当前位置:文档之家› 高中物理--反冲运动火箭练习

高中物理--反冲运动火箭练习

高中物理--反冲运动火箭练习
高中物理--反冲运动火箭练习

高中物理

--- 反冲运动火箭练习

夯基达标

1. 质量为 M 的原子核, 原来处于静止状态, 当它以速度 v 放出质量为 m 的粒子时 (设 v

方向

为正),剩余部分速度为(

)

mv

mv A.

B.

Mm

Mm mv mv C. D.

mM

M

思路解析:由于原子核原来处于静止状态, 总动量为零, 可由动量守恒定律列方程求解

由动量守恒定律得:

0=mv +( M - m ) v ′

2. 如图 16-5-2 所示,自行火炮连同炮弹的总质量为 M ,当炮管水平、火炮车在水平路面上 以 v 1 的速度向右匀速行驶中,发射一枚质量为 m 的炮弹后,自行火炮的速度变为 v 2,仍向 右行驶,则炮弹相对炮筒的发射速度 v 0为 ( )

思路解析: 自行火炮水平匀速行驶时, 牵引力与阻力平衡, 系统动量守恒, 设向右为正 方向,发射前动量之和为 Mv 1,发射后系统的动量之和为( M - m ) v 2+m ( v 0+v 2).

由 Mv 1=( M -m ) v 2+m ( v 0+v 2) 解得 v0 Mv 1 (M m)v 2 0m 答案: B

3. 倾角为 θ、长为 L 的各面光滑的斜面

体置于水平地面上, 已知斜面质量为 M ,今有一质量

为 m 的滑块 (可视为质点)从斜面顶端由静止开始沿斜面下滑,滑块滑到底端时, 求斜面后 退位移 s 的大小 .

思路解析: 以滑块和斜面体组成的系统为研究对象, 水平方向系统不受外力, 系统水平 方向动量守恒,以斜面体后退方向为正方向,根据动量守恒定律,列方程有:

解得: v

答案: B

mv Mm

A.

m(v 1 v 2 ) mv 2 m

B.

M (v 1 v 2)

m(v 1 v 2 ) 2mv 2 C.

m

D.

M (v 1 v 2) m(v 1 v 2 )

M (v 1 v 2) m

答案: s

s Lcos Mm

tt

s

解得 s mLcos

Mm

mLcos Mm

4.

在平静的水面上,有一条载人的小船,船的质量为 M ,人的质量为 m ,人相对船静止,船

和人以速度 v 0前进,当人对船以速度 u 沿跟船的运动相反方向行走时,船的速度是多大? 若船长为 L ,且开始时系统静止,当人从船的一头走到另一头停止时,船后退距离是多少? (水的阻力不计)

思路解析: 本题考查动量守恒定律以及动量的相对性, 解答时分清作用前后各物体的动 量,然后应用动量守恒定律即可 . 同时还应注意此类题的解题步骤 .

① 此题第一步解题中, 应该把人对船的速度变为人对地的速度, 即各物体的运动应对同 ② 第二步解题中,人走船也走, 人停船也停, 因此整个过程系统动量变化为零,人在船 上不管做什么运动,只要是从船的一头走到另一头,船后退的距离一定相同 .

③ 人船模型可以推广到“人车模型”和“子弹打木块模型”,它们的解法类似 . (1)人和船组成系统,水平方向动量守恒,由于人对地速度为 v -u ,则由动量守恒定

律知

( m +M ) v 0=Mv +m ( v -u ) 所以 v v 0

m

u ,方向与 v 0方向相同 .

Mm

( 2)开始时人船都停止,总动量为零,设人在船上走一段较短时间 Δt 时,人和船都 看作是匀速运动,推广到整个过程时,人的平均速度为 v 人,船的平均速度为 v 船 ,如右图, 设船后退 s ,则人的位移为 L - s ,由动量守恒定律

mv 人-M v 船=0 ,

5. 一个飞行器为完成空间考察任务, 需降落到月球表面, 在飞行器离月球表面较近处, 开启

喷气发动机向下喷出高温、高压气体,使飞行器以不太大的速度匀速降落到月球表面上 . 若 飞行器质量 M =1.8 t ,气体喷出的速度(对月球表面)是

103 m/ s , 月球表面重力加速度

g ′=g /6(g 取 10 m/ s 2),短时间内喷出的气体质量不太大,可认为不影响飞行器的总质量, 则每秒喷出的气体的质量为多少?

思路解设每秒喷出的气体质量为 m 0 ,则时间 t 内喷出的气体总质量为 m 0t ,设飞行 器对喷出的气体的作用力为 F ,则喷出的气体对飞行器的反作用力 F ′与 F 大小相等 . 以时间

t 内喷出的气体为研究对象,由动量定理可得:

Ls m t

s M , t 故

s

mL Mm

答案:( 1) v v 0

u ,方向与 v 0方向相

同 Mm

2)

mL Mm

Ft =m 0tv -0① 由于飞行器匀速运动,则 F ′=Mg ′,故 F =Mg ′② 将②代入①得: Mg ′=m 0v

答案: 3 kg

6. 从地面竖直向上发射一枚礼花弹,当它距地面高度为 100 m 、上升速度为 1

7.5 m/ s 时,

炸成质量相等的 A 、B 两块,其中 A 块经 4 s 落回出发点 .求 B 块经多长时间落回出发点 .(不 计空气阻力,取 g =10 m/ s 2)

思路解析: 在礼花弹爆炸的瞬间,虽然受到的外力不为零(受重力作用) ,但由于爆炸 产生的内力远大于重力,故重力可忽略,所以在爆炸过程中仍可应用动量守恒定律求解 .

在爆炸过程中,

1

mv

mv A

即 B 块经 10 答案: 10 s

7.

一质量为 6×10 3 kg 的火箭从地面竖直向上

发射,若火箭喷射燃料气体的速度(相对于火 箭)为 103 m/ s ,求: (1)每秒钟喷出多少气体才能有克服火箭重力所需的推力? (2)每秒钟喷出多少气体才能使火箭在开始时有 20 m/ s 2的加速度?

思路解析: 这是一个反冲运动的问题,火箭升空是喷出的气体对火箭反作用力的结果, 可以根据动量定理先求出火箭对气体的作用力 .

(1)以喷出的气体质量为研究对象,设每秒喷出的质量为 Δ m ,火箭对这部分气体的 作用力为 F ,由动量定理有

F Δt =Δ mv 0①

火箭刚要升空时对地速度为零, 此时气体相对火箭的速度也就是气体对地的速度, 气体 对火箭的反作用力 F ′=F , 对火箭(忽略气体的重力)

F ′=Mg ②

m Mg 6 103 10 由①②两式解得 3 k g/s 60k/s t v 0 103

即要获得克服火箭重力的推力,每秒要喷出 60 kg 的气体 .

( 2)同第( 1)问,以喷出的气体 Δ m 为研究对象 F Δ t =Δ mv 0③ 而对火箭 F - Mg =M a ④ 由③④两式解得

Mg m 0

v

1.8 103 10 103

6

kg 3kg .

设爆炸后 A 的速度为 v A ,并设向上为正方向 gt 得

v A =-5 m/s

根据动量守恒定律(仍设向上为正方向) 1 mv B 得 v B =40 m/s

2B

12 gt 2得 t =10 s

s 落回地面 .

h v A t 由 h v B t

m M (g a) 6 10

3 (10 20) 3 kg/s 180k/s

t

v 0

103

答案: (1)60 kg/ s (2)180 kg/ s

8. 连同炮弹在内的炮车停放在水平地面上,炮车质量为 M ,炮膛中炮弹质量为 m ,炮车与地 面间的动摩擦因数为 μ,炮筒的仰角为 α. 设炮弹以速度 v 0射出,那么炮车在地面上后退 多远?

思路解析: 发射炮弹, 相互作用力远大于摩擦力, 所以水平方向满足动量守恒定律, 仰 角 α 以 v 0 射出,即 v 0 是相对于炮筒的速度,将 v 0 分解,水平方向 v x0=v 0co s α . 设炮身后退 速度大小为 v ,则炮弹水平向前的速度大小为 v 0co s α - v . 由水平方向动量守恒有

0 (m M v0 co m s )2 2( g)s , Mm

2 2 2 m 2v 0 cos 2

所以 s

0 .

2 g(M m)

答案: 2 2 2 m v 0 cos 2 g(M m)

9.

如图 16-5-3 所示,带有光滑 1/4 圆弧轨道的滑块静止在一个光滑水平面上,质量为

M . 一

个质量为 m 的小球静止在 A 处,当小球从滑块 B 处飞出时, 滑块 M 的反冲速度为多大? (圆 弧半径 R 已知)

思路解析: 滑块上圆弧轨道虽然光滑, 但由于滑块在小球下滑过程中对小球做了功, 所 以不能认为小球在下滑过程中机械能守恒 . 由于滑块、 小球系统在小球下滑过程中除重力外, 其他外力没有做功,系统的机械能守恒 . 即

1 2 1 2 mgR mv 1 Mv 2 ① 2 1 2 2

系统水平方向动量守恒,即 0=mv 1+Mv 2② 联立①②得:

m 2gR M 1 m/M

10.

一个宇航员,连同装备的总质量为 100 kg ,在空间跟飞

船相距 45 m 处相对飞船处于静

止状态 . 他带有一个装有 0.5 kg 氧气的贮氧筒,贮氧筒上有一个可以使氧气以 50 m/s 的速 度喷出的喷嘴,宇航员必须向着跟返回飞船方向相反的方向释放氧气,才能回到飞船上去, 同时

Mv =m (v 0co s α-v ) , 则 v

mv 0 cos Mm

炮 车 滑 行 加 速 度 a=μg , 由 v 12=v 02+2a s , 有

答案:

m 2gR

M 1 m/ M

又必然保留一部分氧气供他在返回飞船的途中呼吸. 已知宇航员呼吸的耗氧率为 2.5 ×10-4 kg/ s,试问:

(1)如果他在准备返回飞船的瞬间,释放0.15 kg 的氧气,他能安全地回到飞船吗?

(2)宇航员安全地返回飞船的最长和最短时间分别为多少?

思路解析:宇航员使用氧气喷嘴喷出一部分氧气后,根据动量守恒定律,可以计算出宇航员返回的速度,根据宇航员离开飞船的距离和返回速度,可以求出宇航员返回的时间,即可求出这段时间内宇航员要消耗的氧气,再和喷射后剩余氧气质量相比,即求出答案.

(1)令M=100 kg ,m0=0.5 kg , Δm=0.15 kg, 氧气释放速度为v,宇航员在释放氧气后的速度为v′, 由动量守恒定律得

0=(M- Δm)v′- Δm(v-v′)

v m v 0.15 50m/s 0.075m/s

M 100

s 45

宇航员返回飞船所需时间t s 600s.

v 0.075

宇航员返回途中所耗氧气m′=kt =2.5×10-4×600 kg=0.15 kg, 氧气筒喷射后所余氧气

m″=m0- Δ m=(0.5-0.15)kg=0.35 kg, 因为m″>m′,

所以宇航员能顺利返回飞船.

(2)设释放的氧气

Δm未知,途中所需时间为t,则m0=kt +Δm为宇航员返回飞船的极

限条件.

s Ms100 4590 t s v mv m 50m

0.5=2.5×10-4×90+Δm

m

解得Δ

m1=0.45 kg 或Δ m2=0.05 kg.

90

分别代入t , 得t 1=200 s,t 2=1 800 s.

m

即宇航员安全返回飞船的最长时间为 1 800 s,最短时间只有200 s. 答案:(1)能

(2)最长时间 1 800 s,最短时间200 s

11. 总质量为m的一颗返回式人造地球卫星沿半径为R的圆形轨道绕地球运动到P点时,接到地面指挥中心返回地面的指令,于是立即打开制动火箭向原来运动方向喷出燃气以降低速

8

度并转到跟地球相切的椭圆轨道,如图16-5-4 所示. 要使卫星对地速度降为原来的,卫星

9

在P 处应将质量为Δm的燃气以多大的对地速度向前喷出?

(将连续喷气等效为一次性喷气,地球半径为R0,地面重力加速度为g)

16-5-4

思路解析: 由于地球半径 R 0 和地面重力加速度 g 为已知,可求出人造地球卫星在原轨 道上时的速度,再由动量守恒定律求出喷气速度 .

地球对卫星的万有引力提供卫星做圆周运动的向心力,故

GMm mv 2 GM

2 即 v

R 2

R R

又由于在地球表面附近

GMm

2

R02

即 GM =g R 02② 将②代入①式可得

2 gR 0 R

22

mv mg R 0 R=(m - Δ m )89 g R 0 R+Δ mv ′

12. 如图 16-5-5 所示,一个质量为 m 的玩具蛙蹲在质

量为 m ′的小车的细杆上,小车放在光 滑的水平桌面上 . 若车长为 l ,细杆高为 h ,且位于小车的中点, 则玩具蛙至少以多大的水平 速度 v 0 跳出时,才能落到桌面上?

图 16-5-5

思路解析: 设蛙水平跳出速度为 v 0,小车后退速度为 v 1,则与蛙在车作用过程中,系 统水平方向动量守恒,则

0=mv 0- m ′v 1( 以 v 0 方向为正) .

在蛙未落至桌面前,小车以 v 1 做匀速运动,设 t 内走 x ,则 x =v 1·t (x 为对地位移) .

在 t 时间内,蛙做平抛运动,根据平抛运动规律,即

mg

设卫星在 P 点喷出的燃气对地速度为

8

mv (m m ) v mv

v ′, 卫星与燃气组成的系统动量定恒,则有

1 2 l l

h gt 2, 蛙对地的水平位移应为v0t x , 而至少应为v0t x.

2

2

2

解以上各式得v0ml g 2(m m)

2h

13. 一个在空中飞行的手雷,以水平速度v 飞经离地面高为h 的轨道最高点时,炸裂成A、B

两块,A、B质量之比为n(少量炸药质量不计). 之后,B正好自由下落,求 A 的落地点比不发生爆炸时手雷的落地点远多少?爆炸前后机械能变化了多少?

思路解析:爆炸前后动量守恒,有mv=m A v A

mv mv m A

nm

n1

此题爆炸前后可认为动量守恒,但机械能并不守恒,

1 nm n 1

2 2 1 2 1 2

E ()2v2mv2mv2. 机械能是增加的,这一点与碰撞过程不同.

2 n 1 n 2 2n

答案:v 2h增加1mv2

n g 2n

走近高考

14. 在光滑水平桌面上,有一长为l =2 m的木板C,它的两端各有一挡板,C 的质量m C=5 kg,在C的正中央并排放着两个可视为质点的滑块A、B,质量分别为m A=1 kg, m B=4 kg, 开始时A、

B、C都静止,并且AB间夹有少量的塑胶炸药,如图16-5-6 所示,炸药爆炸使得A以 6 m/s 的速度水平向左运动. 如果A、B 与C间的摩擦可忽略不计,两滑块中任一块与挡板碰撞后都与挡板结合成一体,爆炸和碰撞时间都可忽略. 求:

图16-5-6

(1)当两滑块都与挡板相撞后,板 C 的速度是多大?

(2)到两个滑块都与挡板碰撞为止,板的位移大小和方向如何?思路解析:由于爆炸,A、B 相互作用系统满足动量守恒,A、B 分离后以不同速率奔向挡板, A 先到达挡板与C作用,发生完全非弹性碰撞,以后C与另一物体有相对运动,直到碰撞为止,整个过程满足动量守恒.

答案:v0

ml

2(m m) 2h

(n 1) v

n

爆炸后, A 以v A做平抛运动,运动时间

2h

g

射程的增加量Δ s 为s (v A v)t

( 1)设向左的方向为正方向,对A、B 组成的系统由动量守恒定律有:

m a v a+m b v b=0 得v b=-1.5 m/s

对A、B、C组成的系统开始时静止,由动量守恒有( m A+m B+m C) v C=0得v C =0,即最终木板 C 的速度为0.

(2)A 先与C相碰,由动量守恒定律:

m A v A=( m A+ v C)v 共

v 共=1 m/s

从炸药爆炸到A、C 相碰的时间:t 1=λ2v A=16 s, 此时B距C的右壁s B=l2- v B t 1=0.75 m, 设再经过t 2 时间 B 与 C 相碰,则

t 2=s B v B+v 共=0.3 s, 故 C 向左的位移Δs C=v 共t =1×0.3 m=0.3 m.

答案:(1)0 (2)0.3 m 方向向左

高中物理专题复习之运动学

高中物理专题复习——运动学 [知识要点复习] 1.位移(s):描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的直线长度。 2.速度(v):描述物体运动快慢和方向的物理量,是矢量。 做变速直线运动的物体,在某段时间内的位移与这段时间的比值叫做这段时间内平均速度。 它只能粗略描述物体做变速运动的快慢。 瞬时速度(v):运动物体在某一时刻(或某一位置)的速度,瞬时速度的大小叫速率,是标量。 3.加速度(a):描述物体速度变化快慢的物理量,它的大小等于 矢量,单位m/s2。 4.路程(L ):物体运动轨迹的长度,是标量。 5.匀速直线运动的规律及图像 (1)速度大小、方向不变 (2)图象 6.匀变速直线运动的规律 (1)加速度a 的大小、方向不变

2)图像 7.自由落体运动只在重力作用下,物体从静止开始的自由运动。 8.牛顿第一运动定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止,这叫牛顿第一运动定律。 惯性:物体保持原匀速直线运动状态或静止状态的性质叫惯性,因此牛顿第一定律又叫惯性定律。惯性是物体的固有属性,与物体的受力情况及运动情况无关;惯性的大小由物体的质量决定,质量大,惯性大。 9.牛顿第二运动定律物体加速度的大小与所受合外力成正比,与物体质量成反比,加速度的方向与合外力的方向相同。 10.牛顿第三运动定律两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在一条直线上。作用力与反作用力大小相等,性质相同,同时产生,同时消失,方向不同、作用在两个不同且相互作用的物体上,可概括为“三同,两不同”。 11.超重与失重:当系统具有竖直向上的加速度时,物体对支持物的压力或对悬挂物的拉力大于其重力的现象叫超重;当系统具有竖直向下的加速度时,物体对支持物的压力或对悬挂物的拉力小于其重力的现象叫失重。 12. 曲线运动的条件物体所受合外力的方向与它速度方向不在同一直线,即加速度方向与速度方向不在同一直线。 若用θ表示加速度a 与速度v0的夹角,则有:0°<θ<90°,物体做速率变大的曲线运动;θ=90°时,物体做速率不变的曲线运动;90° <θ<180°时,物体做速率减小的曲线运动。 13.运动的合成与分解 (1)合运动与分运动的关系 a.等时性:合运动与分运动经历的时间相等; b.独立性:一个物体同时参与了几个分运动,各分运动独立进行,不受其它分运动的影响。 c.等效性:各分运动叠加起来与合运动规律有完全相同的效果。 (2)运动的合成与分解的运算法则遵从平行四边形定则,运动的合成与分解是指位移、速度、加速度的合成与分解。 (3)运动分解的原则

高中物理直线运动专项训练100(附答案)

高中物理直线运动专项训练100(附答案) 一、高中物理精讲专题测试直线运动 1.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、 CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。如图,4个“— ”形小滑块工件紧挨在一起排在斜面上,从下往上依次标为1、2、3、4,滑块上长为L 的轻杆与斜面平行并与上一个滑块接触但不粘连,滑块1恰好在A 处。现将4个滑块一起由静止释放,设滑块经过D 处时无机械能损失,轻杆不会与斜面相碰。已知每个滑块的质量为m 并可视为质点,滑块与粗糙面间的动摩擦因数为tan θ,重力加速度为g 。求 (1)滑块1刚进入BC 时,滑块1上的轻杆所受到的压力大小; (2)4个滑块全部滑上水平面后,相邻滑块之间的距离。 【答案】(1)3sin 4 F mg θ=(2)43d L = 【解析】 【详解】 (1)以4个滑块为研究对象,设第一个滑块刚进BC 段时,4个滑块的加速度为a ,由牛顿第二定律:4sin cos 4mg mg ma θμθ-?= 以滑块1为研究对象,设刚进入BC 段时,轻杆受到的压力为F ,由牛顿第二定律: sin cos F mg mg ma θμθ+-?= 已知tan μθ= 联立可得:3 sin 4 F mg θ= (2)设4个滑块完全进入粗糙段时,也即第4个滑块刚进入BC 时,滑块的共同速度为v 这个过程, 4个滑块向下移动了6L 的距离,1、2、3滑块在粗糙段向下移动的距离分别为3L 、2L 、L ,由动能定理,有: 21 4sin 6cos 32)4v 2 mg L mg L L L m θμθ?-??++= ?( 可得:v 3sin gL θ= 由于动摩擦因数为tan μθ=,则4个滑块都进入BC 段后,所受合外力为0,各滑块均以速度v 做匀速运动; 第1个滑块离开BC 后做匀加速下滑,设到达D 处时速度为v 1,由动能定理:

高中物理曲线运动综合复习测试题附答案详解

■专题测试 《曲线运动》专题测试卷(时间:90分钟,满分:120分) 班级姓名学号得分 一、选择题(本题共12小题。每小题4分,共48分。在每小题给出的四个选项中,有 的只有一个选项正确,有的有多个选项正确,全选对的得4分,选对但不全的得2分,有选 错或不答的得0分。) 1.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,在同一 坐标系中作出两个分运动的v-t图象,如图1所示,则以下说法正确的是() A.图线1表示水平方向分运动的v-t图线 B.图线2表示竖直方向分运动的v-t图线 C.t1时刻物体的速度方向与初速度方向夹角为45° D.若图线2的倾角为θ,当地重力加速度为g,则一定有g = θ tan 2.如图2所示,在地面上某一高度处将A球以初速度v1水平抛出,同时在A球正下 方地面处将B球以初速度v2斜向上抛出,结果两球在空中相遇,不计空气阻力,则两球从 抛出到相遇过程中() A.A和B初速度的大小关系为v1< v2 B.A和B加速度的大小关系为a A> a B C.A做匀变速运动,B做变加速运动 D.A和B的速度变化相同 3.如图3所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平对准它,就在子弹 出枪口时,松鼠开始运动,下述各种运动方式中,松鼠不能逃脱厄运而被击中的是(设树枝 足够高): A.自由落下 B.竖直上跳 C.迎着枪口,沿AB方向水平跳离树枝 D.背着枪口,沿AC方向水平跳离树枝 4.在同一点O抛出的三个物体,做平抛运动的轨迹如图4所示,则 三个物体做平抛运动的初速度v A.v B、v C的关系和三个物体做平跑运动的 时间t A.t B、t C的关系分别是() A.v A>v B>v C t A>t B>t C B.v A=v B=v C t A=t B=t C C.v At B>t C D.v A>v B>v C t A

2021年高中物理 第二册反冲运动火箭教案 人教版

2021年高中物理第二册反冲运动火箭教案人教版 一、教学目标 1、进一步巩固动量守恒定律 2、知道反冲运动和火箭的工作原理 3、了解反冲运动的应用 4、了解航天技术的发展和应用 二、教学重点:反冲现象的原理 三、教学难点:用动量守恒分析相关实例 四、教学用具: 铝箔纸,火柴和支架,反击式水轮机转轮的原理模型,礼花,有关航天发射、空间站等的录像带剪辑 五、教学过程 〖演示实验1〗老师当众吹一个气球,然后,让气球开口向自己放手,看到气球直向学生飞去,人为制造一点“惊险气氛”,活跃课堂氛围。 〖演示实验2〗用薄铝箔卷成一个细管,一端封闭,另一端留一个很细的口,内装由火柴头上刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热,当管内药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反的方向飞去。 〖演示实验3〗把弯管装在可以旋转的盛水容器的下部,当水从弯管流出时,容器就旋转起来。 提问:实验1、2中,气球、细管为什么会向后退呢?实验3中,细管为什么会旋转起来 呢? 看起来很小的几个实验,其中包含了很多现代科技的基本原理:如火箭的发射,人造卫

星的上天,大炮发射等。应该如何去解释这些现象呢?这节课我们就学习有关此类的问题。 〖板书〗1、反冲运动 ○1分析:细管为什么会向后退? 〖引导学生自学书本,展开讨论,得出结论〗当气体从管内喷出时,它具有动量,由动量守恒定律可知,细管会向相反方向运动。 ○2分析:反击式水轮机的工作原理:当水从弯管的喷嘴喷出时,弯管因反冲而旋转,这是利用反冲来造福人类,象这样的情况还很多。 〖学生交流,举例,并说明其工作原理〗如:喷气式飞机、我国人民引以为荣的运载火箭等。 为了使学生对反冲运动有更深刻的印象,此时再做一个发射礼花炮的实验。请学生分析,礼花为什么会上天?在学生回答的基础上进行小结——火箭就是根据这个原理制成的。 〖板书〗2、火箭 指导学生看书,对照书上“三级火箭”图,介绍火箭的基本构造和工作原理。 播放课前准备的有关卫星发射、“和平号”空间站、“探路者”号火星探测器以及我国“神舟号”飞船等电视录像,使学生不仅了解航天技术的发展和宇宙航行的知识,而且要学生知道,我国的航天技术已经跨入了世界先进行列,激发学生的爱国热情。 在此基础上,指导学生阅读课后阅读材料——《航天技术的发展和宇宙航行》。 〖课堂小结〗反冲运动 (1)反冲运动是相互作用的物体之间的作用力与反作用力产生的效果,如发射炮弹时炮身的后退,火箭因喷气而发射等。 (2)反冲运动的过程中,如果没有外力作用或外力的作用远小于物体间的相互作用力,可利用动量守恒定律处理 作业:复习本章教材,理出知识框架。

高一物理复习运动学专题复习

高一物理运动学专题复习 知识梳理: 一、机械运动 一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等运动形式. 二、参照物 为了研究物体的运动而假定为不动的物体,叫做参照物. 对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,灵活地选取参照物会给问题的分析带来简便;通常以地球为参照物来研究物体的运动. 三、质点 研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代管物体的有质量的做质点.像这种突出主要因素,排除无关因素,忽略次要因素的研究问题的思想方法,即为理想化方法,质点即是一种理想化模型. 四、时刻和时间 时刻:指的是某一瞬时.在时间轴上用一个点来表示.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上用一段长度来表示.对应的是位移、路程、冲量、功等过程量.时间间隔=终止时刻-开始时刻。 五、位移和路程 位移:描述物体位置的变化,是从物体运动的初位置指向末位置的矢量. 路程:物体运动轨迹的长度,是标量.只有在单方向的直线运动中,位移的大小才等于路程。 六、速度 描述物体运动的方向和快慢的物理量. 1.平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度,即V =S/t ,单位:m / s ,其方向与位移的方向相同.它是对变速运动的粗略描述.公式V =(V 0+V t )/2只对匀变速直线运动适用。 2.瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.瞬时速度的大小叫速率,是标量. 3.速率:瞬时速度的大小即为速率; 4.平均速率:质点运动的路程与时间的比值,它的大小与相应的平均速度之值可能不相同。 七、匀速直线运动 1.定义:在相等的时间里位移相等的直线运动叫做匀速直线运动. 2.特点:a =0,v=恒量. 3.位移公式:S =vt . 八、加速度 1.加速度的物理意义:反映运动物体速度变化快慢...... 的物理量。 加速度的定义:速度的变化与发生这一变化所用的时间的比值,即a = t v ??=t v v ?-1 2。 加速度是矢量。加速度的方向与速度方向并不一定相同。 2.加速度与速度是完全不同的物理量,加速度是速度的变化率。所以,两者之间并不存在“速度大加速度也大、速度为0时加速度也为0”等关系,加速度和速度的方向也没有必然相同的关系,加速直线运

高一物理曲线运动练习题(含答案)

第五章 第一节 《曲线运动》练习题 一 选择题 1. 关于运动的合成的说法中,正确的是 ( ) A .合运动的位移等于分运动位移的矢量和 B .合运动的时间等于分运动的时间之和 C .合运动的速度一定大于其中一个分运动的速度 D .合运动的速度方向与合运动的位移方向相同 A 此题考查分运动与合运动的关系,D 答案只在合运动为直线时才正确 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物 体的运动情况可能是 ( ) A .静止 B .匀加速直线运动 C .匀速直线运动 D .匀速圆周运动 B 其余各力的合力与撤去的力等大反向,仍为恒力。 3.某质点做曲线运动时 (AD ) A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 4 精彩的F 1赛事相信你不会陌生吧!车王舒马赫在2005年以8000万美元的年收入高居全世界所有运动员榜首。在观众感觉精彩与刺激的同时,车手们却时刻处在紧张与危险之中。这位车王在一个弯道上突然高速行驶的赛车后轮脱落,从而不得不遗憾地退出了比赛。关于脱落的后轮的运动情况,以下说法正确的是( C ) A. 仍然沿着汽车行驶的弯道运动 B. 沿着与弯道垂直的方向飞出 C. 沿着脱离时,轮子前进的方向做直线运动,离开弯道 D. 上述情况都有可能 5.一个质点在恒力F 作用下,在xOy 平面内从O 点运动到A 点的轨迹如图所示,且在A 点的速度方向与x 轴平行, 则恒力F 的方向不可能( ) A.沿x 轴正方向 B.沿x 轴负方向 C.沿y 轴正方向 D.沿y 轴负方向 ABC 质点到达A 点时,Vy=0,故沿y 轴负方向上一定有力。 6在光滑水平面上有一质量为2kg 2N 力水平旋转90o,则关于物体运动情况的叙述正确的是(BC ) A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2m/s 2的匀变速曲线运动 C. 物体做速度越来越大的曲线运动 D. 物体做非匀变速曲线运动,其速度越来越大 解析:物体原来所受外力为零,当将与速度反方向的2N 力水平旋转90o后其受力相当于如图所示,其中,是F x 、F y 的合力,即F=22N ,且大小、方向都不变,是恒力,那么物体的加速度为2 22== m F a m /s 2=2m /s 2恒定。又因为F 与v 夹角<90o,所以物体做速度越来越大、加速度恒为2m /s 2的匀变速曲线运动,故正确答案是B 、C 两 项。 7. 做曲线运动的物体,在运动过程中一定变化的物理量是( ) A.速度 B.加速度 C.速率 D.合外力 A 曲线运动的几个典型例子是匀变速曲线运动像平抛和匀速圆周运动,故 B 、 C 、 D 均可不变化,但速度一定变化。 8. 关于合力对物体速度的影响,下列说法正确的是(ABC ) O A x y

《反冲运动火箭》教案

《反冲运动火箭》教案 一、目的要求: 教学内容的地位:本节知识是高中物理教材第七章第五节,即第七章动量的最后一节。知识的结构相对简单,但内容是对本章知识的总结和复习,尤其是对动量守恒定律知识的复习。学生在前面的学习中学习了具体的知识—动量及动量守恒定律,并能够对一些物理模型进行简单的解题,但一旦涉及到具体的问题,难免会束手无策。所以本节知识的地位是非常重要的。此外,本节知识还涉及到了一些具体的生活中的问题以及一些高科技知识;加之目前高考正面向能力测试,更多的接近生活接近科技前沿的问题考题的出现,使得本节知识显得尤为的重要了。虽然教学大纲规定为A档,即了解知道;而且从前物理老师总是把本课作为学生自学或占用少量时间讲解的内容,但随着素质教育的发展,本节的知识必成为教学的重点。综上原因,我对本节课的内容进行了深入的研究和细致的设计。通过本节课的学习,学生不仅要了解生活中的反冲运动,更要学会利用动量知识解决生活中的实际问题,这是本课的根本目的。 二、教学内容 教学的重点:巩固和深化动量守恒定律 知道反冲运动和火箭原理

了解反冲运动的应用 了解航天技术的发展和宇宙航行 教学难点:巩固和深化动量守恒定律 知道反冲运动和火箭原理 重点难点确定分析:在目的要求部分我已经说明,本节的知识关键在于对前面知识的总结和应用,而动量守恒定律知识更是重要的重要,而且学生在这部分知识的应用才刚刚接触,熟悉程度不够。所以巩固和深化动量守恒定律的内容既是教学的重点,又是教学的难点。反冲运动和火箭则是对反冲运动的具体应用,所以他的地位也是极为重要的。了解反冲运动的应用和航天技术的发展和宇宙航行,一方面使学生把具体的生活知识和学习的内容紧密结合,另一方面提高学生的处理实际问题能力,并通过我国的航天技术发展教学提高学生的爱国热忱,因此,二者的地位同样非常重要。 教材分析及设计:教材中,对于反冲运动的原理仅仅进行了简单的介绍,学生在解题过程中使用的动量守恒定律并没有进行数学上的推理,针对这方面,我在教学中加入了这部分知识,并由学生进行推理、说明。学生在自己解决问题的过程中,深入的理解了反冲运动的原理和动量守恒定律在反冲运动中的应用,教学难点迎刃而解。反冲运动的事例除了书上的之外,还引入了其他学生感兴趣的事例。对于火箭部分的知识,除了书上的知识之外还通过书籍加入了一些常

重点高中物理运动学专题

重点高中物理运动学专题

————————————————————————————————作者:————————————————————————————————日期:

运动学 第一讲基本知识介绍 一.基本概念 1.质点 2.参照物 3.参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点) 4.绝对运动,相对运动,牵连运动:v 绝=v 相 +v 牵 二.运动的描述 1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0 Δr/Δt.在大学教材中表述为:v=d r/dt, 表示r对t 求导数 4.加速度a=a n +a τ。 a n :法向加速度,速度方向的改变率,且a n =v2/ρ,ρ叫 做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ : 切向加速度,速度大小的改变率。a=d v/dt 5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。) 6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较 好 三.等加速运动 v(t)=v 0+at r(t)=r +v t+1/2 at2 一道经典的物理问题:二次世界大战中物理学家曾 经研究,当大炮的位置固定,以同一速度v 沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的 包络线。此抛物线为在大炮上方h=v2/2g处,以v 平抛物体的轨迹。) 练习题: 一盏灯挂在离地板高l 2,天花板下面l 1 处。灯泡爆裂,所有碎片以同样大小 的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。) 四.刚体的平动和定轴转动 1.我们讲过的圆周运动是平动而不是转动 2.角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt 3.有限的角位移是标量,而极小的角位移是矢量 4.同一刚体上两点的相对速度和相对加速度 两点的相对距离不变,相对运动轨迹为圆弧, V A =V B +V AB ,在AB连线上

高中物理专题汇编直线运动(一)含解析

高中物理专题汇编直线运动(一)含解析 一、高中物理精讲专题测试直线运动 1.跳伞运动员做低空跳伞表演,当直升机悬停在离地面224m 高时,运动员离开飞机作自由落体运动,运动了5s 后,打开降落伞,展伞后运动员减速下降至地面,若运动员落地速度为5m/s ,取2 10/g m s =,求运动员匀减速下降过程的加速度大小和时间. 【答案】212.5?m/s a =; 3.6t s = 【解析】 运动员做自由落体运动的位移为2211 10512522 h gt m m = =??= 打开降落伞时的速度为:1105/50/v gt m s m s ==?= 匀减速下降过程有:22 122()v v a H h -=- 将v 2=5 m/s 、H =224 m 代入上式,求得:a=12.5m/s 2 减速运动的时间为:12505 3.6?12.5 v v t s s a --= == 2.如图所示,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力84N F =而从静止向前滑行,其作用时间为1 1.0s t =,撤除水平推力F 后经过2 2.0s t =,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次相 同.已知该运动员连同装备的总质量为60kg m =,在整个运动过程中受到的滑动摩擦力大小恒为f 12N F =,求: (1)第一次利用滑雪杖对雪面作用获得的速度大小及这段时间内的位移大小. (2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离. 【答案】(1)1.2m/s 0.6m ; (2)5.2m 【解析】 【分析】 【详解】 (1)根据牛顿第二定律得 1f F F ma -= 运动员利用滑雪杖获得的加速度为 21 1.2m /s a = 第一次利用滑雪杖对雪面作用获得的速度大小 111 1.2 1.0m /s 1.2m /s v a t ==?=

高中物理曲线运动知识点归纳

高中物理曲线运动知识点归纳 第一章曲线运动 (一)曲线运动的位移 研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v 0方向为x 轴的正方向,以竖直方向向下为y 轴的正方向,如下图所示. 当物体运动到A 点时,它相对于抛出点O 的位移是OA ,用l 表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A 点的坐标(x A 、y A )就能表示它,于是使问题简化. (二)曲线运动的速度 1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向. 2.对曲线运动速度方向的理解 如图所示, AB 割线的长度跟质点由A 运动到B 的时间之比,即v =Δx AB Δt , 等于AB 过程中平均速度的大小,其平均速度的方向由A 指向B .当B 非常非常接近A 时,AB 割线变成了过A 点的切线,同时Δt 变为极短的时间,故AB 间的平均速度近似等于A 点的瞬时速度,因此质点在A 点的瞬时速度方向与过A 点的切线方向一致. (三)曲线运动的特点 1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线

运动) 2、做曲线运动的物体一定具有加速度 曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.) (四)物体做曲线运动的条件: 物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动) 当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小. (五)曲线运动的轨迹 做曲线运动的物体,其轨迹向合外力所指一方弯曲, 若已知物体的运动轨迹,可判断出物体所受合力的大致方 向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法 1、合运动与分运动的定义 如果物体同时参与了几个运动,那么 物体实际发生的运动就是合运动,那几个

高三物理第一轮复习运动学部分专题

一.平均速度:任意运动的平均速度公式和匀变速直线运动的平均速度公式的理解 ①t s ??= 一v 普遍适用于各种运动;②v =20t V V +只适用于加速度恒定的匀变速直线运动 ③t V V S t 2 0+= 仅适用于匀变速直线运动 1.物体由A 沿直线运动到B ,在前一半时间内是速度为v 1的匀速运动,在后一半时间内是速度为v 2的匀速运动.则物体在这段时间内的平均速度为( ) A .221v v + B .21v v + C .21212v v v v + D .2 121v v v v + 2.一个物体做变速直线运动,前一半路程的平均速度是v 1,后一半路程的平均速度是v 2,则全程的平均速度是( ) A .221v v + B .21212v v v v + C .21212v v v v ++ D .2 121v v v v + 3.一辆汽车以速度v 1行驶了1/3的路程,接着以速度v 2=20km/h 跑完了其余的2/3的路程,如果汽车全程的平均速度v=27km/h ,则v 1的值为( ) A .32km/h B .345km/h C .56km/h D .90km/h 4.甲乙两车沿平直公路通过同样的位移,甲车在前半段位移上以v 1=40km/h 的速度运动,后半段位移上以v 2=60km/h 的速度运动;乙车在前半段时间内以v 1=40km/h 的速度运动,后半段时间以v 2=60km/h 的速度运动,则甲、乙两车在整个位移中的平均速度大小的关系是 A .V 甲=V 乙 B .V 甲 < V 乙 C .V 甲 > V 乙 D .因不知位移和时间故无法确定 二.加速度公式的理解:a=(v t -v 0 )/t 公式中各个部分物理量的理解 匀加速运动:速度随时间均匀增加,v t >v 0,a 为正,此时加速度方向与速度方向相同。 匀减速运动:速度随时间均匀减小,v t <v 0,a 为负,此时加速度方向与速度方向相反。 1.对于质点的运动,下列说法中正确的是( ) A .质点运动的加速度为零,则速度变化量也为零 B .质点速度变化率越大,则加速度越大 C .物体的加速度越大,则该物体的速度也越大 D .质点运动的加速度越大,它的速度变化量越大 2.下列说法正确的是( ) A .加速度增大,速度一定增大 B .速度改变△V 越大,加速度就越大 C .物体有加速度,速度就增加 D .速度很大的物体,其加速度可能很小 3.关于加速度与速度,下列说法中正确的是( ) A .速度为零,加速度可能不为零 B .加速度为零时,速度一定为零 C .若加速度方向与速度方向相反,则加速度增大时,速度也增大 D .若加速度方向与速度方向相同,则加速度减小时,速度反而增大 4.一物体做匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的( ) A .位移的大小可能小于4m B .位移的大小可能大于10m C .加速度的大小可能小于4m/s 2 D .加速度的大小可能大于10m/s 2

高中物理直线运动试题经典

高中物理直线运动试题经典 一、高中物理精讲专题测试直线运动 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的 图象如图所示取 m/s 2,求: (1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小; (3)s 内物体运动位移的大小. 【答案】(1)0.2;(2)5.6N ;(3)56m 。 【解析】 【分析】 【详解】 (1)由题意可知,由v-t 图像可知,物体在4~6s 内加速度: 物体在4~6s 内受力如图所示 根据牛顿第二定律有: 联立解得:μ=0.2 (2)由v-t 图像可知:物体在0~4s 内加速度: 又由题意可知:物体在0~4s 内受力如图所示 根据牛顿第二定律有: 代入数据得:F =5.6N

高中物理曲线运动经典题型总结(可编辑修改word版)

42+ 32 【题型总结】 专题五曲线运动 一、运动的合成和分解 1.速度的合成:(1)运动的合成和分解(2)相对运动的规律v甲地=v甲乙+v乙地 例:一人骑自行车向东行驶,当车速为 4m/s 时,他感到风从正南方向吹来,当车速增加到 7m/s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为() A. 7m/s B. 6m/s C. 5m/s D. 4 m/s 解析:“他感到风从正南方向(东南方向)吹来” ,即风相对车的方向是正南方向(东南方向)。而风相 对地的速度方向不变,由此可联立求解。 解:∵θ=45°∴V 风对车=7—4=3 m/s ∵V 风对车 +V 车对地 =V 风对地 V 风对 ∴V 风对地= =5 答案:C 2.绳(杆)拉物类问题 m/s V 风对 V 车对 ① 绳(杆)上各点在绳(杆)方向上的速度相等 ②合速度方向:物体实际运动方向 分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩) 垂直于绳(杆)方向:使绳(杆)转动 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ 角,且重物下滑的速率为v 时,小车的速度为多少? 解:方法一:虚拟重物M 在Δt 时间内从A 移过Δh 到达C的运动,如图(1)所示,这个运动可设想为两 个分运动所合成,即先随绳绕滑轮的中心轴O 点做圆周运动到B,位移为Δs1,然后将绳拉过Δs2到C. 1 若Δt 很小趋近于0,那么Δφ→0,则Δs1=0,又OA=OB,∠OBA=β=2 (180°- Δφ)→90°.亦即Δs1近似⊥Δs2,故应有:Δs2=Δh·cosθ ?s 2 因为?t = ?h ?t ·cosθ,所以v′=v·cosθ 方法二:重物M 的速度v 的方向是合运动的速度方向,这个v 产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v′运动,如图(2)所示,由图可知,v′=v·cosθ. (1)(2) V 风对 θ

高中物理获奖教案-反冲运动火箭教案

《反冲运动火箭》教学设计 【教学目标】 一、知识与技能 1.知道什么是反冲运动。 2.能够用动量守恒定律解释反冲运动并进行简单计算。 3.了解一些火箭的工作原理。 二、过程与方法 通过观察反冲现象,寻找它们共同规律的过程培养学生的观察能力和发现问题的能力。 三、情感态度与价值观 体会物理知识来源于生活而又应用于生活的特点,培养学生主动探究、乐于探究的品质。 【教学重点】 1.能够认清某一运动是否为反冲运动。 2.用动量守恒定律对反冲运动进行解释。 【教学难点】 动量守恒定律对反冲运动进行定量计算。 【教学方法】 教师启发引导,学生讨论、交流、实验等。 【教学用具】 实验器材:反击式水轮机原理模型,一些关于反冲应用的图片、动画、视频、火炮、火柴、酒精、气球等。 【教学过程】 新课引入: 师:物体间的相互作用除碰撞以外还有另一种方式也较常见,我们先观察三个实验,看一看它们是否也有相互作用? 演示实验一:反击式水轮机。 演示实验二:铝箔纸火箭。 演示实验三:定向释放气球实验。 探究一: 小组合作讨论:刚才这三个实验有相互作用吗?分别是谁和谁之间的相互作用? 学生讨论、交流后得出:均是相互作用。实验一是喷出的水与喷嘴之间的相互作用。实验二是火箭和气体的相互作用;实验三是喷出的气体与气球的相互作用。 探究二:讨论这三个实验有什么共同点?(与碰撞比较在形式上有何不同) 学生讨论、交流后得出:1、原来静止,2、相互作用的两个物体本来是一个整体,3、通过相互作用才分开。 师:我们把这种相互作用下运动称为反冲运动,本节课我们就研究反冲运动。 新课教学: 总结:1.反冲运动:静止或运动的物体通过分离出一部分物体使另一部分物体向反方向运动的现象。 反冲运动在生产、生活中很常见。 探究三:请讨论举例生产、生活中有哪些反冲运动? 学生讨论、交流后会得出很多实例如:打枪时枪会后座,爆竹“二踢脚”第一响后飞上天空,旋转烟花,喷气式飞机,火箭,高压锅气阀旋转,甚至打喷嚏、章鱼游泳等。 视频2:认识反冲运动。 可见只要注意观察,反冲运动在我们身边到处都有。为什么会发生反冲现象呢? 探究四:以气球喷气为例讨论为什么静止的气球向后喷出气体后,气球会获得向前的速度呢? 学生讨论、交流:有用动量守恒定律解释的,也有用相互作用力解释的。 总结归纳:2.反冲运动原理:

高中物理直线运动试题经典及解析

高中物理直线运动试题经典及解析 一、高中物理精讲专题测试直线运动 1.货车A 正在公路上以20 m/s 的速度匀速行驶,因疲劳驾驶,司机注意力不集中,当司机发现正前方有一辆静止的轿车B 时,两车距离仅有75 m . (1)若此时轿车B 立即以2 m/s 2的加速度启动,通过计算判断:如果货车A 司机没有刹车,是否会撞上轿车B ;若不相撞,求两车相距最近的距离;若相撞,求出从货车A 发现轿车B 开始到撞上轿车B 的时间. (2)若货车A 司机发现轿车B 时立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为了避免碰撞,在货车A 刹车的同时,轿车B 立即做匀加速直线运动(不计反应时间),问:轿车B 加速度至少多大才能避免相撞. 【答案】(1)两车会相撞t 1=5 s ;(2)222 m/s 0.67m/s 3 B a =≈ 【解析】 【详解】 (1)当两车速度相等时,A 、B 两车相距最近或相撞. 设经过的时间为t ,则:v A =v B 对B 车v B =at 联立可得:t =10 s A 车的位移为:x A =v A t= 200 m B 车的位移为: x B = 2 12 at =100 m 因为x B +x 0=175 m

高中物理专题复习 曲线运动

曲线运动 单元切块: 按照考纲的要求,本章内容可以分成三部分,即:运动的合成和分解、平抛运动;圆周运动;其中重点是平抛运动的分解方法及运动规律、匀速圆周运动的线速度、角速度、向心加速度的概念并记住相应的关系式。难点是牛顿定律处理圆周运动问题。 运动的合成与分解 平抛物体的运动 教学目标: 1.明确形成曲线运动的条件(落实到平抛运动和匀速圆周运动); 2.理解和运动、分运动,能够运用平行四边形定则处理运动的合成与分解问题。 3.掌握平抛运动的分解方法及运动规律 4.通过例题的分析,探究解决有关平抛运动实际问题的基本思路和方法,并注意到相 关物理知识的综合运用,以提高学生的综合能力. 教学重点:平抛运动的特点及其规律 教学难点:运动的合成与分解 教学方法:讲练结合,计算机辅助教学 教学过程: 一、曲线运动

1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。 当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动,如平抛运动。 当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动.(这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.) 如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 2.曲线运动的特点:曲线运动的速度方向一定改变,所以是变速运动。需要重点掌握的两种情况:一是加速度大小、方向均不变的曲线运动,叫匀变速曲线运动,如平抛运动,另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动。 二、运动的合成与分解 1.从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。重点是判断合运动和分运动,这里分两种情况介绍。 一种是研究对象被另一个运动物体所牵连,这个牵连指的是相互作用的牵连,如船在水上航行,水也在流动着。船对地的运动为船对静水的运动与水对地的运动的合运动。一般地,物体的实际运动就是合运动。 第二种情况是物体间没有相互作用力的牵连,只是由于参照物的变换带来了运动的合成问题。如两辆车的运动,甲车以v甲=8 m/s的速度向东运动,乙车以v乙=8 m/s的速度向北运动。求甲车相对于乙车的运动速度v甲对乙。 2.求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3.合运动与分运动的特征: ①等时性:合运动所需时间和对应的每个分运动时间相等 ②独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响。 4.物体的运动状态是由初速度状态(v0)和受力情况(F合)决定的,这是处理复杂运动的力和运动的观点.思路是:

反冲运动 火箭教案

反冲运动 火箭 宾川一中 物理组 李志周 三维教学目标 1、知识与技能 (1)进一步巩固动量守恒定律; (2)知道反冲运动和火箭的工作原理,了解反冲运动的应用; (3)了解航天技术的发展和应用。 2、过程与方法:理解反冲运动的物理实质,能够运用动量守恒定律分析、解决有关反冲运动的问题。 3、情感、态度与价值观:培养学生动手动脑的能力,发掘学生探索新知识的潜能。 教学重点:运用动量守恒定律认识反冲运动的物理实质。 教学难点:动量守恒定律的应用。 教学方法:教师启发、引导,学生讨论、交流。 教学用具:录像带剪辑,投影片,多媒体辅助教学设备。 教学过程: (一)引入新课:前面我们学习了动量守恒定律,并用它分析处理了碰撞、爆炸问题,从中我们体会了动量守恒定律在处理问题时的特点和优点。它还能处理别的问题吗?让我们先来看一些有趣的现象! 观看视频,导入新课。 (二)提出问题,引导学生自主学习,独立思考。 ● 这些现象中的运动有何共同点? ● 可用什么规律分析? ● 根据规律,可写成什么样的表达式? (三)讨论、交流,小组合作探讨。 (四)学生展示,教师作点评,小结。 1、得出所有现象中的共同点是: ● 系统不受外力或者所受合外力为0,有的内力远大于外力,遵守动量守恒定律。 ● 系统初态静止,P=0 ● 在内力作用下分裂为两个部分,一部分向某个方向运动,另一部分向相反的方向运动。 2、反冲运动的定义: 根据动量守恒定律,如果一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必然向相反的方向运动。这种现象叫做反冲。 3、规律表达式: 若以m 1运动方向为正,则上述过程可表为: 22112211v m v m 0=-=或者v m v m

高中物理运动学专题

运动学 第一讲基本知识介绍 一.基本概念 1.质点 2.参照物 3.参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点) 4.绝对运动,相对运动,牵连运动:v 绝=v 相 +v 牵 二.运动的描述 1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0 Δr/Δt.在大学教材中表述为:v=d r/dt, 表示r对t 求导数 4.加速度a=a n +a τ。 a n :法向加速度,速度方向的改变率,且a n =v2/ρ,ρ叫 做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ : 切向加速度,速度大小的改变率。a=d v/dt 5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。) 6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较 好 三.等加速运动 v(t)=v 0+at r(t)=r +v t+1/2 at2 一道经典的物理问题:二次世界大战中物理学家曾经 研究,当大炮的位置固定,以同一速度v 沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包 络线。此抛物线为在大炮上方h=v2/2g处,以v 平抛物体的轨迹。) 练习题: 一盏灯挂在离地板高l 2,天花板下面l 1 处。灯泡爆裂,所有碎片以同样大小 的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。) 四.刚体的平动和定轴转动 1.我们讲过的圆周运动是平动而不是转动 2.角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt 3.有限的角位移是标量,而极小的角位移是矢量 4.同一刚体上两点的相对速度和相对加速度 两点的相对距离不变,相对运动轨迹为圆弧,V A =V B +V AB , 在AB连线上

相关主题
文本预览
相关文档 最新文档