当前位置:文档之家› 泛函分析知识总结

泛函分析知识总结

泛函分析知识总结
泛函分析知识总结

泛函分析知识总结与举例、应用

学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间 (一)度量空间

度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推

广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)

与之对应,而且这一对应关系满足下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (非负性) 2°d(x,y)= d(y,x) (对称性)

3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)

则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。 (这个定义是证明度量空间常用的方法)

注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称

为度量。这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度

量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d)

中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

1.1举例

1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点x,y ∈X ,令

()1x y

d x y =0x=y

≠??

?,当,,当,则称(X ,d )为离散度量空间。 1.12 序列空间S :S 表示实数列(或复数列)的全体,d(x,y)=1

1

21i i

i

i i i

?η?η∞

=-+-∑

1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界实值(或复值)函数全体,

对B(A)中任意两点x,y ,定义d(x,y)=A

t ∈sup )()(t y t x -

1.14 可测函数空间M(X):M(X)为X 上实值(或复值)的L 可测函数全体。

d(f,g)=

dt t g t f t g t f x

?-+

-)

()(1)()(

1.15 C[a,b]空间(重要的度量空间):C[a,b]表示闭区间[a,b]上实值(或复值)连续函数

全体,对C[a,b]中任意两点x,y ,定义 d(x,y)=)()(max t y t x b

t a -≤≤

1.16 l 2

:无限维空间(重要的度量空间) ★ 例1.15、1.16是考试中常考的度量空间。

2.度量空间中的极限,稠密集,可分空间

2.1 0x 的ε—领域:设(X ,d )为度量空间,d 是距离,定义

{}00(,)U x x X εε==∈∣d(x,x )<为0x 的以ε为半径的开球,亦称

为0x 的ε—领域。

注:通过这个定义我们可以从点集这一章学到的知识来定义距离空间中一个点集的内点,外

点,边界点及聚点,导集,闭包,开集等概念。

2.2度量空间的收敛点列:设(X ,d)是一个度量空间,{}n x 是

(X ,d )中点列,如果存在x X ∈,{}n x 收敛于x ,使lim

n n x x →∞

=,即(,)0()n d x x n →→∞

,称点

列{}n x 是(X ,d )中的收敛点列,x 叫做点列{}n x 的极限,且收敛点列的极限是唯一的。

注:度量空间中点列收敛性质与数列的收敛性质有许多共同之处。

2.3有界集:设M 是度量空间(X ,d )中的点集,定义,()(,)sup x y M

M d x y δ∈=

为点集M 的直

径。若()M δ∞<,则称M 为(X ,d )中的有界集。

(类似于n R ,我们可以证明一个度量空间中收敛点列是有界点集)

2.4闭集:A 是闭集?A 中任意收敛点列的极限都在A 中,即若n x A ∈,n=1,2,....n x x →,

则x A ∈。(要会证明)

2.5举例

2.5.1 n 维欧氏空间n

R 中,点列依距离收敛(,)0k d x x →?依分量收敛。

2.5.2 C[a,b]空间中,点列依距离收敛(,)0k d x x →?依分量一致收敛。 2.5.3 序列空间S 中,点列依坐标收敛。

2.5.4 可测函数空间M(X):函数列依测度收敛于f ,即 (,)0n n d f f f f →??。 2.6稠密子集和可分度量空间

有理数集在实数集中的稠密性,它属于实数集中,现把稠密性推广到一般的度量空间中。 2.6.1定义:设 X 是度量空间,E 和M 是X 的两个子集,令M 表示M 的闭包,如果E ?M ,

则称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 为可分空间。

注:可分空间与稠密集的关系:由可分空间定义知,在可分空间X 中一定有稠密的可数集。

这时必有X 中的有限个或可数个点在X 中稠密。

2.6.2举例

①n 维欧式空间n R 是可分空间:坐标为有理数的全体是n R 的可数稠密子集。 ②离散度量空间X 可分?X 是可数集。

(因为X 中无稠密真子集,X 中唯一的稠密只有X 本身) ③l ∞

是不可分空间。

数学知识间都有联系,现根据直线上函数连续性的定义,引进了度量空间中映射连续性的概念。 3. 连续映射

3.1定义:设X=(X ,d ) Y=(Y ,~

d )是两个度量空间,T 是X 到Y 中的映射0x ?X ,如果

对?ε>0,?δ>0 ,使对X 中一切满足d (x ,0x )<δ的x ,有~

0(,x )d Tx T ε<,则称T 在0x 连续。

(度量空间之间的连续映射是数学分析中连续函数概念的推广,特别,当映射是值域空间 Y R =时,映射就是度量空间上的函数。

) 注:对于连续可以用定义证明,也可以用邻域的方法证明。下面用邻域描述:对T 0x 的ε-邻域U ,存在0x 的某个δ—邻域V ,使T V ?U ,其中T V 表示V 在映射T 作用下的像。

3.2 定理1:设T 是度量空间(X ,d )到度量空间(Y ,~

d )中映射,

T 在0x X ∈连续?当0n x x →()n →∞时,必有0()n Tx Tx n →→∞。

在映射中我们知道像与原像的概念,下面对原像给出定义。

3.3 原像的定义:映射T 在X 的每一点都连续,则称T 是X 上的连续映射,称集合{x ∣x ∈X ,

Tx ?M ?Y}为集合M 在映射T 下的原像,简记为1T M -。

★可见,对于度量空间中的连续映射可以用定理来证明,也可以用原像的定义来证明。 3.4定理2:度量空间X 到Y 中的映射T 是X 上连续映射?Y 中任意开集M 的原像1T M -是X

中的开集(除此之外,利用1T -(M 的补集)=(1T M -)的补集,可将定理中开集改成闭集,定理也成立。)注:像开原像开,像闭原像闭,映射连续。

在数学分析中有学过收敛点列,柯西点列,但研究都在R 中。现在我们可类似的给出度量空间中柯西点列的概念。

4. 柯西(Cauchy )点列和完备的度量空间。

4.1柯西点列的定义 :设X=(X ,d )是度量空间,{n x }是X 中的点列,对?ε>0,?正整

数N=N (ε),使当n,m>N 时,必有d(n x ,m x )<ε,则称{n x }是X 中的柯西(Cauchy )点列或基本点列。【会判断:柯西点列是有界点列】

我们知道实数集的完备性,同时在学习数列收敛时,数列收敛的充要条件是数列是Cauchy 列,这由实数的完备性所致。在度量空间中,这一结果未必成立。但在度量空间中的确存在完备的度量空间。

4.2完备的度量空间的定义:如果度量空间(X,d)中每一个柯西点列都在(X,d)中收敛,

那么称(X,d)是完备的度量空间.

★但要注意,在定义中要求X中存在一点,使该柯西点列收敛到这一点。

4.3举例(记住结论)

4.3.1有理数全体按绝对值距离构成的空间不完备,但n维欧式空间n

R是完备的度量空间。

4.3.2在一般度量空间中,柯西点列不一定收敛,但是度量空间中的每一个收敛点列都是柯

西点列:C、C[a,b]、

l∞也是完备的度量空间。

4.4定理完备度量空间X的子空间M,是完备空间?M是X中的闭子空间。

P[a,b](表示闭区间[a,b]上实系数多项式全体,作为C[a,b]的

子空间)是不完备的度量空间.

5. 度量空间的完备化。

5.1等距映射:设(X,d),

~~ , X d

()是两个度量空间,T是从X到

~

X上的映射,即对

?x,y X

∈,

~

d(Tx,Ty)=d(x,y),则称T是等距映射。

5.2定义:设(X,d),

~~ , X d

()是两个度量空间,如果存在一个从X到

~

X上的等距映射T,

则称(X,d)和

~~ , X d

()等距同构,此时T称为X到

~

X上的等距同构映射。(像

的距离等于原像的距离)

注:在泛函分析中往往把两个等距同构的度量空间不加区别而视为同一的。

5.2定理1(度量空间的完备化定理):设X=(X,d)是度量空间,那么一定存在完备度量

空间

~~~

=,

X X d

(),使X与

~

X的某个稠密子空间W等距同构,并且

~

X在等距同

构下是唯一的,即若(?X,?d)也是一个完备的度量空间,且X与?X的某个稠

密子空间等距同构,则

~~ , X d

()与(?X,?d)等距同构。(不需要掌握证明但是要记住结论)

5.2.1定理1的改述:设X=X

(,d)是度量空间,那么存在唯一的完备度量空间

~~~

=,

X X d

(),使X为

~

X的稠密子空间。

6. 压缩映射原理及其应用(重点内容,要求掌握并会证明)

学习完备度量空间概念,就需要应用,而压缩映像原理是求解代数方程、微分方程、积分方程,以及数值分析中迭代算法收敛性很好的工具,另外要学会如何求不动点。

6.1压缩映射定义:X 是度量空间,T 是X 到X 的映射,如果存在一个数α,0,1α∈()

,使 对? x ,y X ∈,d (Tx ,Ty )≦αd (x ,y ) 则称T 为压缩映射。

6.2(压缩映射定理)设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且仅有一个

不动点(即方程Tx=x ,有且只有一个解)。

(x 是T 的不动点?x 是方程Tx=x 的解)

这个定理对代数方程、微分方程、积分方程、数值分析的解的存在性和唯一性的证明中起重要作用。

6.3压缩映射原理的应用:在众多情况下,求解各种方程的问题可以转化为求其某一映射的不动点,现在以大家熟悉的一阶常微分方程

(,)dy f x y dx

= (1)

为例来说明这一点。求微分方程(1)满足初始条件00()y x y =的解与求积分方程

0()(,())x

x y x y f x y t dt =+

?

(2)

等价。我们做映射

0()(,())x

x Ty x y f x y t dt =+

?

则方程(2)的解就转化为求y ,使之满足Ty y =。也就是求这样的y ,它经映射作用后仍变为y 。因此,求解方程(1)就变为求映射T 的不动点,这种求解方程变为求解映射的不动点的做法在数学中是常用的。那么如何求解映射的不动点呢?在R 中求方程解的逐次逼近法给了我们启示。

这种迭代原理是解决映射不动点问题最基本的方法。在解决上述问题中,看到实数完备性的重要作用。

代数方程、微分方程、积分方程及其他方程求解的逐次逼近法在泛函分析中成了一个一般原理,即压缩映射原理,压缩映射原理就是某一类映射不动点存在性和惟一性问题,不

动点可以通过迭代序列求出。

注:(1)从定理的证明过程中发现,迭代序列的初始值可任意选取,最终都能收敛到惟一不动点。

(2)该定理提供了近似计算不动点的误差估计公式,即

),(1),(00x Tx a

a

x x n

n ρρ-≤

*

因为完备度量空间的任何子集在原有度量下仍然是完备的,所以定理中的压缩映射不需要在整个空间X 上有定义,只要在某个闭集上有定义,且像也在该闭集内,定理的结论依然成立。

在实际应用过程中,有时T 本身未必是压缩映射,但T 的若干次复合n T 是压缩映射,这时T 仍然有惟一不动点,下面是压缩映射原理的应用及相关证明。

例1 线性代数方程b Ax =均可写成如下形式

D Cx x += (3)

其中n n ij c C ?=)(,T

n d d d D ),,,(21 =。如果矩阵C 满足条件

==

j ij n i c 1

),,2,1(1

则式(3)存在惟一解,且此解可由迭代求得。

证明:取n R X =,定义度量为

i i n

i b a -=≤≤1max ),(ηξρ

T

n T n b b b a a a ),,,(,),,,(2121 ==ηξ

构造映射X X T →:为D Cx Tx +=,那么方程(3)的解等价于映射T 的不动点。

对于T

n T n y y y y x x x x ),,,(,),,,(2121 ==,由于

∑∑==≤≤+-

+=n j n

j j j ij

j j ij

n

i d y c

d x c

Ty Tx 11

1)()(max

),(ρ

∑=≤≤=≤≤≤-=n

j ij n

i n

j j j ij

n

i y x c y x c

1

11

1),(max

)(max

ρ

记∑

=≤≤=n

j ij n

i c a 1

1max

,由条件1

有惟一解,且此解可由如下迭代序列

D Cx

x

k k +=-)

1()

(

近似计算求得。

例2 考察如下常微分方程的初值问题

??

?

??==00)(),(y

x y y x f dx dy

(4)

如果),(y x f 在2R 上连续,且关于第二元y 满足Lipschitz 条件,即

1212(,)(,)f x y f x y K y y -≤-

这里0K >是常数,则方程(4)在],[00δδ+-x x 上有惟一解1()K

δ<

证明:方程(4)的解等价于如下方程 ?

+

=x

x dt t y t f y x y 0

))(,()(0 (5)

的解。取连续函数空间],[00δδ+-x x C ,定义其上的映射

],[],[:0000δδδδ+-→+-x x C x x C T

?

+

=x

x dt t y t f y x Ty 0

))(,())((0

则积分方程(5)的解等价于T 的不动点。对任意两个连续函数)(1x y ,

],[)(002δδ+-∈x x C x y ,由于

?

-=+-∈x

x x x x dt t y t f t y t f Ty Ty 0

00))](,())(,([max

),(21]

,[21δδρ

?

-≤+-∈x

x x x x dt t y t f t y t f 0

00))(,())(,(max

21]

,[δδ 0

001212[,]

max

()()(,)x x x x x K y t y t dt K y y δδδρ∈-+≤

-≤?

令a K δ=,则1

例3 设),(t s K 是定义在],[],[b a b a ?上的二元连续函数,则对于任何常数λ及任何给定的连续函数],[)(b a C t f ∈,如下Volterra 型积分方程

?+=t

a

t f ds s x t s K t x )()(),()(λ (6)

存在唯一解。

证明:取连续函数空间],[b a C ,其上定义映射T :]],[,[b a C b a C →为

?+=t

a t f ds s x t s K t Tx )()(),())((λ

则方程(6)的解等价于T 的不动点。由于),.(t s K 在],[],[b a b a ?上连续,于是),(t s K 在

],[],[b a b a ?有最大值,记为M ,即

{}],[],[),(),(max

b a b a t s t s K M ?∈=:

对任何两个连续函数)(),(21t x t x ,由于

?

-=-t

a

ds s x s x t s K t Tx t Tx )]()()[,())(())((2121λ

)()(max )(21s x s x a t M b

s a --≤≤≤λ

),()(21x x a t M ρλ-=

ds s Tx s Tx t s K t x T

t x T

t

a

?

-=-)])(())()[(,())(())((2122

12

λ

?-≤t

a

ds a s x x M

)(),(212

2

ρλ

),(2

)

(212

2

2

x x a t M ρλ-=

一般地,对自然数n ,归纳可得

),(!

)

())(())((2121x x n a t M t x T t x T n

n n

n

n

ρλ-≤

-

因此

))(())((max ),(2121t x T t x T x T x T n

n b t a n n -=≤≤ρ

),(!

)

(21x x n a b M n

n n

ρλ-≤

注意到0!

)

(lim

=-∞

→n a b M n

n

n

n λ,因此存在自然数0n ,满足

1!

)

(00

<=-a n a b M

n n n λ

这说明0

n T

是压缩映射,由压缩映射原理可知,有惟一不动点,亦即Volterra 型积分方程(6)

有惟一解。

例4(隐函数存在定理) 设函数),(y x f 在带状域b x a ≤≤,∞<<∞-y 中处处连续,且处处有关于y 的偏导数),('

y x f y 。如果存在常数m 和M ,满足

M y x f m y ≤≤<),(0'

,M m <

则方程0),(=y x f 在区间],[b a 上必有惟一的连续函数)(x y ?=作为解,即

],[,0))(,(b a x x x f ∈≡?

证明:在完备空间],[b a C 中作映射T ,使对于任意的函数],[b a C ∈?,有

))(,(1)())((x x f M

x x T ???-

=

按定理条件,),(y x f 是连续的,所以))((x T ?也是连续的,即],[b a C T ∈?,故T 是],[b a C 到],[b a C 的映射。现证T 是压缩映射,],[,21b a C ∈???由微分中值定理存在10<<θ使

))(,(1)())(,(1)())(())((112212x x f M

x x x f M

x x T x T ??????+

--

=-

))()(())]()(()(,[1)()(12121'

12x x x x x x f M

x x y ????θ???-?-+-

-=

)1()()(12M

m x x -

-≤??

又M m <<0所以10<<

M

m 令M

m -=1α,则10<<α,且

)()())(())((1212x x x T x T ??α??-≤-

按],[b a C 中距离的定义,有)()(),(1212x x T T ??α??ρ-≤,所以T 是压缩映像,存在],[b a C ∈?使??=T ,即))(,(1)()(x x f M

x x ???-

≡,即

0))(,(1≡x x f M

?,所以

)(0))(,(b x a x x f ≤≤≡?

★可见,压缩映射原理在处理迭代数列的收敛、微分方程定解等问题上有着重要的应

用,其观点与方法已经渗透到数学的各个分支如常微分方程、数值计算,加深了各分支间的相互联系,应用压缩映射原理解决问题也十分简洁、灵活和方便。

(二)赋范线性空间 1.线性空间

设X 是非空集合,F 是实数域或复数域,称X 为F 上的线性空间,如果满足以下条件:

对?两个元素X y x ∈,,?X 中惟一个元素u 与之对应,u 称为x 与y 的和,记为

y x u +=,且满足:

(1)交换律),(X y x x y y x ∈+=+;

(2)结合律),,()()(X z y x z y x z y x ∈++=++;

(3)在X 中存在一个元素θ,称为零元,使)(X x x x ∈=+θ;

(4)对每个X x ∈,存在X x ∈-,使θ=-+)(x x ,x -称为x 的负元。

对任意数F ∈α及X x ∈,存在X 中惟一元素v 与之对应,记为x v α=,称为α与x 的数乘,且满足:

(1)结合律x x )()(αββα= X x F ∈∈,),(βα: (2)x x =1;

(3)数乘对加法分配律x x x βαβα+=+)(; (4)加法对数乘分配律y x y x βαα+=+)(。

如果R F =,称X 为实线性空间;如果C F =(复数域),称X 为复线性空间。 对于线性空间:

X 是线性空间(满足加法和数乘运算),Y 是X 的非空子集,任意∈x,y Y 及任意α?

R ,都有∈x+y Y 及a ∈x Y ,那么Y 按X 中加法和数乘运算也成为线性空间,称为X 的子空间,X 和{0}是平凡子空间。若≠X Y ,则称 Y 是X 的真子空间。 2.赋范线性空间和巴拿赫(Banach )空间(重点内容)

2.1定义:设X 为实(或复)的线性空间,如果对每一个向量x X ∈,有一个确定的实数,

记为║x ║ 与之对应,并且满足:

(1) ║x ║≥0 且║x ║=0 ?x=0

(2) ║αx ║=α║x ║ 其中α为任意实(复)数 (3) ║x+y ║≤║x ║+║y ║ X ∈x,y

则称║x ║为向量x 的范数,称X 按范数║x ║成为赋范线性空间

扩展:①║x ║是x 的连续函数。(要会证明)

②设 {n x }是X 中的点列,如果?x X ∈,使║n x x -║→0 (n →∞)则称{n x }依 范数收敛于x ,记为n x x →(n →∞)或lim n n x x →∞

=

③如果令d (x ,y )=║x-y ║ (X ∈x,y ),{n x }依范数收敛于x ?{n x }按距离 d (x ,y )收敛于x ,称d (x ,y )为是由范数║x ║导出的距离。

★注意:线性贱范空间一定是度量空间,反过来不一定成立。 2.2 完备的线性赋范空间称为巴拿赫(Banach )空间 2.2.1巴拿赫空间的举例

① n 维欧式空间R n ② C[a ,b] ③ l ∞ ④ L p

[a ,b] 1p ≥() ⑤ p

l

2.2.2其他:①霍尔德Horder(不等式):

?

-b

a

t g t f )()(dt ≤

g

f

p

p

②闵可夫斯基不等式:≤+g f p

g

f

p

p

(记住结论并会应用)

二、有界线性算子和连续线性泛函

1.算子定义:赋范线性空间X 到另一个赋范线性空间Y 的映射,被称为算子,如果Y 是数域,

则被称为泛函。

2.线性算子和线性泛函

2.1定义:设X 和Y 是两个同为实(或复)的线性空间,D (?)是X 的线性子空间,T 为D 到

Y 中的映射,如果对任何x ,y ∈D 及数α,都有

T (x+y )=Tx+Ty (1)

T (αx )=αTx (2)

则称T 为D 到Y 中的线性算子,其中D 称为T 的定义域,记为D (T ),T D 称为T 的值域 记为R (T),当T 取值于实(或复)数域时,称T 为实(或复)线性泛

函。

2.2几种常见的线性算子和线性泛函的例子:

① 相似算子Tx=αx 当α=1时为恒等算子;当α=0时为零算子;

② P[0,1]是[0,1]上的多项式全体,定义微分算子:(Tx )()d x t dt

(t)=

若t 0∈[0,1],对?x ?P[0,1],定义f (x )=x′(t 0)则f 是P[0,1]上的线性泛函。

③积分算子:x ∈C[a ,b] Tx (t )=∫tax ()τd τ 由积分线性性质知T 为线性算子,

若令()f x =∫bax ()τd τ则f 是C[a ,b]中的线性泛函

④乘法算子:x ∈C[a ,b] Tx (t )=tx (t ) ⑤R n 中的线性变换是线性算子 3.有界线性算子

3.1 定义:设X 和Y 是两个线性赋范空间,T 是X 的线性子空间D (T )到Y 中线性算子,

如果存在常数c ,使对所有x ∈D (T ),有:║Tx ║≤c ║x ║,则称T 是D (T )到Y 中的线性有界算子,当D (T )=X 时,称T 为X 到Y 中的线性有界算子,简称为有界算子。否则,称为无界算子。

3.2定理1:设T 是线必性赋范空间X 到线性赋范空间Y 中的线性算子,则T 为有界的充要

条件是T 是X 上的连续算子。(重要定理要会证明)

3.3定理2:设X 是线性赋范空间,f 是X 上线性泛函,f 是X 上连续泛函的?f 的零空间

?(f )是X 中的闭子空间。(重要定理要会证明)

(若f 为有界线性算子,则结论不成立,同时这也是证明泛函连续常用的方法。) 3.4扩展

3.4.1 ‖TX ‖《C ‖X ‖,则T 是有界线性算子。 3.4.2 定理:T 为有界算子?T 是X 上的连续算子

(证明有界方法:①‖T ‖<∞ ②定义法 ③定理法) 3.4.3例子:

①(TX)(t )=?b

a t R ),(τd τ有界;

②(TX)(t )=

dx

d (X (t ))无界。(记住结论)

联系:只有X 、Y 是两个赋范线性空间,并且满足一定条件下,才能形成T 是有界线性算子 4.共轭空间

4.1定义:连续线性泛函全体所成的空间为共轭空间, 4.2性质:①任何赋范线性空间的共轭空间是巴拿赫空间。

②当Y 是巴拿赫(Banach )空间时, ?(X →Y)也是巴拿赫Banach 空间。 (注:巴拿赫Banach 空间是完备的赋范线性空间)

4.3例子:(记住结论)

1l '()=l ∞但()l ∞'≠1l ;同样,1

=L ∞'(L )但1L ∞'≠(L ) ②

P

'(L )=q L ,其中p 1+q

1=1 ③2

l '()

=2l 联系:共轭空间是线性泛函和赋范线性空间的基础上形成的,因此共轭空间是它们的后续。 全部知识的联系:度量空间→映射→线性泛函;线性空间→赋范线性空间→有界线性算

子和连续线性泛函→共轭空间。完备化的有(完备的度量空间和完备的赋范线性空间即巴拿赫空间)。从以上的知识可以知道一般情况下证明的有定义及定理,计算就大约只有求范数并且一般都是证明左右互相包含即可。

参考文献:[1]程其襄,张奠宙,魏国强,胡善文,王漱石.实变函数与泛函分析基础[M].

北京:高等教育出版社,2010,(3).

[2]孙清华,侯谦民,孙昊.泛函分析内容、方法与技巧[M].湖北:华中科技大学

出版社,2006,(3).

[3]王宗尧,薛以锋,钱张军.应用泛函分析[M].上海:华东理工大学出版社,2002. [4] 李大华.应用泛函简明教程[M].湖北:华中科技大学出版社,1999,(4).

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

泛函分析课程论文

泛函分析课程论文 数学与计算科学学院 09数本2班 黄丽萍 2009224725 大四新学年开始了,我们也开始学习了一门综合性及专业性强的课程——泛函分析。首先,理解下“泛函分析”这个概念。 泛函分析是20世纪发展起来的一门新学科,其中泛函是函数概念的推广,对比函数是数与数之间的对应关系,我们发现泛函是函数和数之间的对应关系。在学习泛函分析前,我们先确定学习目标:理解和掌握“三大空间和三大定理”。所以在接下来的两章内容的学习中,我们将先学习“两大空间”——度量空间和赋范线性空间及其相关知识(第七章和第八章)。在学习中慢慢体味泛函分析的综合性及专业性。 第七章的标题已经明确给出了学习任务——度量空间和赋范线性空间。 §1 度量空间 §1.1 定义:若X 是一个非空集合,:d X X R ?→是满足下面条件的实值函数,对于,x y X ?∈,有 (1)(,)0d x y =当且仅当x y =; (2)(,)(,)d x y d y x =; (3)(,)(,)(,)d x y d x z d y z ≤+, 则称d 为X 上的度量,称(,)X d 为度量空间。 【理解】度量空间就是:集合+距离;(满足非负性、对称性及三点不等式) 其实度量空间是在实变函数中接触的知识,但其在泛函分析学科中的重要性,我们可以通过度量空间的进一步例子来感受。 §1.2 度量空间的进一步例子 例:1、离散的度量空间(,)X d ,设X 是一个非空集合,,x y X ?∈,当1,(,)0,=x y d x y x y ≠?=??当当。

2、序列空间S ,i =1i |-|1(,)21+|-|i i i i d x y ξηξη∞ =∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t A d x y x y ∈=是度量空间 4、连续函数[a,b]C ,(,)max|(t)-(t)|a t b d x y x y ≤≤=是度量空间 5、空间2l ,122=1(,)[(-)]k k i d x y y x ∞=∑是度量空间 §1.3度量空间中的极限,稠密集,可分空间 §1.3.1极限:类似数学分析定义极限,如果 {}n x 是(,)X d 中点列,如果?x X ∈,使n l im (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列,x 是点列{}n x 的极限。 同样的类似于n R ,度量空间中收敛点列的极限是唯一的。 §1.3.2稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令 M M M ?表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。 即:{},n n M E x E x M s t x x n ??∈??→→∞在中稠密对 §1.3.3 例子 1、 n 维欧氏空间n R 是可分空间; 2、 坐标为有理数的全体是n R 的可数稠密子集; 3、 l ∞是不可分空间。 §1.4 连续映射 §1.4.1定义:设 (,),(,),> 0,X (,) < (T ,T ) < ,o o o o X X d Y Y d T X Y x X d x x x d x x T x εδδε==∈ 是两个度量空间,是到中映射,如果对于任意给定的正数,存在正数 使对 中一切满足 的 ,有 则称在连续。

泛函分析中的概念和命题

泛函分析中的概念和命题 赋范空间,算子,泛函 定理:赋范线性空间是有限维的当且仅当它的单位球是列紧的;有限维赋范线性空间上的任两个 范数是等价的;有限维赋范线性空间是Banach 空间. 定理:M 是赋范线性空间()||||,?X 的一个真闭线性子空间,则,1||||,,0=∈?>?y X y ε使得: M x x y ∈?->-,1||||ε 定理:设X 是赋范线性空间,f 是X 上的线性泛函,则 1.* X f ∈()()的闭线性子空间是X x f X x f N }0|{=∈=? 2.()()中稠密在是不连续的非零线性泛函X f N x f ? 定理:()空间是空间是则是赋范空间,Banach ,Banach },{,Y X B Y X Y X ?≠θ ()()()||||||||||||,,,,,,,,B A AB Z X B AB Z Y B Y X B A Z Y X ≤∈∈∈且则是赋范空间, 可分B 空间:()()[]可分b a C c c p l L p P ,,,,1,1,00∞<≤ ()∞∞l L ,10, 不可分 Hahn-Banach 泛函延拓定理 设X 为线性空间,上的实值函数是定义在X p ,若: (1)()()()()为次可加泛函则称p X y x y p x p y x p ,,,∈?+≤+ (2)()()() 为正齐性泛函,则称p X x x p x p ∈?≥?=,0,ααα (3) ()()() 为对称泛函,则称p X x x p x p ∈?∈?=,K ,||ααα 实Hahn-Banach 泛函定理: 设X 是实线性空间,()x p 是定义在X 上的次可加正齐性泛函,0X 是X 的线性子空间,0f 是定义在0X 上的实线性泛函且满足()()()00X x x p x f ∈?≤,则必存在一个定义在X 上的实线性泛函f ,且满足: 1.()()()X x x p x f ∈?≤0

泛函分析学习心得

泛函分析学习心得 学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心理来学.刚开始接触的时候是觉得很难学,知识点很难懂,刚开始上课时也听不懂,只顾着做笔记了.后来慢慢学下来,在课前预习、课后复习研究、上课认真听课后发现没有想象中的那么难,上课也能听懂了.因此得出了一个结论:只要用心努力去学,所有课程都不会很难,关键是自己学习的态度和努力的程度. 在学习《泛函分析》的前一个学期先学习了《实变函数论》,《实变函数论》这部分主要学习了集合及其运算、集合的势、n 维空间中的点集、外测度与可测集、Lebesgue 可测集的结构、可测函数、P L 空间等内容,这为这学期学习《泛函分析》打下了扎实的基础.我们在这个学期的期中之前学习的《泛函分析》的主要内容包括线性距离空间、距离空间的完备性、内积空间、距离空间中的点集、不动点定理、有界线性算子及其范数等.下面我谈谈对第一章的距离空间中部分内容的理解与学习: 第一章第一节学习了线性距离空间,课本首先给出了线性空间的定义及其相关内容,这与高等代数中线性空间是基本一样的,所以学起来比较容易.接着是距离空间的学习,如果将n 维欧氏空间n R 中的距离“抽象”出来,仅采用性质,就可得到一般空间中的距离概念: 1.距离空间(或度量空间)的定义: 设X 为一集合,ρ是X X ?到n R 的映射,使得使得X z y x ∈?,,,均满足以下三个条件: (1))(0,≥y x ρ,且)(0,=y x ρ当且仅当y x =(非负性) (2))()(x y y x ,,ρρ=(对称性) (3))()()(z y y x z x ,,,ρρρ+≤(三角不等式), 则称X 为距离空间(或度量空间),记作)(ρ,X ,)(y x ,ρ为y x ,两点间的距离. 学习了距离空间定义后,我们可以验证:欧式空间n R ,离散度量空间,连

泛函分析重要内容

们同意前人的提法,认为线性泛函与无穷维空间上引进坐标的思想有关,而对偶理论则有如无穷维线性空间上的解析几何学。 Chp.1 距离线性空间 SS1. 选择公理,良序定理,佐恩引理 有序集的定义: (1)若a在b之先,则b便不在a之先。 (2)若a在b之先,b在c之先,则a在c之先。 这种先后关系记作 良序集:A的任何非空子集C都必有一个属于C的最先元素。 良序集的超限归纳法: (1)为真,这里是A中最先的元素。 2)对一切,为真,则亦真 那么对一切皆真。 选择公理 设N={N}是一个非空集合构成的族,则必存在定义在N上的函数f,使得对一切N都有 部分有序 称元素族X是部分有序的,如果在其中某些元素对(a,b)上有二元关系,它据有性质: 例如X中包换关系 在部分有序集下,有上界、极大元和完全有序 其中完全有序的C:。 例如在复数域中,按大小关系定义两个复数的关系,则复平面是部分有序的,实轴、虚轴是完全有序的。 佐恩引理 设X非空的部分有序集,如果X的任何完全有序子集都有一个上界在X中,则X必含有极大元。 从现代观点来看,泛函分析研究的主要是研究实数域或者复数域上的完备赋线性空间。 SS2. 线性空间,哈迈尔(Hamel)基 线性空间的定义:加法交换、加法结合、有零元,有负元、有单位元等。 线性流形:线性空间中的非空子集,如果它加法封闭、数乘封闭。 线性流形的和M+N:所有形如m+n的元素的集合,其中m∈M, n∈N。 线性流形的直和:如果M∩N={θ},则以代替M+N 如果,则称M与N是代数互补的线性流形。 于是有下述定理:

定理2.1 设M,N是线性空间X的线性流形,则当且仅当对每个x∈X都有唯一的表达式 x=m+n, m∈M,n∈N. 定理2.2 若,则dimX=dimM+dimN Hamel基的定义: 设X是具有非零元的线性空间,X的子集H称为X的Hamel基,如果 (1)H是线性无关的。 (2)H成的线性流形是整个空间。 则有Hamel基和线性无关子集的关系: 定理2.3 设X是线性空间,S是X中任意的线性无关子集,则存在X的一个Hamel基使得 推论任何非零线性空间必有Hamel基 由定理2.3,可有 定理2.4 设M是线性空间X的线性流形,则必有线性流形使得,即N是M的代数补。 SS3 距离空间(度量空间),距离线性空间 定义了距离(满足正定性、对称性和三角不等式的映射)d(x,y)的空间即为距离空间,记为 按距离收敛: 设距离空间中的点列使得 ,则称按d(·,·)收敛到x,简记为 距离线性空间: 设赋有距离d(·,·)的线性空间X满足 (1) (2) 距离线性空间的例子 例1 有界序列空间(m) 设X代表所有有界数列的集合,设

泛函分析课程总结

泛函分析课程总结 数学与计算科学学院 09数本5班 符翠艳 2009224524 序号:26 一.知识总结 第七章 度量空间和赋范线性空间 1. 度量空间的定义:设X 是一个集合,若对于X 中任意两个元素,x y ,都有唯 一确定的实数(),d x y 与之相对应,而且满足 ()()()()()()()1,0,,0=;2,,;3,,,,d x y d x y x y d x y d y x d x y d x z d z y z ≥=?? ??=????≤+?? 、的充要条件是、、对任意都成立。 则称d 为X 上的一个度量函数,(d X ,)为度量空间,),(y x d 为y x ,两点间的度量。 2. 度量空间的例子 ①离散的度量空间(),X d 设X 是任意的非空集合,对X 中任意两点,x y X ∈,令 ()1,,0,x y d x y x y ≠?? =??=?? 当当 ②序列空间S 令S 表示实数列(或复数列)的全体,对S 中任意两点 ()()12n 12,,...,,...,,...,,...n x y ξξξηηη==及,令 ()11,21i i i i i i d x y ξηξη∞ =-=+-∑ ③有界函数空间B (A ) 设A 是一给定的集合,令B (A )表示A 上有界实值(或复值)函数全体,对B (A )中任意两点,x y ,定义 (),()()sup t A d x y x t y t ∈=- ④可测函数空间m(X) 设m(X)为X 上实值(或复值)的L 可测函数全体,m 为L 测度,若()m X ≤∞,对任意两个可测函数()()f t g t 及,令 ()()(),1()() X f t g t d f g dt f t g t -=+-?

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

泛函分析论文

泛函分析作业 数学系08级5班 08020170 赵英杰

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 一、度量空间和赋范线性空间 1、度量空间 现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。 度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空

间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间。 (一)、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 (二)、巴拿赫空间

泛函分析知识总结

泛函分析知识总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间; 二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ?x=y(非负性) 2°d(x,y)= d(y,x) (对称性) 3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式) 则称d(x,y)是x、y之间的度量或距离(matric或distance),称 为(X,d)度量空间或距离空间(metric space)。 (这个定义是证明度量空间常用的方法) 注意:⑴定义在X中任意两个元素x,y确定的实数d(x,y),只要满足1°、2°、3°都称为度量。这里“度量”这个名称已由现实生活中的意义 引申到一般情况,它用来描述X中两个事物接近的程度,而条件 1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的 点” 。 ⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。 举例 离散的度量空间:设X 是任意的非空集合,对X 中任意两点x,y ∈X ,令 ()1x y d x y =0x=y ≠???,当,,当,则称(X ,d )为离散度量空间。 序列空间S :S 表示实数列(或复数列)的全体,d(x,y)=1121i i i i i i ?η?η∞=-+-∑; 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界实值(或复值)函数 全体,对B(A)中任意两点x,y ,定义d(x,y)= A t ∈sup )()(t y t x - 可测函数空间M(X):M(X)为X 上实值(或复值)的L 可测函数全体。d(f,g)=dt t g t f t g t f x ?-+-)()(1) ()( C[a,b]空间(重要的度量空间):C[a,b]表示闭区间[a,b]上实值(或复值)连续 函数全体,对C[a,b]中任意两点x,y ,定 义 d(x,y)=)()(max t y t x b t a -≤≤ l 2 :无限维空间(重要的度量空间) ★ 例、是考试中常考的度量空间。

实变函数学习心得

实变函数学习心得 实变函数课在我国高等学校数学系的教学计划中属于专业基础课,是一门承上启下的课。下面是为大家准备的实变函数学习心得体会,希望大家喜欢! 实变函数学习心得体会范文篇1 学习实变函数这们课已经一个学期了,对于我们数学专业的学生,大学最难的一门课就是实变函数论与实变函数这门课了。我们用的教材难度比较大,所以根据我自己学习这门课的心得与方法,有以下几点: 1、复习并巩固数学分析等基础课程。学习实变函数这门课程要求我们以数学分析为学习基础,因此,想学好这门课必须有相对比较扎实的数学分析基础。 2、课前预习。实变函数是一门比较难的课程,龙老师上课也讲得比较快、比较抽象,因此,适当的预习是必要的,了解老师即将讲什么内容,相应地复习与之相关内容。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。 3、上课认真听讲,认真做笔记。龙老师是一位博学的老师,上课内容涵盖许多知识。因此,上课应注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,实变函数这门课比较难,所以建议听课是一个全身心投入听、记、思相结合的过程。 4、课后复习,做作业,做练习。我们作为大三的学生,我们要学

会抓住零碎的时间复习实变函数课堂的学习内容,巩固学习。复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某些定理证明的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,理解并掌握其证明思路。做作业、做练习时,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。 所以,我们学习实变函数总的来说要把握课前、课时与课后的任务,学习内容要多下功夫掌握基本概念和原理及其证明思路,尽可能地掌握作业题目,在记忆的基础上理解,在完成练习中深化理解,在比较中构筑知识结构的框架,是提高学习实变函数课程效率的重要途径。 实变函数学习心得体会范文篇2 古语有云:微机原理闹危机,汇编语言不会编,随机过程随机过,量子力学量力学,实变函数学十遍。其它的不好说,这实变函数确实要多看几遍的。虽然我曾旁听过这门课,但是对于其中的种种总感觉模模糊糊,不甚明了。前几日在网上down了一个完整的教学视频,便想着把这门课重新来过,遂借着这片地方留下一些印记,好督促自己万不可半途而废。 1、集合列的极限有上下极限之分,只有当上下极限相等时,才称集合列存在极限。对于上极限可以这样定义: {x|x属于无穷多个An}.无穷多是用文字语言来进行形象的描述,那么转换成数学的语言应该是怎样的呢?类比数学分析中的聚点原理,我们可以假设若x属于某个Am,那么一定可以找到mm,使得x也属于m,如若不然,x就属于有限个集合,而不是无穷多个了。上述

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d()与之对应,而且这一对 应关系满足下列条件: 1°d()≥0 ,d()=0 ?x=y(非负性) 2°d()= d() (对称性) 3°对?z ,都有d()≤d()() (三点不等式) 则称d()是x、y之间的度量或距离(或),称为 ()度量空间或距离空间()。 (这个定义是证明度量空间常用的方法)

注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(),只要 满足1°、2°、3°都称为度量。这里“度量”这个名 称已由现实生活中的意义引申到一般情况,它用来描 述X 中两个事物接近的程度,而条件1°、2°、3°被 认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个 集合X 上若有两个不同的度量函数1d 和2d ,则我们认为 (X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观 起见,今后称度量空间()中的元素为“点” ,例如若 x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间()时可以省略度量函数d ,而称“度 量空间X ” 。 1.1举例 1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点∈X ,令 ()1x y d x y =0x=y ≠??? ,当,,当,则称(X ,d )为离散度量空间。 1.12 序列空间S :S 表示实数列(或复数列)的全体,d()=1121i i i i i i ?η?η∞=-+-∑; 1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界

实变函数与泛函分析课程教学大纲

《实变函数与泛函分析》课程教学大纲 一、课程基本信息 课程代码:110047 课程名称:实变函数与泛函分析 英文名称:Real variable analysis And Functional analysis 课程类别:专业基础课 学时:50 学分:3 适用对象:信息与计算科学专业本科 考核方式:考试,平时成绩30%,期末成绩70% 先修课程:数学分析和高等代数 二、课程简介 中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。 英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning. 三、课程性质与教学目的 本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。本课程就其实质来说是方法性的,但对于应用学科的学生来说,作为授课的目的,则是知识性的,故在教学方法和内容的选择上来说,只能让学生了解那些体现实变函数与泛函分析基本特征的思想内容,冗难的证明过程应尽量避免。本课程要求如下: 1. 理解和掌握集合间的关系和集与映射间的关系,了解度量空间的相关概念和Lebesgue可测集的有关内容和性质。

泛函分析论文

浅谈泛函分析 数学科学学院 张健 20111101710 2011级数学与应用数学汉班 摘 要 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。它在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 关键词 泛函分析、空间、度量、算子 泛函分析是20世纪30年代形成的数学分科,是从变分问题、积分方程和理论物理的研究中发展起来的。它综合运用函数论、几何学、现代数学的观点来研究无限维向量空间上的函数、算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程、概率论、计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 .1度量空间和赋范线性空间 1.1度量空间 现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家.G 康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家..R M -弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。 度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。 定义:设X 为一个集合,一个映射d :R X X →?。若对于任何z y x ,,属于X ,有 ()1(正定性)(),0,≥y x d 且(),0,=y x d 当且仅当y x = ()2(对称性)()()x y d y x d ,,= ()3(三角不等式)()()()z y d y x d z x d ,,,+≤ 则称d 为集合X 的一个度量(或距离)。称偶对()X d ,为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。 2.1赋范线性空间

泛函分析总结

泛函分析知识点小结及应用 §1 度量空间的进一步例子 设X 是任一非空集合,若对于∈?y x ,X ,都有唯一确定的实数()y x d ,与之对应, 且满足 1.非负性:()y x d ,0≥,()y x d ,=0y x =?; 2. 对称性:d(x,y)=d(y,x); 3.三角不等式:对∈?z y x ,,X ,都有()y x d ,≤()z x d ,+()z y d ,, 则称(X ,d ) 为度量空间,X 中的元素称为点。 欧氏空间n R 对n R 中任意两点 ()n x x x x ,,,21 =和()n y y y y ,,,21 =,规定距离为 ()y x d ,=()2 1 12?? ? ??-∑= n i i i y x . []b a C ,空间 []b a C ,表示闭区间[]b a ,上实值(或复值)连续函数的全体.对[]b a C ,中任意两点y x ,,定义()y x d ,=()()t y t x b t a -≤≤max . p l ()1+∞<≤p 空间 记p l ={}??????∞<=∑∞ =∞=11k p k k k x x x . 设{}∞==1k k x x ,{}∞==1k k y y ∈p l ,定义 ()y x d ,=p i p i i y x 11???? ??-∞=. 例1 序列空间S 令S 表示实数列(或复数列)的全体,对{}∞==?1k k x x ,{}∞==1 k k y y ,令 ()y x d ,=∑ ∞=121k k k k k k y x y x -+-1. 例2 有界函数空间()A B 设A 是一个给定的集合,令()A B 表示A 上有界实值(或复值)函数的全体. ∈?y x ,()A B ,定义 ()y x d ,=()()t y t x A t -∈sup . 例3 可测函数空间()X M 设()X M 为X 上实值(或复值)的可测函数的全体,m 为Lebesgue 测度,若 ()X m ∞<,对任意两个可测函数()t f 及()t g ,由于 ()()()() 11<-+-t g t f t g t f ,故不等式左 边为 X 上可积函数. 令 ()g f d ,=()()()() t 1f t g t d X f y g t -?+-. §2 度量空间中的极限 设 {}∞=1n n x 是 ()d X ,中点列,若X x ∈?,s.t. ()0,lim =∞→x x d n n (*) 则称{}∞=1n n x 是收敛点列,x 是点列{}∞ =1n n x 的极限. 收敛点列的极限是唯一的. 若设n x 既牧敛于x 又收敛 y ,则因为 ()()()0,,,0→+≤≤n n x y d x x d y x d ()∞→n ,而有 ()y x d ,=0. 所以x =y . 注 (*)式换一个表达方式:()x x d n n ,lim ∞ →=( ) x x d n n ,lim ∞ →. 即当点列极限存在时,

泛函分析课程总结论文

泛函分析课程总结论文 第一部分:知识点体系 第七章:度量空间和赋范线性空间 度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。 泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。 一、度量空间的进一步例子 1、度量空间的定义 定义1.1 设X 为一个集合,一个映射X X R ?→d :.若对于任何x ,y,z 属 于X ,有 1°d(,)0x y ≥,且d(,)0x y =当且仅当x y =(非负性); 2°(,)(,)d x y d y x =(对称性); 3°(,)(,)(,)d x y d x z d z y ≤+ (三角不等式) 则称d 为集合X 的一个度量,同时称 () ,X d 为一个度量空间 (课本第二章第一节中已经讲解了度量空间的定义,第七章第一节接着讲解度量空间,下面介绍六种度量空间。) 2、常见的度量空间 例2.1 离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。 例2.2 序列空间S 令S 表示实数列(或复数列)的全体,对S 中的任意两点 令 称 为序列空间。 例2.3 (3)有界函数空间B(A ) 设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体, 对B(A)中任意两点x,y ,定义 ,x y X ∈1,(,)0,if x y d x y if x y ≠?=?=?(,)X d 1212(,,...,,...),(,,...,,...), n n x y ξξξηηη==1|| 1(,)21||i i i i i i d x y ξηξη∞ =-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、 度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (非负性) 2°d(x,y)= d(y,x) (对称性) 3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式) 则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空 间或距离空间(metric space )。 (这个定义是证明度量空间常用的方法) 注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为 度量。这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。 1.1举例

《泛函分析》课程标准

《泛函分析》课程标准 英文名称:Functional Analysis 课程编号:407012010 适用专业:数学与应用数学学分数:4 一、课程性质 泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。 二、课程理念 1、培育理性精神,提高数学文化素养 基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。 2、良好的学习状态,提高综合解题能力 本课程面对的是数学与应用数学专业四年级的学生。学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。需要师生共同努力去正确面对才能顺利完成本门课的教学任务。为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。 3、内容由浅入深 本课程的框架结构是根据教学对象和教学任务来安排的: “度量空间”泛函分析的基本概念之一,十分重要。首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。在赋范空间上定义线性算子及线性泛函,并讨论相关性质。第三步,在线性赋范空间上定义内积,可以得到内积空间和希尔伯特空间的定义,在内积空间上引入正交以及投影的概念,并建立起相应的几何学,还要讨论希尔伯特空间上的算子,特别是自伴算子、酉算子、正常算子的一些初步性质。最后,介绍巴拿赫空间中的四个著名定理:Hahn-Banach泛函延拓定理,一致有界性定理,逆算子定理和闭图像定理,这些定理充分显示了泛函分析的威力及其广泛应用。 4、理论联系实际,拓展学生知识面 在教学过程中,主要把握以下几点:将先进的教学思想和教学理念贯穿到课程的内容和体系;强化数学思想方法、加强学生分析解决问题能力和数学素养的培养,让学生接受现代的、新的观念,以启迪学生的创新思维;准确把握课程定位,培养学生掌握扎实的数学基础知识、严密的逻辑思维能力以及应用数学知识解决实际问题的能力,同时为学生向科研型理论型人才发展留下充足的空间。课堂教学提倡启发式,采用各种现代化的教学手段,有些内容举一些数学分析中的例子使学生容易理解泛函分析的抽象理论等。教师通过应用信息技术手段,可以使得授课内容信息量大,学生更能深入泛函分析的内容。 要求学生做到:将书上的基本知识点吃透,注意咬文嚼字;注意抽象思维能力和逻辑思维能力,要求会做一些理论证明;要求在上课时认真听讲,完成课上训练和课堂作业.课下能够查阅

相关主题
文本预览
相关文档 最新文档