当前位置:文档之家› 示波器不可忽略的一个重要参数

示波器不可忽略的一个重要参数

示波器不可忽略的一个重要参数
示波器不可忽略的一个重要参数

示波器不可忽略的一个重要参数

所有示波器在模拟通道与数字转换过程中都会产生垂直噪声,这是不可避免的。很多用户在购买示波器时都忽略了这一重要参数,甚至示波器厂商也都刻意回避这个指标,数据手册中很少有明确标明。这里将详细分析了垂直噪声的由来并比较了各主流厂商不同型号示波器的底噪特性。

垂直噪声从哪里来?

示波器的垂直噪声主要来自两个方面:

1)模拟前端电路的噪声:包括衰减电路的噪声、缓冲电路的噪声、放大器的噪声以及电源的噪声。

因为随机噪声的无界性、随机性,带宽越高,噪声频谱越宽,模拟前端电路的噪声越大。示波器的基线本底噪声主要由这部分决定,这也是评价模拟前端设计好坏的重要指标。

2)模拟信号数字化过程产生的噪声:主要是ADC的量化噪声。

关于ADC的量化噪声,贝尔实验室的W. R. Bennett 1948年发表的经典论文中有一条很有名的公式可以表征:

以ZDS2022中使用的ADC为例,它的分辨率为8bit,采样率为1GSa/s,带宽为200MHz,计算可得ADC量化过程的信噪比为53.9dB。所以在最小垂直档位2mV/div下的量化噪声有效值为14uVrms,基本可以忽略不计,在该档位下噪声主要来自模拟前端。测量10mVpp的方波,波形迹线会变粗,测量误差主要来自模拟前端的本底噪声。

图 1 2mV/div档位下测试10mVpp的方波峰峰值误差但是当垂直档位越大,量化噪声逐渐占主导地位,而模拟前端噪声虽然会随着放大器的增益变化产生微小的改变,但是仍然在2mV以下。

示波器通常为了防止ADC超出限制,留了±1div的裕量,实际垂直幅度范围为10div,所以在1V/div档位下ADC的1LSB为40mV左右,按照最大量化误差±0.5LSB计算,ZDS2022在该档位下的量化噪声为40mVpp。测量幅度为5Vpp的方波信号,测量误差主要来自量化噪声。

图 2 1V/div档位测试5Vpp方波信号的峰峰值误差垂直噪声会带来什么影响?

示波器垂直噪声会从很多方面影响信号的精确测量,它会:

1)引入幅度测量误差;

2)引入sin(x)/x波形重建不确定度;

3)在进行小信号测量时会导致触发抖动,无法稳定波形,这时必须设置触发耦合为高频抑制,并适当增大触发灵敏度。

4)产生显示不良的“胖波形”。

如何评估示波器的底噪?

既然底噪如此重要,要怎么评估一台示波器的底噪呢?通常认为示波器的基线本底噪声是示波器垂直档位置于灵敏度最高条件下测得的。但是市面上很多示波器在最高灵敏度档位下,由于放大器增益大于40dB,带宽通常会有所降低。所以要比较不同示波器的底噪,应该把相同带宽特征的示波器放在一起,对比他们在全带宽条件下最高灵敏度档位的基线本底噪声。

因为噪声服从高斯分布,存在随机性、无界性,噪声测量中收集的数据越多,得到的噪声峰峰值偏移更高,基于这一原因像垂直噪声和随机抖动这类随机现象应使用RMS(均方根)

值来进行定义和测量。

为了比较各公司不同型号示波器的基线本底噪声,需要将它们各种设置置于尽量接近的条件,步骤如下:

1)打开通道1,设置为直流耦合,输入阻抗设置为1MΩ,关闭带宽限制,置于2mV/div 垂直档位;

2)断开探头的连接,将输入端口接地,并远离可能耦合进来的噪声源;

3)将时基档位设置为20ns/div,存储深度尽量选择接近的值;

4)正确设置触发通道与触发电平;

5)关闭其他通道(某些型号示波器由于多通道共用单片ADC、存储芯片,在开启多个通道时会降低采样率、存储深度等参数)。

6)打开示波器的测量功能,选择电压有效值(RMS-AC)测量;

7)为了对比更明显,设置余辉时间为10s。

下图分别是ZDS2022、T公司的MDO3054(为了带宽一致,已开启250MHz带宽限制)、A 公司的MSO-X 3012A测试的基线本底噪声结果。

道闸参数

规格:342*292*1025MM 配置:两无线遥控,一手控,一杆座 (长度可选)一杆座,膨胀螺丝,说

明书。 产品说 明:主要功能: 1·手动按钮可作‘升’、‘降’及‘停’操作2·无线遥控可作‘升’、‘降’、‘停’及对手动按钮的‘加锁’‘解锁’操作3·停电自动解锁,停电后可手动抬杆 4·具有便于维护与调试的‘自检模式’ 5·可选配车辆传感器,使具有‘车过自动落闸’‘防砸车’或‘冲闸自动抬杆’功能 6·可选配专为道路收费而增设的顶蓬及通道两对红绿灯 7·可选配光隔离长线驱动器,挂接到电脑RS232-C串行通讯接口。具备丰富的底层控制及状态返回指令,使收费系统微机可对电闸作最完全的控制。 8·可根据客户需要增加其它特殊功能

电气特性: 1·采用具备软件陷井与硬件看门狗的单片机控制,永不死机 2·采用磁感应霍尔器件进行行程控制,非接触工作,永不磨损偏移3·采用光电耦合、无触点、过零导通技术,主控板无火花无干扰高可靠工作 4·采用升降超时与电机过热保护,防止电闸非正常损坏 5·采用机械行程开关,进行切电总保护 6·宽范围的单相电源输入 (160V-260V)适于恶劣的野外道路收费环境 7·光隔离串行通讯接口,隔离电压大于1500V,确保上位微机安全,实现抗汽车电火花等强电磁干扰的高可靠通讯 机械特性:

1·采用精密的四连杆机构使闸杆作 缓启渐停无冲击的的快速平稳动 作,并使闸杆只能在限定的九十度 范围内运行,不出意外。 2·采用精确的全自动跟踪平衡机构 使任意位置静态力矩为零,从而最 大限度地减小驱动功率和延长机体 寿命 3·箱体采用先进的防水结构及抗老 化的室外型喷塑处理,坚固耐用, 永不褪色。 道闸参数: 额定电压:AC220V 额定功率:100W 起落杆时间:4-6秒 机身净量:70KG

示波器实验报告

一仪器的原理及结构 1.示波器 示波器是一种用途广泛的电子测量仪器。利用它可以测出电信号的一系列参数,如信号电压(或电流)的幅度、周期(或频率)、相位等,数字示波器还可以测量信号的频谱特性。实验室拥有的主要是模拟示波器,数字示波器虽有自动测试功能,给操作带来方便,但显示的波形是量化的不够细腻,观察波形没有模拟示波器清晰,特别是观察含有干扰信号的波形时有一定的困难。模拟示波器的组成包括示波管、水平/垂直部分、触发部分及电源等组成。 (1)电子示波管 如图1所示,主要由电子枪、偏转系统、荧光屏三部分组成。电子枪包括灯丝、阴极、栅极和阳极。偏转系统包括Y轴偏转板和X轴偏转板两部分,偏转板上电压形成的电场力将电子枪图 1 示波管结构图 发射出来的电子束,按照偏转板上电压的大小作出相应的偏移。荧光屏是位于示波管顶端涂有荧光物质的透明玻璃屏,当电子枪发射出来的电子束轰击到屏时,荧光屏被击中的点上会发光,显示出曲线或波形。 (2)水平/垂直部分 示波器的水平部分产生扫描电压,使电子在水平方向上偏转,形成时间轴;垂直部分处理被测信号,在荧光屏上还原出被测信号的电压波形。 (3)示波器的使用 ①寻找扫描光迹,将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:适当调节亮度旋钮;触发方式开关置“自动”;适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。 ②双踪示波器一般有五种工作方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一

简易数字示波器设计_本科论文

摘要 本科毕业设计论文 题目简易数字示波器设计 I

西安交通大学城市学院本科生毕业设计(论文) 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

摘要 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日 III

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项 在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。 在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。 在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能 够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。 在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

停车场主要设备技术参数

**停车场出入系统 智控系统技术参数 技 术 参 数 内蒙古国建信息技术有限公司 2011年11月

GD-道闸 >> 出、入口道闸 GD-DZ805 产品编号: 91110405216 产品名称: 出、入口道闸 GD-DZ805 规 格: 金属烤漆 永不退 色 产品备注: 停车场道闸、智能 道闸、智能停车场设备 产品类别: G D-道闸 产 品 说 明 技术参数 型号:GD-DZ805 电源电压:AC220V±10% 电机额定功率:50、60Hz 标准挡杆长度:3-6M 运行噪音:≤60Db 挡杆起落时间:4.0 S 运行寿命:≥500万次 挡杆中误动作:≯0.01% 挡杆中心高:900mm 机箱尺寸:380*320*1050mm 产品说明 个别可根据客户的需求,客户能自己任意的调换闸机开闸的方向 《左向或右向》。停电时:可快速的打开离合器,快速的将闸杆抬起 (不会造成堵车情况)。外形可根据您的要求设计生产。 道闸功能介绍 1、按钮可作“升”、“降”、“停”操作; 2、可选配无线遥控器,可作“升”、“降”、“停”操作,也可选配特殊的无线遥控器,实现对按钮的“加锁”、“解锁”操作; 3、可选配通道红绿信号灯、计数器、报警灯等外设连接的接口附设; 4、可选配车辆检测器,使具有“车过自动落闸”,:防砸车“及”冲闸自动抬杆“功能; 5、可选配先进的远程网络控制技术,通过RS485与先进的通讯协议实现对道闸的控制与反馈;该方案由超皓安防上海监控安装网 转载提供 https://www.doczj.com/doc/9c5197787.html,

6、通过拨码开关设置,提供多种运行模式、运行参数供用户选择,能够最大限度地满足用户对不同功能的需求;此外,主控器预留有足够的拨码开关挡位与输入输出接口,只需改变软件便可定制实现用户所需的特殊功能。 7、客户能自己任意的调换闸机开闸的方向《左向或右向》。停电时,可快速的打开离合器快速的将闸杆抬起不会造成堵车的情况,适用于智能停车场收费系统。 停车管理系统>> 2010新款易达 产品编号:11129244616 产品名称:2010新款易达 规格:金属烤漆 产品备注:停车场管理系统 2010新款易达 产品类别:停车管理系统 产品说明 型号:2010新款易达 工作电压:AC220±10% 电源频率:50、60Hz 额定功率:50W IC卡读卡距离:≤100mm 读写时间:≤0.1秒 出卡时间:≤0.5秒 通讯接口:RS-485 最大临时放卡量:300张 工作环境温度:-30℃-60℃ 工作相对湿度:≤95%无凝露 脱机存储容量:进出各100000条记录 产品说明 兼容IC、ID读卡模式,IC脱机收费,可即插语音模块,可外接LED显示屏,实现脱机控制,体积小,适用于固定用户的停车场使用。金属材质,外型设计简洁美观,色彩光洁、永不褪色,机箱结构紧凑、造型简练、美观大方

基于STM32的简易数字示波器

山东科技大学 课程设计报告 设计题目:基于STM32的简易数字示波器 专业: 班级学号: 学生姓名: 指导教师: 设计时间: 小组成员:

基于STM32的数字示波器设计 -----------硬件方面设计 摘要 本设计是基于ARM(Advance RISC Machine)以ARM9[2]为控制核心数字示波器的设计。包括前级电路处理,AD转换,波形处理,LCD显示灯模块。前级电路处理包括程控放大衰减器,极性转换电路,过零比较器组成,AD的转换速率最高为500KSPS,采用实时采样方式,设计中采用模块设计方法。充分使用了Proteus Multisim仿真工具,大大提高了设计效率,可测量输入频率范围为1HZ—50KHZ 的波形,测量幅度范围为-3.3V—+3.3V,并实现波形的放大和缩小,实时显示输入信号波形,同时测量波形输入信号的频率。 总体来看,本文所设计的示波器,体积小,价格低廉,低功耗,方便携带,适用范围广泛,基本上满足了某些场合的需要,同时克服了传统示波器体积庞大的缺点,减小成本。 关键词:AD ,ARM,实时采样,数字示波器

目录 前言---------------------------------------------------------------------------------3第一章绪论--------------------------------------------------------------------4 1.1课题背景---------------------------------------------------------------------4 1.2课题研究目的及意义----------------------------------------------------4 1.3课题主要的研究内容----------------------------------------------------5 第二章系统的整体设计方案--------------------------------------------6 2.1硬件总体结构思路--------------------------------------------------------6 第三章硬件结构设计------------------------------------------------------------7 3.1程控放大模块设计-------------------------------------------------------7 3.1.1程控放大电路的作用-------------------------------------------7 3.1.2程控放大电路所用芯片---------------------------------------7 3.1.3AD603放大电路及原理----------------------------------------8 3.2极性转换电路设计------------------------------------------------------10 3.3 AD转换电路及LED显示电路等(由组内其他同学完成) 第四章软件设计(由组内其他同学完成) 第五章性能能测试与分析--------------------------------------------------15 第六章设计结论及感悟-----------------------------------------------17参考文献----------------------------------------------------------------------18

共模电感的设计

EMI滤波共模电感设计 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下 单独使用共模噪声滤波器。 图1 EMI滤波器的插入 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入 线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为零。由于磁 通的阻碍,SMPS的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效率比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系

在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。 图3所示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。 铁氧体磁环的磁导率、损耗系数和频率的关系 图3 图4给出三种不同材料的总阻抗和频率的关系 J材料在超过1~20MHz范围内具有高的总阻抗,它最广泛地应用于共模滤波器的扼流圈。在1MHz,W材料阻抗比J材料高20-50%,当低频噪声是主要问题时经常应用J材料;K材料可用于2MHz以上,因为在此频率范围内它产生的阻抗比J材料高直至100%。在2MHz 以上或以下,对于滤波器所要求的规范,J或W是优先的。图4三种不同材料的阻抗和频率的关系。 1.2、磁芯的形状 对于共模噪声滤波器环形磁芯是最普及的,他们不贵、泄漏磁通也低。环形磁芯必须 用手绕制(或在独特的环形绕线机上绕制)。正常情况要用一个非金属的分隔板放置在两 个绕组之间,以及为了和PC板连接,这个绕制器件还需环氧化在印制板的头部。具有附件

弱电设备参数

弱电设备参数表

监控系统红外摄像机:(数量15台)

半球摄像机:(数量38台)

硬盘录像机:(数量6台)

停车场管理系统 停车场管理系统 作为中国停车场管理行业的开创者和领导品牌,捷顺停车场管理系统经过研发团队 多年来不断优化,并结合国内外停车场管理需求而设计的一套高效智能的停车场管理系统。 凭借优良的品质和卓越的性能,捷顺停车场管理系统受到了数以十万计用户的青睐,被广泛应用于小区物业、商业大厦、购物中心、物流园区、大型厂矿、机场、政府机关、校园、大型场馆等领域,为大量用户解决了停车场的车辆安全、资金安全、车辆进出有序管理、车位资源合理规划和利用等停车场经营管理难题,建立了良好的行业口碑。 一、系统简介 捷顺停车场管理系统是通过非接触式卡或车牌识别来对出入停车场的车辆实施判断识别、准入/拒绝、引导、记录、收费、放行等智能管理,其目的是有效的控制车辆与人员的出入,记录所有详细资料并自动计算收费额度,实现对场内车辆与收费的安全管理。该系统集感应式智能卡技术、计算机软件与网络、视频监控、图像识别与处理、自动控制技术于一体,包括了车辆身份判断、出入控制、车辆自动识别、车位检索、车位引导、会车提醒、图像显示、车辆校对、信息发布、时间计算、费用收取及核查、语音对讲、报警联动等系列化功能,实现对停车场车辆的智能化管理。根据具体的使用环境和配置需要,捷顺停车场管理系统细分为:捷斯易、捷易通、顺易达及灵通四个停车场管理系列,满足各类型停车场管理需要。 系统控制流程 车辆入场时,司机将所持有的本车场IC/ID 卡放在入口控制机的读卡区域前读卡,如果读卡有效,道闸的闸杆自动抬起,允许车辆进入,车辆通过入口处的道闸后,闸杆自动下落,封闭入口车道。 当车辆出场时,司机在出口控制机的读卡区域读卡,出口控制机判断卡的有效性后,出口处的道闸闸杆自动抬起放行车辆,车辆通过道闸后,闸杆自动落下,封闭出口车道,如果IC/ID 卡无效时,出口道闸仍处于禁行状态。

实验3示波器的一般使用和常用参数测量

示波器的一般使用和常用参数测量 一.实验目的 1.了解示波器的组成框图及工作原理 2.掌握示波器各控制开关和旋钮的意义和功能。学会示波器的一般使用方法, 3.学会用示波器测量直流电压和交流电压 4.学会用示波器观察信号波形和测量信号频率 二.实验仪器 1.双踪示波器 2.函数信号发生器 3.数字频率计数器 4.数字万用表 三.预习内容 1.示波器的组成框图及基本工作原理 2.示波器的调节机构 3.用示波器测量电压,频率的方法 四.双路示波器主要调节机构名称及功能介绍 1.电源开关:按入为打开电源,弹出为关上电源。 2.辉度:控制光迹扫描线的亮度 3.聚焦:控制光迹扫描线条的聚焦,使之清晰 4.光迹旋转 5.通道输入选择开关:控制输入信号通过耦合电容(AC方式)接Y放大器,或直接(DC 方式)接到Y放大器,或对地短路为零输入(GND方式)。 6.Y轴位移;X轴位移;分别控制光迹在垂直方向和水平方向的移动 7.Y轴量程与Y轴增益:Y轴量程(也称Y系统偏转因数)选择开关与Y 轴增益旋钮套装在一起。中间为增益旋钮,外部为量程开关。定量测量输入信号电压值时,按Y轴输入信号的幅度选择量程。示波器屏幕上垂直方向共分为10 大格,开关位置所标电压值定义为每格显示的电压值。上述定义只有在增益旋钮顺时针旋到底时才成立。 8.X轴量程;X轴细调:X轴量程(也称X轴扫描因数)开关用来选择X 扫描时基。当X轴细调旋钮顺时针旋到底时,X轴量程开关位置所标数值定义为屏幕上水平方向每格显示的时间,量纲单位为mS或μS。据此可根据显示的信号波形读出信号周期,换算出信号频率。 9.触发电平:调节X 扫描电路,使之与所测信号同步(被测信号的频率是X扫描频率的整数倍)。使屏幕显示波形稳定。 10.触发源选择开关:一般选择通常或自动。 五.实验内容及步骤 1.熟习实验所用示波器各主要开关和旋钮的位置。 2.把该示波器主要技术指标填入表1中。

基于STC单片机虚拟简易示波器的设计

题目:基于STC单片机虚拟简易示波器的设计

目录 1.实验目的及意义 (1) 2. 试验内容及方案论证 (1) 3.系统工作原理 (2) 4.硬件电路设计 (2) 5.系统软件设计 (4) 5.1下位机设计 (4) 5.2 上位机设计 (8) 6.系统调试 (10) 6.1硬件调试 (10) 6.2 软件调试 (10) 6.3 软硬联调 (11) 7.实验结果与误差分析 (11) 8.实验小结及体会 (12) 参考文献: (13)

1.实验目的及意义 (1)学会利用AT89C5X系列单片机控制AD7862实现模拟的电压的采集; (2)学会利用串口与PC机进行通信将测量数据发送给PC机,在PC机上利用Visual C++ 6.0编写上位机界面,并显示数据与波形; (3)通过应用Altium Designer 6软件掌握电路板的原理图绘制及pcb板的生成; (4)学会利用Keil uVision4软件编写并调试单片机的下位机程序,利用Keil uVision4与wave6000软件结合,对硬件电路采集来的数据进行分析。 2. 试验内容及方案论证 在实际应用中,经常会遇到一些突发信号,需要对其进行高速采集,这种情况下采用高速的A/D自然成为首选。AD7862是AD公司推出的一个高速,低功耗,双12位的A/D转换,单+5V供电,功率为60mW。它包含两个4us的延时的ADC,两个锁存器,一个内部的+2.5V参考电压和一个高速并行输出端口。有四个模拟输入通道,分为两组,由A0选择。每一组通道有两个输入(VA1 & VA2 or VB1 & VB2),它们能同时的被采样和转化,保存相对的信号信息。它可以接受+10v的输入电压范围(AD7862-10),+2.5(AD7862-3)和0-2.5v(AD7862-2)。对模拟电压输入,具有过电保护功能,相对地,允许输入电压到达+17v,+7v,+7v,而不会造成损害,本实验选用AD7862-10。其具有以下主要特点: 1、4通道模拟输入,2路同时转换(内置2个可同时工作的12位集成AD 转换器); 2、4us转换时间,250ksps采样速率; 3、可选模拟量输入±10V(AD7862-10); 4、高速12位并行总线输出; 5、内部提供+2.5V参考电压或者由外部提供参考电压;; 6、单一电源工作。 本实验采用的微处理器是STC89C52RC单片机。STC89C52RC单片机使用方便,它与AT89S52单片机具有相同的内核,内部有256 Bytes片内RAM、8K Flash ROM,支持串口下载,易于在线编程调试,故采用这种单片机来做处理器。

示波器的平均值参数、参数的统计平均值及波形平均算法

示波器的平均值参数、参数的统计平均值及波形平均算法 ——兼答“一周一问”之No.006问 文档编号:HWTT0065

示波器的平均值参数、参数的统计平均值及波形平均算法 ——兼答“一周一问”之No.006问 汪进进,王雨森 深圳市鼎阳科技有限公司 N0.006问:平均值的物理意义及其和FFT的关系 今天问个简单的问题: 示波器测量参数的平均值算法的物理意义是什么?平均值是否等于FFT的直流(0Hz)的大小? -------------------------------------- 这个问题很简单,简单得都没人想理会。但是就看这三个回答还是能撩人兴致的,看了后甚至有一下子被蒙住了的感觉。 回答1: 大海象 平均值对于周期信号来说,是直流分量,其等于0hz fft,但是对于非周期信号来说,平均值不等于0hz大小,物理意义上为积分

"平均值对于周期信号来说,是直流分量,其等于0hz fft,但是对于非周期信号来说,平均值不等于0hz大小。" 这个回答是对的,但为什么平均值在物理意义上是积分呢? 积分的物理意义又是什么?我不理解这后半句哦。 回答2: d.sen 示波器测量参数的平均值指的是正弦交流电全波整流并完全滤波后的电压。对正弦波而言,平均值的意义就是全波整流后,频域上的直流分量。 这里面正弦波理解为周期性信号,所以平均值就是直流分量。结论和第1个回答是一致的。 回答2: 叶叶 平均值在数学上是微分方程在一个周期内的平均值一样的算法,这个微分方程就是我们所测的波形,物理意义并不是0Hz的大小,而是要算出包含所有的高频分量后的数学平均值。 这个说法看不太懂了,跪求大师给出详细解释哦。 当我启动了伟大的搜索引擎搜索"平均值"三个字之后,得知“平均值”是初二数学上的

简易数字示波器设计

电信专业综合实践 设计题目:在LPC2210 开发板的基础上 ----------简易数字示波器设计 学校: 班级: 姓名: 学号: 指导老师: 2011.1.1

目录 第1章设计内容与要求 ...................................... 错误!未定义书签。 1.1 设计内容............................................ 错误!未定义书签。 1.2 设计要求............................................ 错误!未定义书签。 1.3 系统功能............................................ 错误!未定义书签。 1.4 应用分析............................................ 错误!未定义书签。第2章系统总体设计 ........................................ 错误!未定义书签。 2.1 总体框图............................................ 错误!未定义书签。 2.2 总体设计分析........................................ 错误!未定义书签。第3章硬件结构............................................ 错误!未定义书签。 3.1 5V电源电路.......................................... 错误!未定义书签。 3.2 系统电源电路........................................ 错误!未定义书签。 3.3 复位电路............................................ 错误!未定义书签。 3.4 JTAG接口电路........................................ 错误!未定义书签。 3.5 系统存储器电路...................................... 错误!未定义书签。 3.6 TFT液晶接口电路 (12) 3.7 串口接口电路 (13) 3.8 ADC电路 (14) 3.9 按键控制电路........................................ 错误!未定义书签。 3.10 主芯片电路 (14) 第4章软件分析 (14) 4.1 软件框图分析 (14) 4.2 任务的划分 (15) 4.3 任务的优先级设计 (15) 4.4 液晶初始化设计 (16) 4.5 定时器设计 (16) 4.6 AD转换设计 (16)

共模电感的参数选择

开关电源EMI滤波器的设计 要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。 1.抗共模干扰的电感器的设计 电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。电路如图1所示。 信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1=L2=M。由于Rc1和RL串联且Rc1<<RL,则可以不考虑Vg,Vg 被短路可以不考虑Vg的影响。其中(Is是信号电流,Ig是经地线流回信号源的电流。由基尔霍夫定律可写出:

式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。由(1)式得知,共模千扰电流Ig随f:fc的比值增大而减小。当f:fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。一般来说,当干扰电压频率f≥5fc时,即Vn:Vg≤0.197,就可认为达到有效抑制地线中心干扰的目的。 2.抗差模干扰的滤波器设计 差模干扰的滤波器可以设计成Π型低通滤波器,电路如图2所示。这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。

道闸使用说明手册

精心整理 尊敬的用户: 您好! 非常感谢您选择了我公司为您精心制造的道闸,使我们有机会为你提供服务。为充分发挥本产品的优良性能,请您在使用之前详细阅读本手册。 本手册的主要内容,包括该产品的主要性能优势,产品规格及其结构参数,控制部分的接口说明,现场安装调试说明,以及产品的配件清单等,通阅读本手册,可让您更加清楚的了解本产品的构造特点,使用要求及其注意事项,以确保道闸的安全使用,延长使用寿命。同时,本手册还特别的详细的介绍了,产品在安装使用过程中可能出现的问题,详细分析了出现问题的原因,并提供了相应的解决方案,解除您在使用本产品的过程中一些困扰。除此之外,我们还在手册中为您详细介 是 一. 减轻电 ●70W 二.. ●采用原装进口的光电隔离保护电路,确保信号完整和抗强干扰。 ●集成高性能百万组学习码的无线遥控接收模块,确保操作的稳定性。 ●采用独有的灭弧处理电路,确保控制板的使用寿命。 ●采用原装进口磁芯的变压器,在户外潮杂环境下的稳定工作。 ●提供额外12V/100mA电源,便于连接不同型号的限位检测装置。 三.安全特性 ●遇阻反弹(压力电波防砸):闸杆在下落过程中,若遇到外力阻挡后,便会自动起杆,减免因失误带来的损伤; ●地感防砸:闸杆在下落过程中,如接收到地感信号后,便会自动起杆,触发期间不落杆,待地感信号恢复后,闸杆自动下落,确保安全; ●开优先防砸:闸杆在下落过程中,若遇紧急情况,无论是在开闸或关闸运行状态,只要接收到开

闸信号,闸杆便会执行开闸动作; ●防砸胶条防砸:闸杆上配带有橡胶胶条,可以减轻因为意外而造成的损失。 产品规格及其结构参数 一.规格参数

简易示波器课程设计报告

课程设计报告 课程名称综合电子设计 题目简易数字示波器 指导教师 起止日期 系别自动化 专业自动控制 学生姓名 班级/学号 成绩

摘要 本系统由CPLD,单片机控制模块,键盘,LED,幅度控制模块,低通滤波模块组成,采用当前主流DDS 技术完成,能产生从1HZ-260KHZ 正弦波,方波,三角波以及这三种同频率波的线性组合,失真度限制在6%之内。 一、功能介绍 1. 具有产生正弦波、方波、三角波三种周期性波形的性能。 2. 用键盘输入编辑生成上述三种波形(同周期)的线性组合波形。 3. 输出波形频率范围为1Hz~200kHz(非正弦波频率按10 次谐波计算;重复频率可调,频率步进间隔1Hz。) 4. 输出波形幅度范围0~5V(峰-峰值),可按步进为0.1V(峰-峰值)。 5. 具有显示输出波形种类、重复频率(周期)和幅度的功能。 6. 增加稳幅输出功能,当负载变化时,输出电压幅度变化不大于±3%(负载变化范围:100Ω~∞)。 二、方案论证与比较 常见信号源的制作方法有: 方案一:采用锁相式频率合成。将一个高稳定度和高精确度的标准频率经过加减乘除的运算产生同样稳定度的大量离散频率技术,它在一定程度上既要频率稳定精确,又要频率在很大范围内可变的矛盾。但频率受VCO 可变频率范围的影响,高低频率比不可能做的很高,而且只能产生方波和正弦波。 方案二:采用模拟奋力元件或单片压控函数发生器MAX0832,可产生正弦波,方波,三角波,通过调整外部元件可改变输出频率,但采用模拟器件由于元件分散性太大,即使使用单片函数发生器,参数也与外部元件有关,外接的电阻电容对参数影响很大,不能实现波形运算输出等智能化的功能。 方案三:采用DDFS,即直接数字频率合成技术,以Nyquist 时域采样原理为基础,在时域中进行频率合成,它可以快速转换频率,频率,相位,幅度都可以实现程控,便于单片机控制,所以,本系统采用此方案。 三、系统设计 系统总体设计方框图:

示波器使用简易说明

实验常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器等的主要性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法 二、实验仪器 1、函数信号发生器EE1641C 2、DS1062E-EDU数字示波器 3、高级电路实验箱 三、实验原理 初步了解示波器面板和用户界面 1. 前面板:DS1000E-EDU系列数字示波器向用户提供简单而功能明晰的前面板, 以进行基本的操作。面板上包括旋钮和功能按键。旋钮的功能与其它示波器类似。显示屏右侧的一列 5 个灰色按键为菜单操作键(自上而下定义为 1 号至 5 号)。通过它们,您可以设置当前菜单的不同选项;其它按键为功能键,通过它们,您可以进入不同的功能菜单或直接获得特定的功能应用。

电压参数的自动测量 DS1000E-EDU, DS1000D-EDU 系列数字示波器可自动测量的电压参数包括峰峰值、最大值、最小值、平均值、均方根值、顶端值、低端值。下图表述了各个电压参数的物理意义。 电压参数示意图 峰峰值(Vpp):波形最高点至最低点的电压值。 最大值(Vmax):波形最高点至 GND(地)的电压值。 最小值(Vmin):波形最低点至 GND(地)的电压值。 幅值(Vamp):波形顶端至底端的电压值。 顶端值(Vtop):波形平顶至 GND(地)的电压值。

底端值(Vbase):波形平底至 GND(地)的电压值。 过冲(Overshoot):波形最大值与顶端值之差与幅值的比值。 预冲(Preshoot):波形最小值与底端值之差与幅值的比值。 平均值(Average):单位时间内信号的平均幅值。 均方根值(Vrms):即有效值。依据交流信号在单位时间内所换算产生的能量,对应于产生等值能量的直流电压,即均方根值。 2、函数信号发生器 函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电压最大可达20VP -P。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。函数信号发生器的输出信号频率可以通过频率分档开关进行调节。 函数信号发生器作为信号源,它的输出端不允许短路。 例一:测量简单信号 观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 1. 欲迅速显示该信号,请按如下步骤操作: (1) 将探头菜单衰减系数设定为1X,并将探头上的开关设定为1X。 (2) 将通道1的探头连接到电路被测点。

共模电感的设计实例讲解

共模电感的设计实例讲解 很多设计师对于共模电感的设计大多有一种感觉,那就是总觉得共模电感的设计看起来十分简单,但实际操作起来上,又有点复杂。的确共模电感的设计要考虑温度及应力等等因素。下面我就对于共模电感的设计过程与案例结合起来简单讲讲 一、设计过程: ① 选择磁芯材料(镍锌系和锰锌系) 铁氧体是一个较好的具有成本优势的材料。 ② 设定电感的阻 对于一个给定的要求衰减的频率,定义此频率下共模电感的感抗为50~100Ω,即至少50%的衰减,因此有:Z =ωL

③ 选择磁芯的形状的和尺寸 成本低漏感小的环形磁芯非常适合于共模电感,但是这种形状不容易实现机械化绕制,一般用手工绕制。磁环尺寸的大小选取有一定的随意性,通常基于PCB的尺寸选取合适的磁芯。为了减小共模电感的寄生电容,共模电感通常只用单层的线圈。若单层绕制时磁芯无法容纳所有的线圈,则选用大一号尺寸的磁环。当然也可以基于磁芯的数据手册由LI的乘积选取。 ④ 计算线圈的匝数 由磁芯的电感系数AL计算共模电感的圈数:( 106 )0.5 L N = L × A ⑤ 计算导线的线径 导线允许通过的电流密度选取为:400~800A/cm2,由此可以得到要求的线径。 二、设计案例: 在工作频率为10KHz,输入线性电流为3A(RMS)时,阻抗为100 欧的共模电感。 1)选取线径 铜线截面积=3A/400A/cm2=0.0075cm2 铜线线径 =0.98mm

取铜线线为1.0mm 2)计算最小电感值 3)假如无指定空间,任取一磁芯 内径(ID)=13.72+/-0.38=13.34mm MIN 4)计算内圆周长和最大可绕圈数 内圆周长=3.14×(13.34-1.08)=38.5mm 最大圈数=(160/360)×38.5/1.08=15.8TS或16TS 5)计算磁芯的AL值,并选取材质 磁芯的AL最小值=1.59/162=6211nH/TS2MIN 因此种磁芯AL值变化范围一般为+/-30%故磁芯的AL值取9000nH/TS2,以上述条件,即可选取一合适磁芯。

高速道闸技术参数

技术参数 型号:FY-DZG110 电源电压: AC230V 电源频率: 50/60HZ 电机额定功率:80W 电机额定转速: 30r/min 20r/min 15r/min 10r/min 电机额定转矩:12N。m 18N。m 24N。m 30N。m 标准挡杆长度: 2.25m 3.00m 3.75m 5.75m 运行噪音:≤60dB 挡杆起落时间: 0.9s 1.2-1.4s 1.8s 3.2s 运行寿命:≥500万次 挡杆误操作:≯0.01% 主要功能: 1:核心技术是采用专门设计的AC220V特种罱矩电机 电机为低速率免维护电机。电机可以被控制动于任意位置而不会造成损坏。在两个终端极限位置时,该电机功率自动减退至约20W,既可节省能耗,避免冷凝及腐蚀,即使在寒冷的冬季也可正常运转。 传动机构采用正弦连杆机构,去掉了普通自动拦杆使用的减速装置,使整个结构更趋紧凑,合理,大大减少了机械故障。 特殊的电机线圈结构使它在通,断电的瞬间,不会出现普通电机不可避免的瞬间大电流和瞬间电压波动,可直接用UPS供电而不会影响同一电网内其他设备的正常工作。 2:外观结构既结实耐用又美观大方 机箱采用经特殊工艺处理的钢板制成,表面用桔红色或桔黄色高级汽车漆涂,即防止腐蚀,又可以防止由于紫外线照射引起的褪色。 挡杆采用特殊铝型材,外贴红色反光薄膜,使其在夜间亦清晰可见; 为配合不同使用场合(比如在高度空间有限的地下停车场内),还专门设计有折叠式挡杆。 3:具备全方位的安全防护附加功能 防撞机构:因意外导致车辆撞击自动拦杆挡杆的时,防撞机构可使挡杆旋转90度,从而可以避免或减轻对自动拦杆和车辆的损坏。 LED红绿双显信号灯:为通行车辆自动切换红绿灯行车信号; 红外线保护装置:可检测到人员通过,从而避免意外事故发生。 遥控装置:可以实现无线遥控操作,有效控制距离不小于150M. 产品技术特点:系统集成度高、逻辑功能强;主控器提供多种运行模式供用户选用,能够最大限度地满足用户对不同功能的需求。此外,用户还可以装应用软件以实现所需的特殊功能;主控器附设有可与自动收费系统、环路感应器、信号灯等外设相连接的接口。

用示波器测时间

实验题目:用示波器测量时间 实验目的:1. 了解示波器的基本原理和结构;2. 学习使用示波器观察波形和测量信号周期及其时间参数。 实验原理 1. 示波器的基本结构 示波器由示波管、放大系统、衰减系统、扫描和同步系统及电源等部分组成。示波管是示波器的基本构件,它由电子枪、偏转板和荧光屏三部分组成,被封装在高真空的玻璃管内。电子枪是示波管的核心部分。 (1) 阴极:实现电子发射。 (2) 栅极:由第一栅极和第二栅极构成,只有少量电子通过第一栅极,第二栅极对阴极 发射的电子奔向荧光屏起加速作用。 (3) 第一阳极:第一阳极上加有几百伏的电压,形成一个聚焦的电场,当电子束通过此 聚焦电场时,调节加在上的电压可以达到聚焦的目的。 (4) 第二阳极:第二阳极上加有1000V 以上的电压。聚焦后的电子经过这个高压电场的 加速获得足够的动能,使其成为一束高速的电子流。这些能量很大的电子打在荧光屏上可引起荧光物质发光。 (5) 偏转板:由两对相互垂直的金属板构成,在两对金属板上分别加以直流电压,以控 制电子束的位置,适当调节这个电压值可以把光点或波形移到荧光屏的中间部位。 (6) 荧光屏:荧光屏能在高能电子的轰击下发光。辉光的强度取决于电子的能量和数量。 在电子射线停止作用之后,余辉使我们能在屏上观察到光点的连续轨迹。 垂直偏转板(y 轴)及水平偏转板(x 轴)所形成的二维电场,使电子束发生位移: y y y y D V V S y = = x x x x D V V S x = = (1) 其中,S 和D 分别为偏转板的偏转灵敏度和偏转因数 示波器显示波形的原理 在x 轴偏转板上加一个随时间t 按一定比例增加的电压V x ,V x 周期性变化,并且由于发光物质的特殊性使光迹有一定保留时间,于是就得到一条“扫描线”,称为时间基线。

一款简易示波器的设计方案

款简易示波器的设计方案 随着电子通信以及教学事业的发展,示波器的应用 越来越广泛,它在教学中所起到的作用越来越重要,示波器可以测量信号的幅度,频率以及波形等等,但是高精度的示波器非常昂贵,对于非盈利事业的教学组织来说无疑不合适,所以提出了一种以单片机为控制核心的简易示波器设计方案。它由前向控制部分,数据采集和存储部分, 51 单片机控 制部分以及按键和 MS12864R 显示部分组成。 1 简易数字示波器的工作原理以及总体框架本设计硬件电路部分由单片机控制系统电路,前向输入调理电路,模数转换和存储电路,以及按键显示电路组成。其工作的基本思路就是以单片机为控制核心,让 AD 芯片完成数据的离散化,采集数据经过缓冲暂存于存储器里面,当波形显示时,单片机从存储器的读使能端读取采集数据存于数组中,然后进行相应的数据处理并把所存取得数据按一定的顺序打在液晶显示器相应的位置上,从而再现波形信号 ;其中输入调理电路由阻抗变换电路,信号抬升电路以及频率测量电路构成,阻抗变换电路是为了提高输入阻抗,信号抬升是为了使信号的幅度满足 AD 芯片的输入幅度要求,频率测量电路主要是测量周期性信号的频率。总体设计框图如图 1 所示。 2 硬件设计 2.1 前端信号的处理本模块具有两

信号位置的变换主要由阻抗变换电路,信号抬升电路构成, 阻抗变换采用 ua741 构建的阻随放大电路, 信 用 ua741 构 成的加法电路, 信号位置的处理主要是对被测输 入信号在幅度与偏移方面进行线性处理,使信号在垂直方向 处于 A/D 转换器的输入范围内。 波形变换电路是用来测量 输入信号的频率,但是单片机属于数字器件,为此,我们需 随着写入数据或者读取数据而使地址指针进行递增或者递 减来实现寻址,两者中间接了一个缓冲器,这样可以起到数 据缓冲作用,在MCU 与AD 之间接入FIFO 的作用是起到数 据缓冲的作用,因为 AD 的时钟高于 MCU 的工作频率,所 以让 AD 和 FIFO 同步工作来存储 AD 转换的输出数据,实 验中 AD 与 FIFO 的时钟同步,来自于 ALE 引脚,为了使时 钟更加稳定, 可以让 ALE 信号先经过与门再送往采集存储模 块;FIFO 有3个标志位引脚,FF 满标志,HF 半满标志以及 EF 空标志,本设计只利用了 FF 满标志,当 FIFO 存满时通 知单片机来读取数据,这是单片机使 FIFO 的写使能禁止, 大功能, 是输入信号位置的变换 ;二是信号波形的变换 号抬升电路采 要对输入信号进行波形变换以及脉冲整形 ;硬件电路设计如 图2 所示。 2.2 信号的采集与存储 数据采集部分㈣ 是本设计的核心部分,本设计采用 BB 公司的 8 位 AD, 试验 中让 AD 完成数据采集,采集完数据送往 FIFO, 通过 FIFO 中继再送往单片机, FIFO 是一种双口 RAM, 它没有地址线,

相关主题
文本预览
相关文档 最新文档