默认为应用16%规则(例如Ra0.8)。反之,则应用最大规则(例如Ramax0.8)。 3. 标注表面结构的图形符号 标注表面结构要求时的图形符号种类、名称、尺寸及其含义见表9-1。 表9-1 表面结构符号

机械零件表面粗糙度的选择

机械零件表面粗糙度的选择 表面粗糙度是反映零件表面微观几何形状误差的一个重要技术指标,是检验零件表面质量的主要依据。通常,机械零件表面粗糙度的大小与加工方法和加工精度有关,它直接影响静配合的坚固程度、摩擦消耗功多少、零件的疲劳强度及耐蚀性能。它选择的合理与否,直接关系到产品的质量、使用寿命和生产成本。 1、零件表面粗糙度的选择原则 ⑴在满足表面工作要求的情况下,尽量选大值。 ⑵同一零件上,工作表面粗糙度值低于非工作表面粗糙度值。 ⑶摩擦表面粗糙度值低于非摩擦表面粗糙度值。 ⑷受循环负荷的表面及易引起应力集中的表面粗糙度值要小。 ⑸配合性质稳定性要求高的结合表面,粗糙度值要小。对动配合,配合间隙小的表面,粗糙度值要小;对静配合,要求连接牢固可靠,承受载荷大时粗糙度值要小。 ⑹配合性质相同,零件尺寸越小则粗糙度值越小;同一公差等级,小尺寸比大尺寸的粗糙度值要小,轴比孔的粗糙度值要小。 2、常用的选择零件表面粗糙度的方法及弊病 在机械零件设计工作中粗糙度的选择方法有3 种,即计算法、试验法和类比法。应用最普遍的是类比法,此法虽简便、迅速、有效,但需要有充足的参考资料。目前,设计中最常用的是与公差等级相适应的表面粗糙度,即计算法。通常情况下,机械零件尺寸公差要求越小,机械零件的表面粗糙度值也越小,但它们之间又不存在固定的函数关系。如一些机器、仪器上的手柄、手轮以及卫生设备、食品机械上的某些机械零件的修饰表面,它们的表面要求加工得很光滑(即表面粗糙度要求很高),但其尺寸公差要求却很低。 一般情况下,有尺寸公差要求的零件,其公差等级与表面粗糙度数值之间还是有一定的对应关系的。虽然机械零件表面粗糙度与尺寸公差之间关系的经验计算公式在相关工具书中都有很多介绍,并列表供读者选用。但只要细心阅来就会发现,虽然采取完全相同的经验计算公式,但所列表中的数值也不尽相同,有的还有很大的差异。这就给不熟悉这方面情况的人带来了困惑,同时也增加了他们在机械零件设计工作中选择表面粗糙度的困难。 3、按零件类型及公差等级选择零件表面粗糙度 在实际工作中,对于不同类型的机器,其零件在相同尺寸公差的条件下,对表面粗糙度的要求是有差别的,原因是在机械零件的设计和制造过程中,对于不同类型的机器,其零件的配合稳定性和互换性的要求是不同的。因此,我们把粗糙度的选择同零件类型联系起来更趋于合理。机械零件设计手册中把零件分为精密机械零件、普通精密机械零件及通用机械零件3 种类型。在此我们通过对机械设计手册中的相关数值进行统计分析,将旧的表面粗糙度国标(GB1031—68)转换为参照采用国际标准ISO 颁布的新国标(GB1031—83),采用优先选用的评定参数,即轮廓算术平均偏差值Ra= (1)/ (1) !10 y dx。并采用Ra 优先选用的第一系列数值,推导出表面粗糙度Ra 与尺寸公差IT 之间的有关关系式为: 第1 类:Ra≥1.6 时,Ra≤0.008×IT;Ra≤0.8 时,Ra≤0.010×IT。 第2 类:Ra≥1.6 时,Ra≤0.021×IT;Ra≤0.8 时,Ra≤0.018×IT。 第3 类:Ra≤0.042×IT。 并将上述3 种关系式列表,如表1、表2、表3 所示。

车削表面粗糙度的计算

车削表面粗糙度的计算 说说表面粗糙度的计算,以及"镜面效果"- 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/刀尖R乘8 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给

2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15*0.15/0.4/8*1000=粗糙度7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,

表面粗糙度选用标准

表面粗糙度选用 ----------------------------------------------------------- 序号=1 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 ----------------------------------------------------------- 序号=2 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 ----------------------------------------------------------- 序号=3 Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 ----------------------------------------------------------- 序号=4 Ra值不大于\μm=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 ----------------------------------------------------------- 序号=5 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 ----------------------------------------------------------- 序号=6 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿

表面粗糙度设定规范

粗糙度设定规范 目录 1.粗糙度的定义-----------------------------------------------------------------2 2.内容-----------------------------------------------------------------------------2 4.1粗糙度介绍--------------------------------------------------------------2 4.1.1粗糙度产生的原因-------------------------------------------------2 4.1.2粗糙度的评价标准-------------------------------------------------3 4.1.3表面粗糙度代(符)号及其注法------------------------------6 4.2表面粗糙度的选用----------------------------------------------------11 4.2.1表面粗糙度的选用原则-----------------------------------------11 4.2.2表面粗糙度参数值的适用表面--------------------------------12 4.2.3轴和孔的表面粗糙度参数推荐值-----------------------------13 4.2.4各种常用加工方法可能达到的表面粗糙度-----------------14 4.2.5座椅常用部品粗糙度设定--------------------------------------15 4.3表面粗糙度的检测方法----------------------------------------------16 3.相关文件---------------------------------------------------------------------17 4.实施要求---------------------------------------------------------------------17 5.附件---------------------------------------------------------------------------17

车削粗糙度计算公式

车削粗糙度计算公式 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/刀尖R乘8(每转进给的平方/刀尖半径X125) 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给

2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择 上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15*0.15/0.4/8*1000=粗糙度7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,通常如果进给

第二节 表面粗糙度的选择及其标注

第二节表面粗糙度的选择 一、表面粗糙度参数及参数值的选择 (一)表面粗糙度评定参数的选择 在表面粗糙度的六个评定参数中,Ra、Rz、Ry三个高度参数为基本参数Sm、S、t p为三个附加参数。这些参数分别从不同角度反映了零件的表面形貌特征,但都存在着不同程度的不完整性。因此,在具体选用时要根据零件的功能要求、材料性能、结构特点以及测量的条件等情况适当用一个或几个作为评定参数。 1)如果表面没有特殊要求时,一般仅选用高度参数。在高度特性参数常用的参数值范围内(R a为0.025~6.3μm、R z为0.1~25μm),推荐优先选用Ra值,因为Ra能较充分地反应零件表面轮廓的特征。但以下情况不宜选用Ra。 a. 当表面过于粗糙(Ra>6.3μm)或太光滑(Ra<0.025μm)时,可选用Rz,因为此范围便于选择用于测量Rz的仪器进行测量。 b. 当零件材料较软时,不能选用Ra,因为Ra值一般采用触针测量,如果用于软材料的测量,不仅会划伤零件表面,而且测得结果也不准确。 c. 如果测量面积很小,如顶尖,刀具的刃部以及仪表小元件的表面,在取样长度内,轮廓的峰或谷少于五个时,Rz也难于进行测量,这是可以选用Ry值。 2)当表面有特殊功能要求时,为了保证功能要求,提高产品质量,这是可以同时选用几个参数综合控制表面质量。 a. 当表面要求耐磨时,可以选用Ra、Ry、和t p。 b. 当表面要求承受交变应力时,可以选用Ry、Sm、和S。 c. 当表面着重要求外观质量和可漆性,可选用Sm和S。 (二)表面粗糙度参数值的选择 表面粗糙度参数值的选择合理与否,不仅对产品的使用性能有很大的影响,而且直接关系到产品的质量和制造成本。一般来说,表面粗糙度值(评定参数值)越小,零件的工作性能越好,使用寿命也越长。但绝不能认为表面粗糙度值越小越好,为了获得粗糙度小的表面,则零件需经过复杂的工艺过程,这样加工成本可能随之急剧增高。因此选择表面粗糙度参数值既要考虑零件的功能要求,又要考虑其制造成本,在满足功能要求的前提下,应尽可能选用较大的粗糙度数值。 1.一般选择原则 1)同一零件上,工作表面的粗糙度参数值小于非工作表面的粗糙度参数值。

粗糙度标准

日本粗糙度标准 2009-03-06 10:11 日本粗糙度标准日本图纸中粗糙度无数字标注的四个倒三角表示Rz≤0.8,Ra≤0.2;三个倒三角表示Rz≤6.3,Ra≤1.6;两个倒三角表示Rz≤25,Ra≤6.3;一个倒三角表示Rz≤100,Ra≤25。若有数字标注,则数字直接表示Rz。 表面粗糙度与标准公差表2007-10-18 14:54 分类:工作资料 字号:大大中中小小 无论用何种加工方法加工,在零件表面总会留下微细的凸凹不平的刀痕,出现交错起伏的峰谷现象,粗加工后的表面用肉眼就能看到,精加工后的表面用放大镜或显微镜仍能观察到。这就是零件加工后的表面粗糙度。过去称为表面光洁度。 国家规定表面粗糙度的参数由高度参数、间距参数和综合参数组成。 高度参数共有三个: 轮廓的平均算术偏差(Ra)如图1所示,通过零件的表面轮廓作一中线m ,将一定长度的轮廓分成两部分,使中线两侧轮廓线与中线之间所包含的面积相等,即 F1+F3+……+Fn-1=F2+F4+……+Fn 图1 轮廓的平均算术偏差 轮廓的平均算术偏差值Ra,就是在一定测量长度l 范围内,轮廓上各点至中线距离绝对值的平均算术偏差。用算式表示为 Ra=dx 或近似写成 Ra≈ ?不平度平均高度(Rz)就是在基本测量长度范围内,从平行于中线的任意线起,自被测轮廓上五个最高点至五个最低点的平均距离(图2),即 RZ= 图2 不平度平均高度 ?轮廓最大高度Ry,就是在取样长度内,轮廓峰顶线和轮廓谷底线之间的距离。 间距参数共有两个: 轮廓单峰平均间距S,就是在取样长度内,轮廓单峰间距的平均值。而轮廓单峰间距,就是两相邻轮廓单峰的最高点在中线上的投影长度Si。 轮廓微观不平度的平均间距Sm。含有一个轮廓峰和相邻轮廓谷的一段中线长度Smi,称轮

表面粗糙度符号及数值说明[1]

表面粗糙度符号及其标注说明 粗糙度是衡量零件表面粗糙程度的参数,它反映的是零件表面微观的几何形状误差,必须借助放大镜等进行测量。它是由于零件加工过程中刀具与加工表面之间的摩擦、挤压以及加工时的高频振动等方面的原因造成的。表面粗糙度对零件的工作精度、耐磨性、密封性、耐蚀性以及零件之间的配合都有着直接的影响。 粗糙度的评定常用轮廓算术平均偏差Ra、轮廓最大高度Ry、微观不平度十点高度Rz三个参数表示。数值越小,零件的表面越光滑,数值越大零件的表面越粗糙。 1、轮廓算术平均偏差Ra 取样长度:取样长度是指具有粗糙度几何特征的一段长度,在取样长度内应该具有几个波峰和波谷。测量时可选5倍的取样长度作为测量长度进行测量。 Ra是指在取样长度内,轮廓偏距绝对值的算术平均值,可以表示为:

关于表面粗糙度的数值和表面特征、获得方法、应用举例请参见下表。 从上图中也可以看出,粗糙度参数的数值.基本上成倍数的关系。标注时应当选用这些数值,不能选用其他的数值。 2、轮廓最大高度Ry 3、轮廓不平度十点高度Rz

标注 2.1代号及意义 粗糙度代号可以分为:符号,粗糙度项目及数值。 常用标注参数是Ra, 标注Ra时Ra可以省略,标注Rz和Ry时,在粗糙度数值前加对应的符号Rz和Ry。 2.2 标注原则 1)、在同一图样上每一表面只注一次粗糙度代号,且应注在可见轮廓线、尺寸界线、引出线或它们的延长线上,并尽可能靠近有关尺寸线。 2)、当零件的大部分表面具有相同的粗糙度要求时,对其中使用最多的一种,代(符)号,可统一注在图纸的右上角。并加注“其余”二字。 3)、在不同方向的表面上标注时,代号中的数字及符号的方向必须下图的规

铸件粗糙度及粗糙度计算

铸件表面粗糙度 铸件表面粗糙度是衡量干净、真实的铸件表面质量的重要指标。铸件铸造表面粗糙度是按不同铸造合金及其铸造方法、用其表面轮廓算术平均偏差Ra值(单位为μm)进行分级,分级应符合表1~1的规定。对照GB/——1997《表面粗糙度比较样块—铸造表面》的规定进行比较和评比;其评比方法按GB∕T15056——1994《铸造表面粗糙评定方法》进行。 对于重要铸件,当所有铸造表面的粗糙度要求相同时,可在铸件图样或铸造工艺图样的右上角同意标注粗糙度符号。如果大部分铸造表面度相同时,可将该级粗糙度符号统一标注在图样的右上角,并在符号前加注“其余”两字;余下的部分表面粗糙度,将其符号直接标注在其表面轮廓或尺寸或尺寸延长线上。 铸造表面粗糙度,也可按需方的要求或供需方的协商,将其公称值鉴订在订货合同中。 ※表示可以达到的铸件铸造表面粗糙度。

表1~2粗糙度与光洁度对照(单位:mm)

粗糙度的计算 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/(刀尖R乘8) 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给 2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用以上的刀尖,而硬铝合金不要用以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW 的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给,R尖,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于*8*1000=粗糙度(单位微米)。 如果有要求光洁度要到的话,切削参数变化如下:刀具不变依旧上面的刀片,切削参数进给,切深要视乎刀具的断削槽而定,通常如果进给定了,那切深只会在一个很窄的范围(上面不是说过切深和进给很大关系嘛)——当切深在一定范围之内才会有最良好的排屑效果!当然你不介意拿个沟子一边车一边沟屑的话又另当别论!:lol我大约会按照进给的10倍起定切深,也就是,此时*8*1000=微米,也就是粗糙度达到了。 至于粗糙度的表示方法:RY是测量出最大粗糙度,RA是算术计法将整个工件的表面粗糙度平均算,而RZ则是取10点再平均算,一般同一工件用RA计算粗糙度应该是最低的,而RY肯定是最大的,如果用RY的计算公式可以达到比RA要求更低的数字,基本上车出来就可以达到标注的RA要求了。另外理论上带修光

粗糙度 符 及其表示方法

表面粗糙度符号、代号及其注法 本标准等效采用国际标准ISO1302—1992《技术制图——标注表面特征的方法》。 1主题内容与适用范围 本标准规定了零件表面粗糙度符号、代号及其在图样上的注法。 本标准适用于机电产品图样及有关技术文件。其他图样和技术文件也可参照采用。 2引用标准 GB1031表面粗糙度参数及其数值 GB/T13911金属镀覆和化学处理表示方法 GB3505表面粗糙度术语表面及其参数 GB4054涂料涂覆标记 GB10610触针式仪器测量表面粗糙度的规则和方法 GB12472木制件表面粗糙度参数及其数值 3表面粗糙度符号、代号 3.1图样上所标注的表面粗糙度符号、代号是该表面完工后的要求。 3.2有关表面粗糙度的各项规定应按功能要求给定。若仅需要加工(采用去除材料的方法 或不去除材料的方法)但对表面粗糙度的其他规定没有要求时,允许只注表面粗糙度符号。 3.3图样上表示零件表面粗糙度的符号见表1。 表1 符号意义及说明 基本符号,表示表面可用任何方法获得。当不加注粗糙度参数值或有关 说明(例如:表面处理、局部热处理状况等)时,仅适用于简化代号标注 基本符号加一短划,表示表面是用去除材料的方法获得。例如:车、铣、 钻、磨、剪切、抛光、腐蚀、电火花加工、气割等 基本符号加一小圆,表示表面是用不去除材料的方法获得。例如:铸、 锻、冲压变形、热轧、冷轧、粉末冶金等。 或者是用于保持原供应状况的表面(包括保持上道工序的状况) 在上述三个符号的长边上均可加一横线,用于标注有关参数和说明 在上述三个符号上均可加一小圆,表示所有表面具有相同的表面粗糙度 要求 3.4当允许在表面粗糙度参数的所有实测值中超过规定值的个数少于总数的16%时,应 在图样上标注表面粗糙度参数的上限值或下限值。 当要求在表面粗糙度参数的所有实测值中不得超过规定值时,应在图样上标注表面 粗糙度参数的最大值或最小值。 3.5表面粗糙度高度参数轮廓算术平均偏差R a值的标注见表2,R a在代号中用数值表示(单位为微米),参数值前可不标注参数代号。 表2

表面粗糙度选用

表面粗糙度选用序号=1 Ra值不大于卩m=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 序号=2 Ra值不大于卩m=25 50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 序号=3 Ra值不大于卩m=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 序号=4 Ra值不大于卩m=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等序号=5 Ra值不大于卩m=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铳、刮 1 ~ 2点/cm A2、拉、磨、锉、滚压、铳齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面序号=6 Ra值不大于卩m=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铳、铰、拉、磨、滚压、刮1~ 2点/cmA2铳齿 应用举例=安装直径超过80mm 的G 级轴承的外壳孔,普通精度齿轮的齿面,定位销孔,V 型带轮的表面,外径定心的内花键外径,轴承盖的定中心凸肩表面序号=7 Ra值不大于卩m=0.8 表面状况=可辨加工痕迹的方向 加工方法=车、镗、拉、磨、立铳、刮3?10点/cmA2、滚压 应用举例=要求保证定心及配合特性的表面,如锥销与圆柱销的表面,与G 级精度滚动轴承相配合的轴径和外壳孔,中速转动的轴径, 直径超过80mm的E、D级滚动轴承配合的轴径及外壳孔,内、外花键的定心内径,外花键键侧及定心外径,过盈配合IT7级的孔(H7 ), 间隙配合IT8?IT9级的孔(H8 , H9),磨削的齿轮表面等 序号=8 Ra值不大于卩m=0.4 表面状况=微辨加工痕迹的方向 加工方法=铰、磨、镗、拉、刮 3 ~ 10点/cm A2、滚压 应用举例=要求长期保持配合性质稳定的配合表面,IT7 级的轴、孔配合表面,精度较高的齿轮表面,受变应力作用的重要零件,与直 径小于80mm的E、D级轴承配合的轴径表面、与橡胶密封件接触的轴的表面,尺寸大于120mm的IT13?IT16级孔和轴用量规的测 量表面序号=9 Ra值不大于卩m=0.2

粗糙度计算方法

刀尖R=0.4时计算进给量:粗糙度为3.2时f=0.10mm/r 粗糙度为6.3时f=0.14mm/r 粗糙度为12.5时f=0.2mm/r 车削表面粗糙度=每转进给的平方 X 1000/(刀尖R乘8),单位微米以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给 2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然!

3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择 上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15X0.15X1000/(0.4X8)=粗糙度 7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,通常如果进给定了,那切深只会在一个很窄的范围(上面不是说过切深和进给很大关系嘛)——当切深在一定范围之内才会有最良好的排屑效果!当然你不介意拿个沟子一边车一边沟屑的话又另当别论! :lol我大约会按照进给的10倍起定切深,也就是0.5mm,此时0.05*0.05/0.4/8*1000=0.78微米,也就是粗糙度达到0.8了。

表面粗糙度的基本概念汇总

表面粗糙度的基本概念 表面粗糙度的基本概念 表面粗糙度的定义(本站相关粗糙度仪的产品介绍:粗糙度仪) 表面粗糙度(Surface roughness)是指加工表面上具有的较小间距和峰谷所组成的微观几何形状特性性它是一种微观几何形状误差,也称为微观不平度。表面粗糙度应与形状误差(宏观几何形状误差)和表面波度区别开。通常,波距小于 1mm 的属于表面粗糙度,波距在 1~10mm 的属于表面波度,波距大于 10mm 的属于形状误差。 表面粗糙度对机械零件使用性能的影响 表面粗糙度的大小对零件的使用性能和使用寿命有很大影响。 1. 影响零件的耐磨性 表面越粗糙,摩擦系数就越大,相对运动的表面磨损得越快。然而,表面过于光滑,由于润滑油被挤出或分子间的吸附作用等原因,也会使摩擦阻力增大和加速磨损。 2. 影响配合性质的稳定性 零件表面的粗糙度对各类配合均有较大的影响。对于间隙配合,两个表面粗糙的零件在相对运动时会迅速磨损,造成间隙增大,影响配合性质;对于过盈配合,在装配时表面上微观凸峰极易被挤平,产生塑性变形,使装配后的实际有效过盈减小,降低联接强度;对于过渡配合,因多用压力及锤敲装配,表面粗糙度也会使配合变松。 3. 影响疲劳强度 承受交变载荷作用的零件的失效多数是由于表面产生疲劳裂纹造成的。疲劳裂纹主要是由于表面微观峰谷的波谷所造成的应力集中引起的。零件表面越粗糙,波谷越深,应力集中就越严重。因此,表面粗糙度影响零件的抗疲劳强度。 4. 影响抗腐蚀性 粗糙表面的微观凹谷处易存积腐蚀性物质,久而久之,这些腐蚀性物质就会渗入到金属内层,造成表面锈蚀。此外,表面粗糙度对接触刚度、密封性、产品外观、表面光学性能、导电导热性能以及表面结合的胶合强度等都有很大影响。所以,在设计零件的几何参数精度时,必须对其提出合理的表面粗糙度要求,以保证机械零件的使用性能。 公差等级与粗糙度的关系 表面粗糙度是反映零件表面微观几何形状误差的一个重要技术指标,是验证零件表面质量的主要依据;它选择的合理与否,直接关系到产品的质量,使用寿命和生产成本。 机械零件表面粗糙度的选择有3种方法,即计算法、试验法和类比法。在机械零件设计中应用最普遍的是类比法,此方法简单有效。运用类比法需要有充足的参考资料。现有的各类机械设计手册中都提供了较全面的资料和文献。最常用的是与公差等级相适应得表面粗糙度。通常情况下公差越小,机械零件的表面粗糙度值也越小,但是他们之间不存在固定的函数关系。一些装饰表面除外。 在实践工作中,对于不同类型的机器,其零件在相同尺寸公差的条件下,对表面粗糙度的要求是有差别的。这就是配合的稳定性问题。在机械零件的设计和制造过程中,对于不同类型

相关主题
文本预览
相关文档 最新文档