当前位置:文档之家› HeNe激光器模式分析

HeNe激光器模式分析

HeNe激光器模式分析
HeNe激光器模式分析

实验二 He-Ne激光器的模式分析

一、实验目的

1.用共焦球面扫描干涉仪测量He-Ne激光器的相邻纵模间隔,判别高阶横模的阶次。

2.了解激光的频谱结构,掌握扫描干涉仪的使用方法及测定其性能指标的实验技能。

3.观察激光器的频率漂移及跳模现象,了解其影响因素;观察激光器的输出横向光场分布花样,体会谐振腔的调整对它的影响。

二实验设备

He-Ne激光器、激光电源、小孔光阑、共焦球面扫描干涉仪、锯齿波发生器、放大器、示波器等

三、实验原理

1.激光的频率特性

激光器的光学谐振腔内可存在一系列具有分立谐振频率的本征模式,但其中频率位于工作物质增益带宽范围内,并满足阈值条件的本征模才会振荡形成激光。

通常把激光光波场的空间分布,分解为沿传播方向(腔轴方向)的分布E(z)和垂直于传播方向在横截面内的分布E(x,y),即谐振腔模式可分为纵模和横模,用符号TEM

标志不同模式的模式分布。对激光束的模式进行频率分析,可以分辨出它的精细mn

结构。

由无源腔理论可知:共轴稳定球面谐振腔TEM mn 模的频率为

???

????????? ??-???? ??-+++=2111arccos )1(12R L R L n m q nL C v mnq π (2.1)

式中m 、n 为横模阶次,q 为纵模阶次,L 为腔长,R 1R 2是腔面两反射镜的曲率半径,n

是工作物质的折射率。

当m=n=0时为基横模,而m 或n ≠0时叫做高阶横模。对于不同的横模(m 、n 不同)有不同的横向光强分布,所以观察光斑图案或测量光强分布也能分析横模结构。但对于含有高阶横模的结构,则必须借助于频率分析才能分辨。由(2.1)式可知,q 一定时,不同的横模对应有不同的振荡频率,其频率间隔为 ???

????????? ??-???? ??-?+?=?21'',1111arccos )(12R R n m nL C v n m mn π (2.2) 式中:m m m -=?',n n n -=?'。利用频率差,即可精细地分析激光的横模结构。 不同纵模(即q 值不同)对应有不同的纵向(沿腔轴线方向)光强分布,但这种差异是肉眼不能分辨的,而只能根据频率来分析纵模结构。相邻纵模的频率间隔为

nL

c v q 2=? (2.3) 可见,腔长越短,相邻纵模的频率间隔越大,在一定的增益带宽情况下,则有可能形成单纵模振荡。

通常情况下,激光器包含有若干纵模和横模。激光的横模源于光腔的衍射,横模阶次越高,光腔对它的衍射损耗越大,因而高阶横模的阈值高,相对来说不易产生激光振荡。

2. 共焦球面扫描干涉仪的工作原理

共焦球面扫描干涉仪由两块镀有高反射膜,曲率半径相同的凹面反射镜组成,其曲率半径R 1R 2和腔长L 满足R 1=R 2=L ,因此它们的近轴焦点重合,构成一共焦系统。

如图2.1所示,两块反射镜中,一块固定不动,另一块固定在压电陶瓷环上,压电陶瓷环的长度变化量和所加电压成正比。当用一定幅度的锯齿波电压调制压电陶瓷环时,扫描干涉仪的腔长将在L 附近发生微小变化(约波长量级)。

图2.1共焦球面扫描干涉仪简图

当有某一波长为λ的光束近轴入射到干涉仪,可以证明,光线在干涉仪内经四次反射 后恰好闭合(见图2.1),与起始光线的光程差为

nL 4=?

其中n 为两块反射镜间介质的折射率,当满足

λm nL =4 (m 为正整数)

时,干涉仪对入射光有最大透过率。因此,改变腔长L 即可实现光谱扫描。具体地说,用压电陶瓷环驱动M2,使该镜片在轴线方向作微小的周期性振动,从而使激光模式发生变化并依次通过干涉仪;激光由光电接收器转换成电信号,该信号经放大接到专用示波器的Y 输入端,同时将改变腔长的锯齿波电压接到示波器的X 输入端。这时,示波器的横向坐标就是干涉仪的频率,从而荧光屏上显示的即为出透过干涉仪的激光模式频谱,如图2.2所示。

图2.2示波器显示的激光模谱

扫描干涉仪有以下性能指标:

(1) 自由光谱区F v ?。由λm L =4(介质是空气,n=1)可知,当共焦腔长变化4

/λ时,波长λ(q )的模可再次透过干涉仪。通常把腔长改变4/λ所对应的频率变化量L c v F 4/=? (L 4/2λλ=?)称为干涉仪的自由光谱区。如果F v ?小于激

光工作物质的增益线宽,不同级的模式频谱就有可能重叠,这是应该避免的。

(2) 仪器带宽v δ。仪器带宽v δ是指干涉仪透射峰的频率宽度,也就是干涉仪能分

辨的最小频差。通常,反射镜的反射率越高,调整精度越高,腔内损耗越小,则窄带越窄。

(3) 精细常数F 。精细常数F 是用来表征扫描干涉仪分辨本领的参数。它的定义是:

自由光谱区与最小分辨率极限宽度之比。即在自由光谱区内能分辨的最多的谱线数目。根据精细常数的定义

v

v F F δ?=

精细常数的理论公式为 R R

F -=1π (2.4)

R 为凹面镜的反射率,从(2.4)式子可以看出,F 至与镜片的反射率有关。实际上还与共焦腔的调整精度、镜片的加工精度、干涉仪的入射和出射光孔的大小及使用时的准直精度等因素有关。

3. 激光模式的测量

利用扫描干涉仪可以测定激光器输出模式的频率间隔。由图2.2可见,F X ?正比于干涉仪的自由光谱区F v ?,X ?正比于激光器相邻纵模的频率间隔q v ?。当存在高阶横模时,可在基模q TEM 00旁边看到(如图中的mnq TEM ),1X ?正比于0mn v ?(即基模q TEM 00和高次横模mnq TEM 的频率间隔)。由实验测得1X ?和X ?,即可得

X

X v v q mn ??=??10 由公式(2.2)和(2.3)可得

???? ??-???? ?

?-?+?=??21011arccos )(1R L R L n m v v q mn π (2.5)

将测量值与根据式(2.5)计算的理论值相比较,可估计横模阶次(△m+△n )。

4. 实验装置

图2.3实验装置示意图

实验装置各部分的说明:

(1)激光器本实验提供一支多模内腔式He-Ne激光器。

(2)激光电源用来激发激光器。工作电流等参数由实验室说明提供。

(3)小孔光阑用于调光的辅助工具,起正负两方向光束准直作用。

(4)扫描干涉仪使激光器的各个不同模按频率展开。透射光中心波长为632.8nm.自由光谱区应在1500—2000MHz。每伏电压使腔长改变2.4—2.5nm,具体数据由实验室给出. 仪器上有两个方位螺旋,用于调节腔的轴向方位.

(5)接收放大器内有光电二极管,将扫描干涉仪输出的光信号转变成电信号,经放大输入到示波器的Y轴。

(6)放大器电源提供放大器内光电二极管的工作电压,一般用5-10V。注意正负极不要接错。

(7)锯齿波发生器本实验采用的信号发生器,电压峰值在0-150V内连续可调,周期用20ms. 锯齿波电压除了加在扫描干涉仪的压电陶瓷上,同时输到示波器X轴上作同步扫描。为便于观察,希望能移动序的中心波长在频谱图中的位置,使每个序中所有模能完整地展现在示波器上。这可通过增设一个直流偏置电源,用以改变对腔扫描的电压的起点,协助调节。偏置电源的输出电压在0-100V内连续可调。

(8)示波器用于显示经扫描和放大后的He-Ne激光器的频谱图.

四、实验步骤与内容

1.按照实验装置图连接线路,经检查无误后方可接通电源。

2.点燃激光器,调整光路,首先使激光束从小孔光阑通过,调整扫描干涉仪上下、

左右位置,使光束正入射孔中心,再细调干涉仪板架上的两个方位螺丝,使从干涉仪腔镜反射的最亮的光晕(很大的一片光斑)回到光阑小孔的中心附近,这时表明入射光束和扫描干涉仪的光轴基本重合。

3. 将放大器的接收部位对准扫描干涉仪的输出端。

4. 接通放大器、锯齿波发生器、示波器的开关。

5. 观察示波器上的频谱图,进一步细调干涉仪的两个方位螺丝,使谱线尽量强,噪声最小。

6. 分辨扫描干涉仪的自由光谱区,确定示波器横轴上每厘米所对应的频率数。

7. 观察多模激光器的模谱,记下其波形及光斑图形(可在远场直接观察)。并且

(1)测出F X ?和X ?。

(2)由干涉仪的自由光谱区计算激光器相邻纵模间隔q v ?,并与理论值比较(干涉仪腔长2cm ,激光器腔长20cm)。

(3)测出纵模个数,由纵模个数及相邻纵模间隔估计出激光器工作物质的增益线宽(通常认为He-Ne 激光器的多普勒线宽约为1300MHz )。

思考题

1. 观测时为何要先确定示波器上被扫出的干涉序的数目?

2. 在示波器的不同位置,纵模频率间隔有所差异是何原因?如何提高测量的准确度?

3. 为什么说非均匀加宽类型激光器容易产生多纵模振荡?

HeNe激光器模式分析

实验二 He-Ne 激光器的模式分析 一、实验目的 1. 用共焦球面扫描干涉仪测量He-Ne 激光器的相邻纵模间隔,判别高阶横模的阶次。 2. 了解激光的频谱结构,掌握扫描干涉仪的使用方法及测定其性能指标的实验技能。 3. 观察激光器的频率漂移及跳模现象,了解其影响因素;观察激光器的输出横向光场分布花样,体会谐振腔的调整对它的影响。 二 实验设备 He-Ne 激光器、激光电源、小孔光阑、共焦球面扫描干涉仪、锯齿波发生器、放大器、示波器等 三、实验原理 1.激光的频率特性 激光器的光学谐振腔内可存在一系列具有分立谐振频率的本征模式,但其中频率位于工作物质增益带宽范围内,并满足阈值条件的本征模才会振荡形成激光。 通常把激光光波场的空间分布,分解为沿传播方向(腔轴方向)的分布E(z)和垂直于传播方向在横截面内的分布E(x,y),即谐振腔模式可分为纵模和横模,用符号TEM mn 标志不同模式的模式分布。对激光束的模式进行频率分析,可以分辨出它的精细 结构。 由无源腔理论可知:共轴稳定球面谐振腔TEM mn 模的频率为 ??? ????????? ??-???? ??-+++=2111arccos )1(12R L R L n m q nL C v mnq π (2.1) 式中m 、n 为横模阶次,q 为纵模阶次,L 为腔长,R 1R 2是腔面两反射镜的曲率半径,n 是工作物质的折射率。 当m=n=0时为基横模,而m 或n ≠0时叫做高阶横模。对于不同的横模(m 、n 不同)有不同的横向光强分布,所以观察光斑图案或测量光强分布也能分析横模结构。但对于含有高阶横模的结构,则必须借助于频率分析才能分辨。由(2.1)式可知,q 一定时,不同的横模对应有不同的振荡频率,其频率间隔为

医学中常用的激光器

医学中常用的激光器 自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。由于激光的物理特性决定了其具有明显的生物学效应,。各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。 一.气体激光器 气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。 (2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。分 子激光器以二氧化碳(CO 2)激光器为代表,其他还有氢分子(H 2 ),氮分子(N 2 )和一氧化碳(CO)分子等激光 器。分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。氦镉激光器(激活介质为Cd+)等。离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。 气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。 1、氦氖激光器 氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。它的光束质量很好(发散角小,单色性好,单色亮度大)。激光器结构简单,成本低,但输出功率较小。氦氖激光器在工业、科研、国防上应用很广,医疗上主要用于照射,有刺激、消炎、镇痛、扩张血管和针灸等作用,广泛用于内科、皮肤科、口腔科及细胞的显微研究。 氦氖激光器有三种结构形式:内腔式、外腔式和半内腔式。它们均由放电管、谐振腔、激励电源等三部分组成。以内腔式为例,放电毛细管是产生气体放电和激光的区域,它的内径很小,约在1到几毫米。电极A为阳极,由钨杆或钼(或镍)筒制成。阴极K为金属圆筒,由铝、钼、钽等制成,它们均有足够的电子发射能力和抗溅射能力。组成谐振腔的两块反射镜紧贴于放电管两端,并镀以多层介质膜。其中一个为全反射镜,另一个则为部分反射镜,整个谐振腔在出厂前已调整完毕,因此使用简单、方便。放电管的管径比放电毛细管粗几十倍,用以保持氦氖气压比及加固谐振腔。为了避免放电管变形而引起激光输出下降,内腔管的长度不宜过大,一般不超过一米。外腔式激光器可以更换不同的反射镜,使输出功率最大,光束发散角最小。也可在反射镜和放电管之间插入光学元件,以研究激光器的输出特性,调制它的频率或幅度,并可制成单频大功率激光器。 2、二氧化碳激光器 二氧化碳激光器的能量转换效率达20~25%(氦氖激光器的能量转换效率仅为千分之几)。它的输出波长为10.6微米,属于远红外区,连续输出功率可达万瓦级,常用电激励,结构比较简单紧凑,使用 方便,是目前最常用的激光器之一,在医学上,CO 2激光器作为手术刀使用日益引起人们的重视。CO 2 激 光器也用于皮肤科、外科、神经外科、整形外科、妇科和五官科的手术,在癌症的治疗上也有一定成效。 最常见的封离型内腔式二氧化碳激光器的管壳是由硬质玻璃或石英材料制成的。常见为三层玻璃套管结构,其最内层是放电管,中间层是水冷套,外层是储气管。在内外层之间有气体循环通路,这是为了保证混合气体的均匀分布而设计的。其光学谐振腔通常用平凹球面腔。球面镜可用石英或其他光学玻璃做基片,然后,在表面上镀层金属膜。平面镜是输出窗片,要求它对10.6μm的激光有很好的透过率,且表面不易损伤,机械性能好等。一般中小功率的激光器常常采用锗单晶做输出片,大功率的用砷化镓

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某 种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于 自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被 增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一 周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模 序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2/121,)1)(1(arccos )(12''R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ??????????????--?=?=?=?+?2/12111)1)(1(arccos 1'R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫 描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜 构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦 腔)。其中一块反射镜固定不动,另一块反射镜固定在可随 外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀 系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2 总处于共焦状态。 当一束波长为λ的光近轴入射到 干涉仪内时,在忽略球差的条件 下,在共焦腔中经四次反射形成 一条闭合路径,光程近似为4l , 如右图所示 编号为1和1’ 的两组透光强分别为: 1222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即

激光器的种类及性能参数总结

激光器的种类及性能参数总结 半导体激光器——用半导体材料作为工作物质的一类激光器 中文名称: 半导体激光器 英文名称: semiconductor laser 定义1: 用一定的半导体材料作为工作物质来产生激光的器件。 所属学科: 测绘学(一级学科);测绘仪器(二级学科) 定义2: 以半导体材料为工作物质的激光器。 所属学科: 机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科) 定义3: 一种利用半导体材料PN结制造的激光器。 所属学科: 通信科技(一级学科);光纤传输与接入(二级学科) 半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im 。 (1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。 (2)阈值电流Ith :即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。 (3)工作电流Iop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。 (4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15?~40?左右。 (5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6?~ 10?左右。 (6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。 工业激光设备上用的半导体激光器一般为1064nm、532nm、808nm,功率从几瓦到几千瓦不等。一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。 准分子激光器——以准分子为工作物质的一类气体激光器件。 中文名称: 准分子激光器 英文名称: excimer laser 定义:

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2 /121,)1)(1(arccos )(12' 'R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ? ?????????????--?=?=?=?+?2 /12111)1)(1(arccos 1' R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长 与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦腔)。其中一块反射镜固定不动,另一块反射镜固定在可随外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2总处于共焦状态。 当一束波长为λ的光近轴入射到干涉仪内时,在忽略球差的条件下,在共焦腔中经四次反射形成一条闭合路径,光程近似为4l ,如右图所示 编号为1和1’ 的两组透光强分别为: 1 222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即 λπβ/22?=ul

2.4GHz收发器的接口飞利浦双眼睛激光传感器

白皮书:一个2.4GHz收发器的接口飞利浦双眼睛激光传感器1.简介本文档介绍了如何接口的飞利浦PLN2020双眼睛激光传感器到北欧半导体的nRF24L01 2.4GHz收发器。该芯片组的PC外设制造商提供了一个 完整的集成,高精度,超高速,无线和人机接口设备的低功耗解决方案。用户可以享受无线自由的无线链路和一个激光传感器,精度高。这两种器件具有非常低的功耗,从而确保电池寿命长。 2.该PLN2020双眼睛的激光传感器利用通常用于高性能的专业应用程序的唯一干涉测量技术,飞利浦激光传感器'双眼睛激光技术利用固态激光器的最新发展,数字信号处理和封装(SiP)技术系统为实现位置/在消费产品应用遥感速度无与伦比的分辨率和精度(见图1)。传感器中的固态激光器产生一个850 - 纳米波长的红外激光束,是由一个镜头聚焦在目标对象的位置/速度正在测量的表面。激光光散射的靶面,在返回到传感器和重新进入激光源,它光学与光正由激光(见图2)所产生的光混合导致部分 图1 - PLN2020双眼睛的激光传感器图2 - 飞利浦激光传感器,自混合激光技术 运动的目标靠近或远离激光源导致在返回的激光多普勒频移。多普勒频移,这是成正比的运动速度。回光灯之间的混合,并正在产生的激光源的频率正比于速度的目标,在激光功率的波动,因此结果。这些电源波动是由一个感应光二极管的光耦合到激光。 北欧半导体ASA Philips激光传感器

虽然这种自我在激光混合允许的测量多普勒频移和目标以后表面速度计算,它不会产生有关目标是否正在走向或远离激光源。为了确定这个方向,激光功率调制低频三角波,在激光的温度和调制激光频率随之产生相应的变化。这种激光器发出的光的频率调制模拟小前锋和向后运动,分别对激光功率的上升和下降斜率。这降低了多普勒频移,如果观察到的模拟源运动和地表移动的目标是在同一个方向,增加观察多普勒频移,如果模拟靶面运动和运动方向相反。比较测量多普勒三角调制的上升和下降的斜坡移 图3 - 方向飞利浦激光传感器'双眼睛技术测量。每个独立的激光检测方向 从光电二极管输出,激光功率,在感官的波动,是在一个软件可编程专用集成电 路(ASIC)的处理。这ASIC的条件信号,数字化,然后分析它采用先进的数字 信号处理技术。这些措施包括数字过滤器,从背景噪声中提取和傅立叶变换来分 析,在频域取得多普勒频移频信号的信号。在这些频率的基础上,在ASIC然后 计算沿激光束轴目标物体的速度。通过结合在一个单一的传感器,它聚焦到两个 正交方向上,从目标的激光两个激光源,它是可能的ASIC合并成一个单一的速 度向量在平面靶面两个轴向运动速度。然后随着时间的推移速度积分派生位置信息。不同于传统的激光传感器,使用一个单独的源和漂移问题相关的不同来源和探测器。最后,它减少了系统成本。 激光功率是动态控制电路的ASIC,不断由独立的保护电路,可以自动监测短路激光如果过功率情况检测。这种双重冗余主动防护系统可以防止内部和外部电路

激光器的热透镜效应讲解

新型光学谐振器和热透镜效应 Thomas Graf Rudolf Weber, and Heinz-P. Weber 应用物理研究所,Beme Sidlerstrasse 5大学,CH - 301 2 Beme,瑞士 概要 激光谐振腔支持稳定的振荡的最大功率范围主要是由活性介质(热)材料常数和冷却方法所决定。通过控制稳定的基本模式操作的功率范围,可以转移到更高的能量,具有特殊的腔设计和腔内光学但稳定范围的宽度不会受到影响。此外,在泵的活性介质强度增加也加剧了非球面元件的热诱导的扭曲。因此,开发新颖的谐振器时,分析这些热效应具有重大意义。我们目前对热诱导的扭曲,一种新型的多棒激光腔,变量配置的谐振器(VCR)进行分析。对热效应进行了数值模拟和实验的研究。我们目前对各种抽水和冷却方案进行比较后发现复合棒端面泵浦激光器提供最有效的冷却。VCR被开发调控基本模式激光器的功率范围。由于其能力作为法布里- 珀罗谐振器,它克服了稳定性与传统的多棒谐振器相关的问题,并允许一个新的Q开关技术作为一种环形腔运行。 关键词:固态激光器,二极管泵浦激光器,光学谐振器,热透镜效应,热致双折射。 1.介绍 二极管泵浦固态激光器,有着广泛的工业和科学应用。二极管激光器价格的不断下降,应用正在扩展到高功率范围。此外,泵浦方式的改善使二极管激光辐射高效和紧聚焦到激光材料。由于大量吸收功率,这将导致强烈的局部加热。因此,在固态激光材料的热效应已经获得了相当高功率,半导体激光泵浦全固态激光器作为一个发展中的关键问题的重要性被提高。 选中激光材料后,热效应只与冷却的方法有关,然后必须采用适当的谐振器设计。我们在下面的实验和数值调查报告二极管激光的热效应泵浦全固态激光器和特殊的光学谐振器的发展。热透镜效应和应力引起的双折射用于比较四种不同的冷却技术。完全验证的数值有限元(FE)代码,它也适用于区分不同的热透镜效应的贡献- 比如弯曲的表面和折射率变化与温度和应力性曲折分析高功率激光器的功率调整的极限。进一步的功率调节功能则需要使用更长的侧面泵浦激光棒多棒谐振器的使用。多棒谐振器特别适合规模在几十瓦的顺序输出功率,高光束质量的激光器的输出功率。在这种情况下,热扭曲分发到几个激光棒,在同一个腔泵的功率降低。我们报告一个独特的激光谐振腔,变量配置的谐振器(VCR),他具有反向泵浦多棒谐振器的可调性。特别是录像机的稳定性能与传统的多棒的法布里- 珀罗谐振解决了严重的稳定性问题,并允许一个新的Q开关技术。在下面的章节中,我们将首先考虑球面镜片的近似热引起的扭曲,并讨论TEM0模式激光器的规定下能量的限制。 我们对不同的激光棒的冷却方法进行了比较。热致双折射所造成的损失在短期内第3节中讨论。

激光器外部控制模式接线说明

激光器外部控制模式接线说明 图1说明: OUT和EXGND是SMC6480的两个I O口,分别接到继电器的13引脚和24V直流电源的COM端口,24V电源正接到继电器的14引脚,通过程序指令可以控制继电器13、14引脚上24V直流电压的通断。当13、14引脚加上高电平,继电器的5、9引脚闭合接通,此时激光器的A1、A2两端会加上24V高电平,如果激光器所有条件准备就绪,就可以出光;若要关光,可通过程序指令使继电器断开5、9引脚。 图1 外部控制接线线路图 激光器操作说明: IPG激光器有两种使用模式—TEST模式和Robot模式。实验室现有的激光器是美版的,当激光器正面的钥匙旋钮左转打到REM时就是Robot 模式—(用机器手控制激光),右转打到ON时就是TEST模式--(用SMC6480外部控制激光)。

激光器的侧面旋钮和水冷机的侧面旋钮右转打到ON代表AC电源给内部接线端口供电,所以不论激光器用哪种模式,这两个侧面旋钮都是打到ON上。 激光器外部控制操作步骤: 1、打开激光器和水冷机的侧面旋钮到ON 上 2、打开逆变焊机和KUKA机器人的开关 3、将激光器正面钥匙右转打到ON上 4、打开LASERNET软件,点到control界面 5、开启激光器电源—手动按下激光器正面的START按钮 6、将外控按钮点开,将光闸通道1打开,将引导激光开启 7、设置激光功率,点开激光发射按钮,此时没有出光 8、通过SMC6480使外部24VDC加到A1、A2上。激光出光。

备注: 1、引导激光通道1、2分别代表熔覆头和焊接头的引导激光,光闸 通道1、2分别代表熔覆头和焊接头的光闸。 2、激光器电源开启后激光器顶部的灯会亮下面的部分,当点开激 光发射按钮,激光器顶部的灯全亮。 3、LASERNET无法启动激光器电源,但是可以通过LASERNET下高 压—关掉激光器电源。

氦氖激光器模式分析

模式分析 一.氦-氖(He-Ne)激光器简介 氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。内腔式激光器的腔镜封装在激光管两端。 二.氦-氖(He-Ne)激光器的工作原理 氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。 三.He-Ne激光器结构及谐振腔 He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。激光管由放电管、电极和光学谐振腔组成。放电管是氦一氖激光器的心脏,它是产生激光的地方。放电管通常由毛细管和贮气室构成。放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。放电管一般是用GG17玻璃制成。输出功率和波长要求稳定性好的器件可用热胀系数小的石英玻璃制作。He-Ne激光管的阳极一般用钨棒制成,阴极多用电子发射率高和溅射率小的铝及其合金制成。为了增加电子发射面积和减小阴极溅射,一般都把阴极做成圆筒状,然后用钨棒引到管外。He-Ne激光器由于增益低,谐振腔一般用平凹腔,平面镜为输出端,透过率约1%~2%,凹面镜为全反射镜。He-Ne激光管的结构形式是多种多样的,按谐振腔与放电管的放置方式不同可分内腔式、外腔式和半内腔式。 四.氦-氖(He-Ne)激光器的速率方程

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

激光器介绍

激光器介绍 WALC4020数控激光切割机 更快、更宽、更厚的钣金切割专家 1、产品简介 更高性能的激光切割系统: WALC4020选择了世界最先进的激光器、切割头。拥有最高质量的部件和最好的结构。如西门子的控制系统和直线驱动系统,STAR的直线导轨。 更先进的结构型式: A.横梁 WALC4020激光切割机采用横梁倒挂结构,此结构有如下优势: 1.与横梁悬臂式相比,横梁的运行速度更高,运行更平稳,可达200米/分。这是因为驱动力的作用点位于横梁的重心,不会产生附加力矩,驱动效率更高,运行更平稳。 2.与小龙门移动式相比,电气控制更简单,系统更可靠。操作更方便。 因此,WALC4020更适用于高速,高功率切割。 B.交换工作台: 采用垂直升降式交换工作台,此型式的交换方式与目前使用的斜升式相比有如下优点: A.提升能力更大,安装更方便。 B.与横梁倒挂结构配合,结构更合理。 C.在切割区内,工作台下的空间更大,以便布置排渣装置及抽风除尘装置。 C.驱动: WALC4020激光切割机的X、Y轴采用了西门子的控制系统和直线驱动系统,与传统电机+滚珠丝杠(齿条)相比,驱动力更大,加速度更高。加速度可达3G,速度最高可达200米/分。而且运行更平稳。 X,Y,Z轴的导轨采用STAR高品质直线导轨,精度更高,运行更平稳。 2、产品特性 WALC4020融合了激光最新技术的应用 一.控制 WALC4020的控制器是SIEMENS 840D。该控制器的界面已经进行了改进,以适合激光切割系统的应用。 二.穿透检测 在打孔时,穿透检测使用传感器来确定光束是不是已经穿透了板材,这样可以得到最高质量的穿透效果,节省时间。

激光器的分级标准及激光安全管理讲解

激光器的分级标准及激光安全管理 激光器按波长分各种类型,由于不同波长的激光对人体组织器官伤害不同。因而在各类型的激光器中按其功率输出大小及对人体伤害分以下四级。 第一级激光器:即无害免控激光器。这一级激光器发射的激光,在使用过程中对人体无任何危险,即使用眼睛直视也不会损害眼睛。对这类激光器不需任何控制。 第二级激光器:即低功率激光器。输出激光功率虽低,用眼睛偶尔看一下不至造成眼损伤,但不可长时间直视激光束。否则,眼底细胞受光子作用而损害视网膜。但这类激光对人体皮肤无热损伤。 第三级激光器:即中功率激光器。这种激光器的输出功率如聚焦时,直视光束会造成眼损伤,但将光改变成非聚焦,漫反射的激光一般无危险,这类激光对皮肤尚无热损伤。 第四级激光器:即大功率激光器,此类激光不但其直射光束及镜式反射光束对眼和皮肤损伤,而且损伤相当严重,并且其漫反射光也可能给人眼造成损伤。 根据上述激光器的分级来看,对人眼睛及皮肤损害最大的是第四级激光器。前述了激光对人体的危害,尤其是对眼睛的损伤,其损伤程度可以使眼睛视力降低,甚至完全失明。但这种损伤并非所有量级激光能引起,而是有一最低限度——即致伤阈值,只有当激光能量密度或功率密度超过此阈值时才能对眼睛造成伤害。激光器的级别分类给我们提供了一个安全的参考值。 激光安全管理措施 使用不同级别激光器的管理措施 1.使用第一级激光器的管理 由于第一级激光器是无害免控激光器,因此不需任何控制措施。激光器不必使用警告标记,但须避免不必要长久地直视第一级激光束。 2.第二级激光器的使用安全措施

第二级激光器为低水平激光器,如偶尔照射到人眼还不至于引起伤害,可连续观察激光束时能损伤眼睛。因此,不能长时间地直视激光束,此是对第二级激光器的最重要控制措施。此外,还应该在安放第二级激光器的房门上及激光的外壳及其操作面板上张贴警告标记。3.第三级激光器的使用安全措施 由于第三级激光器是中等功率激光器,可能对眼有损伤,必须对这一级激光器定出措施,确保安全:(1)对操作激光器的工作人员进行教育和培训,使他(她)们明白操作此级激光器时可能出现的潜在危险,并对他(她)们进行恰当的激光安全训练,以及出现危险时紧急处理方法。由于激光对眼睛的损伤均为不可逆性,培训教育了解和掌握激光器的安全运用实属必要。 (2)工程技术管理 管理使用激光器必须由专业(职)人员来进行,未经培训教育人员不得擅自开启使用激光机。如激光器上的触发系统上装设联锁钥匙开关,确保只有用钥匙打开联锁开关以后才能触发启动,拔出钥匙就不能启动。对于安放激光器的房间要有明亮的光线,人在明亮光线的环境中,眼睛的瞳孔缩小,以防在激光光束射入眼睛时可减少透射到视网膜上的进光量。对于安放激光器的高度,激光束路径应避开正常人站立或坐着时的眼睛的水平位置,视轴不能与出光口平行对视。 (3)激光器应严格控制 在存放使用的激光器房间内不要无故地把激光束对准人体,尤其是眼睛。因为激光对眼睛的损伤要恢复极其困难,均为永久性损害,而且每一个人的一生中只有一双眼睛,大家务必时刻牢记,在开动激光器之前,必须告诫现场中人员可能出现的危害,并戴上安全防护眼镜。在有强激光器的工作区内外明显的位置上及激光手术室、实验室的房门上张贴出危险标记。 (4)激光受控区 第三级激光器必须只能在一定的区域内使用激光设备。按一般要求设立门卫及安全的弹簧锁、联锁等,以确保外人与未受保护人员不得进入受控区,即使意外门被打开时,激光器的激励也能立即停止。房间不应透光,以阻止有害

4.IPG激光器接口说明

IPG激光器接口说明 目录 1 XP1接口 (2) 1.1 外部输入信号: (2) 1.2激光器输出信号 (3) 2 XP2接口 (4) 2.1 输入信号 (4) 3 XP4接口 (5) P1、P2 模拟量输入, 模拟量电压0到10V(对应0-100%功率) (5) 4、PA系统激光器通道 (5) 第一通道控制激光器功率 (5) 5、激光器上高压流程 (6) 版本:V1.0 编写:定制产品部 时间:2016.6

1 XP1接口 1.1 外部输入信号: Laser Request(激光器请求)高电平有效 外部控制时此位必须置1,无此信号输入时其它输入信号都会被忽略。控制器发出此信号时激光器会发出应答信号,B7(Laser assigned)置为高电平。 A2 Program start (程序启动) 高电平有效,控制激光程序起动和停止。程序号由A8到A14定义。如果程序号是0000000和A6为高电平,那么激光器由模拟量控制 A3 Internal Control Enabled 内控使能,高电平有效 A4 Rest error(复位错误)高电平有效 复位激光器系统的所有错误信息和激光器输出的错误信号,输入激活时间至少持续1ms。 A5 Guide laser ON (引导激光开启) A6 Analogue control ON (模拟量控制激活)高电平有效激活时程序号要为0000000 A16 公共地 C1 Laser ON (激光器电源开启) 用于打开和关闭激光器主电源,如果主电源不能开启,B13(Warming output)会被置1. 如果主电源开启,输出 B8(Laser ON)会置1.

He-Ne激光器模式分析

He-Ne 激光器模式分析 一 实验目的 1 了解激光器的模式结构,加深对模式概念的理解。 2 通过测试分析,掌握模式分析的基本方法。 3 对本实验使用的分光仪器——共焦球面扫描干涉仪,了解其原理、性能,学会正确使用。 二 实验仪器 实验装置如图1所示。实验装置的各组成部分说明如下: 1 待测He-Ne 激光器。 2 激光电源。 3 小孔光阑。 4 共焦球面扫描干涉仪。 5 接收器。 6 电子计算机。 三 实验原理 1 激光器模的形成 我们知道,激光器的三个基本组 成部分是增益介质、谐振腔和激励能 源。如果用某种激励方式,在介质的 某一对能级间形成粒子数反转分布, 由于自发辐射和受激辐射的作用,将 有一定频率的光波产生,在腔内传播, 并被增益介质逐渐增强、放大,如图2 所示。实际上,由于能级总有一定的宽度以及其它因素的影响,增益介质的增益有一个频率分布,如图3所示,图中)( G 为光的增益系数。只有频率落在这个范围内的光在介质中传

播时,光强才能获得不同程度的放大。但只有单程放大,还不足以产生激光,要产生激光还需要有谐振腔对其进行光学反馈,使光在多次往返传播中形成稳定、持续的振荡。形成持续振荡的条件是,光在谐振腔内往返一周的光程差应是波长的整数倍,即 q q L λμ=2 (1) 式中,μ为折射率,对气体μ≈1;L 为腔长; q 为正整数。这正是光波相干的极大条件,满足 此条件的光将获得极大增强。每一个q 对应纵向 一种稳定的电磁场分布,叫作一个纵模,q 称作 纵模序数。q 是一个很大的数,通常我们不需要 知道它的数值,而关心的是有几个不同的q 值, 即激光器有几个不同的纵模。从(1)式中,我们还看出,这也是驻波形成的条件,腔内的纵模是以驻波形式存在的,q 值反映的恰是驻波波腹的数目,纵模的频率为 L c q q μν2= (2) 同样,一般我们不去求它,而关心的是相邻两个纵模的频率间隔 L c L c q 221≈=?=?μν (3) 从(3)式中看出,相邻纵模频 率间隔和激光器的腔长成反比, 即腔越长,相邻纵模频率间隔越 小,满足振荡条件的纵模个数越 多;相反,腔越短,相邻纵模频 率间隔越大,在同样的增益曲线 范围内,纵模个数就越少。因而 用缩短腔长的办法是获得单纵 模运行激光器的方法之一。 光波在腔内往返振荡时,还需要增益大于各种损耗的总和,

2020年常用激光器简介

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,

4.IPG激光器接口说明

IPG 激光器接口说明 目录 1 XP1 接口 (2) 1.1 外部输入信号: (2) 1.2 激光器输出信号 (3) 2 XP2 接口 (4) 2.1 输入信号 (4) 3 XP4 接口 (5) P1、P2 模拟量输入,模拟量电压0到10V (对应0-100%功率) (5) 4、PA系统激光器通道 (5) 第一通道控制激光器功率 (5) 5、激光器上高压流程 (6) 版本:V1.0 编写:定制产品部 时间:2016.6

1 XP1 接口 1.1外部输入信号: Laser Request (激光器请求) 高电平有效 外部控制时此位必须置1,无此信号输入时其它输入信号都会被忽略。 控 制器发出此信号时激光器会发出应答信号, B7( Laser assigned )置 为高电平。 A2 Program start (程序启动) 高电平有效,控制激光程序起动和停止。程序号由 A8到A14定义。如果 程序号是0000000和A6为高电平,那么激光器由模拟量控制 A3 In ternal C on trol En abled 内控使能,高电平有效 A4 Rest error (复位错误)高电平有效 复位激光器系统的所有错误信息和激光器输出 的错误信号,输入激活时间 至少持续1ms A5 Guide laser ON ( 引导激光开启) A6 An alogue control ON (模拟量控制激活)高电平有效 激活时程序号要为0000000 A16公共地 C1 Laser ON (激光器电源开启) 用于打开和关闭激光器主电源,如果主电源不能开启,B13(Warmingoutput ) 13F01 A1 Las 亡r Ke^uest 14F01 A2 Program star: 1SF01 A4 Rrst ci'j. uii'o 17F01 A6 Anal ogue ?am :12F31 C1 Laser ON(in) UC04 B1 Laser Readz 12C04 B2 Enisson ON(cut d 13C04 B4 Laser Error 14C04 D7 Laser assigned 15C04 B8 Lasei' On (oat) 1CA04 B15 1-24V DC 14AQ4 A16 14A04 BIG :ND 10F01 C3 Beam S 叭tch 11F01 C4 Beam S 叭tch 16FD1 A5 Gjiide laser ON I lairdwiring(64D) O N

常用激光器简介

几种常用激光器得概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家得极大重视。特别就是近两年,以二氧化碳为主体工作物质得分子气体激光器得进展更为神速,已成为气体激光器中最有发展前途得器件。 二氧化碳分子气体激光器不仅工作波长(10、6微米)在大气“窗口”,而且它正向连续波大功率与高效率器件迈进。1961年,Pola-nyi指出了分子得受激振动能级之间获得粒子反转得可能性。在1964年1月美国贝尔电话实验室得C、K、N、Pate研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0、01%。不到两年,现在该类器件得连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦得脉冲功率输出。最近,有人认为,进一步提高现有得工艺水平,近期可以达到几千瓦得连续波功率输出与30~40%得效率。 2、工作原理 CO2激光器中,主要得工作物质由CO?,氮气,氦气三种气体组成。其中CO?就是产生激光辐射得气体、氮气及氦气为辅助性气体。加入其中得氦,可以加速010能级热弛预过程,因此有利于激光能级100及020得抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数得积累与大功率高效率得激光输出起到强有力得作用。CO?分子激光跃迁能级图CO?激光器得激发条件:放电管中,通常输入几十mA或几百mA得直流电流。放电时,放电管中得混合气体内得氮分子由于受到电子得撞击而被激发起来。这时受到激发得氮分子便与CO?分子发生碰撞,N2分子把自己得能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器得高度相干性与频率稳定性得特点,而且还具有另外三个独有得特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯与红外雷达。 (2)大功率与高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0、17 %,原子激光器得连续波输出功率一般为毫瓦极,其效率约为0、1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作得进展、新技术得使用,输出功率与效率会不断提高,寿命也会不断增长,将会出现一系列新颖得应用。例如大气与宇宙通讯、相干探测与导航、超外差技术

相关主题
文本预览
相关文档 最新文档