当前位置:文档之家› 光电技术创新实训平台实验指导书

光电技术创新实训平台实验指导书

光电技术创新实训平台实验指导书
光电技术创新实训平台实验指导书

目录

实验仪说明 ..................................................... 错误!未定义书签。实验一、光控开关设计实验........................................ 错误!未定义书签。实验二、光照度计设计实验. (5)

实验三、光电报警设计实验 (8)

实验四、红外遥控设计实验 (13)

实验五、PSD位移测试设计实验 (21)

实验六、热释电报警器设计实验 (24)

实验七、光电转速计设计实验 (27)

实验八、光电测距设计实验 (30)

实验九、太阳能充电器设计实验 (33)

实验十、颜色识别系统设计实验 (38)

实验十一、光电开关里程表设计实验 (44)

实验仪说明

一、产品介绍:

光电技术是光学、电子学和计算机科学知识的高度集中,是跨学科的边缘技术。光电技术广泛应用于工农业和家庭生活等各领域。在这些领域中,几乎都涉及将光辐射信息转换为电信息的问题,即光辐射的检测问题。因此光电检测技术是光电技术的核心和重要组成部分。光电检测具有非接触、实时和高精度等特点,其技术得到迅速发展。光电探测器可将一定的光辐射转换为电信号,然后经过信号处理,去实现某种目的。它是光电系统的核心组成部分,其性能直接影响着光电系统的性能。

GCGDCX-B型光电技术创新实训平台针对光电器件应用设计而开发,提供多种(可选)光电器件的应用模块、设计模块、以及设计中所需要的电子元器件,并配备有各种电源接口。学生根据所提供的实验模块进行设计,或根据所提供的实验模块进行二次开发,提高学生动手动脑能力及创新意识。

二、系统组成:

整个系统分4部分:

1、主机箱:主机箱主要为各设计模块提供电源供给以及模块固定。一个主机箱可以安

放六个设计模块。

2、实验模块:通过各实验模块完成各应用实验。

3、设计性实验物料:二次开发实验用。

4、导轨结构件组件:固定各种光电器件用。

实验一、光控开关设计实验

一、实验目的

1、了解和掌握光敏电阻光控开关应用原理

2、了解和掌握光控开关电路原理

二、实验内容

1、光敏电阻光控开关实验

2、设计性实验

三、实验仪器

1、光电创新实验仪主机箱

2、光控开关实验模块

3、连接线

4、万用表

四、实验原理

1、光敏电阻的结构与工作原理

光敏电阻又称光导管,它几乎都是用半导体材料制成的光电器件。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也可以加交流电压。无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。

光敏电阻的结构很简单,下图(a)为金属封装的硫化镉光敏电阻的结构图。在玻璃底板上均匀地涂上一层薄薄的半导体物质,称为光导层。半导体的两端装有金属电极,金属电极与引出线端相连接,光敏电阻就通过引出线端接入电路。为了防止周围介质的影响,在半????

??

?

(a)(b)(c)

导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最大。为了提高灵敏度,光敏电阻的电极一般采用梳状图案,如图(b)所示。图(c)为光敏电阻的接线图。

2、本实验通过改变照射到光敏电阻上光强大小来控制继电器的开关状态,从而控制发光二极管指示灯的亮和灭。

五、注意事项

1、不得扳动面板上面元器件,以免造成电路损坏,导致实验仪不能正常工作。

2、金色测试钩说明:Vlm为比较器输入电压测试点、Vyz为阈值电压测试点。

六、实验步骤

1、光敏电阻输出端金色插座对应接到“IN”端金色插座,“OUT”端对应接到继电器正负端。

2、打开电源开关,用万用表测量Vlm端电压,用手遮挡光敏电阻,分别记下明、暗时Vlm 电压。

3、调节阈值电压使Vyz值在明暗电压值之间。

4、用手遮挡光敏电阻,观察指示灯指示状况。

七、设计性实验

光控开关原理图如下,IN1 和CON1为光敏电阻输入端。U8为运算放大器,型号为OP07,此运算放大器构成比较器电路。当3脚电压高于2脚电压时输出高电平,三极管Q4截止继电器不吸合,发光二极管不发光。反之2脚输出低电平,三极管Q4导通,继电器得电导通,发光二极管发光。

八、思考题

分析光敏电阻应用场合。

实验二、光照度计设计实验

一、实验目的

1、了解和掌握光电池在光照度计上的应用原理

2、了解和掌握光照度计结构原理

3、了解和掌握光照度计电路设计原理

二、实验内容

1、光照度计测量光照度实验

2、光照度计设计实性验

三、实验仪器

1、光电创新实验仪主机箱

2、光照度计&光功率计设计模块

3、照度计探头

4、连接线

4、万用表

四、实验原理

光照度是光度计量的主要参数之一,而光度计量是光学计量最基本的部分。光度量是限于人眼能够见到的一部分辐射量,是通过人眼的视觉效果去衡量的,人眼的视觉效果对各种波长是不同的,通常用V(λ)表示,定义为人眼视觉函数或光谱光视效率。因此,光照度不是一个纯粹的物理量,而是一个与人眼视觉有关的生理、心理物理量。

光照度是单位面积上接收的光通量,因而可以导出:由一个发光强度I的点光源,在相距L处的平面上产生的光照度与这个光源的发光强度成正比,与距离的平方成反比,即:

2

E

/L

I

式中:E——光照度,单位为Lx;

I——光源发光强度,单位为cd;

L——距离,单位为m。

光照度计是用来测量照度的仪器,它的结构原理如下图所示:

图 3-1

图中D为光探测器,图3-2为典型的硅光探测器的相对光谱响应曲线;C为余弦校正器,在光照度测量中,被测面上的光不可能都来自垂直方向,因此照度计必须进行余弦修正,使光探测器不同角度上的光度响应满足余弦关系。余弦校正器使用的是一种漫透射材料,当入射光不论以什么角度射在漫透射材料上时,光探测器接收到的始终是漫射光。余弦校正器的透光性要好;F为V(λ)校正器,在光照度测量中,除了希望光探测器有较高的灵敏度、较低的噪声、较宽的线性范围和较快的响应时间等外,还要求相对光谱响应符合视觉函数V (λ),而通常光探测器的光谱响应度与之相差甚远,因此需要进行V(λ)匹配。匹配基本上都是通过给光探测器加适当的滤光片(V(λ)滤光片)来实现的,满足条件的滤光片往往需要不同型号和厚度的几片颜色玻璃组合来实现匹配。当D接收到通过C和F的光辐射时,所产生的光电信号,首先经过I/V变换,然后经过运算放大器A放大,最后在显示器上显示出相应的信号定标后就是照度值。

图3-2 硅光电探测器光谱特性曲线

图3-3 光谱视觉曲线

照度测量的误差因素

1)照度计相对光谱响应度与V(λ)的偏离引起的误差。

2)接收器线性:也就是说接收器的响应度在整个指定输出范围内为常数。

3)疲劳特性:疲劳是照度计在恒定的工作条件下,由投射照度引起的响应度可逆的暂时的变化。

4)照度计的方向性响应。

5)由于量程改变产生的误差:这个误差是照度计的开关从一个量程变到邻近量程所产生的系统误差。

6)温度依赖性:温度依赖性是用环境温度对照度头绝对响应度和相对光谱响应度的影响来表征。

7)偏振依赖性:照度计的输出信号还依赖于光源的偏振状态。

8)照度头接收面受非均匀照明的影响。

五、注意事项

1、不得扳动面板上面元器件,以免造成电路损坏,导致实验仪不能正常工作。

2、说明:输入“+”“-”为探头输入端、输出“+”“-”为照度计输出电压测试点。

X1、X10、X100开关为放大倍数切换开关。

六、实验步骤

1、照度计探头红黑插座对应接到实验模块上输入端“+”“-”。

2、万用表红黑表笔对应接到实验模块上输出端“+”“-”。

3、放大倍数切换开关拨至X1挡,向上拨。

4、打开电源开关,观察万用表指示数值。

5、改变不同光照度和放大倍数,观察万用表指示数值变化。

6、关闭电源。

七、设计性实验

光照度计电路原理图如下:

U1对光电池输出电流进行I/V变换,将光电流转换为电压,K1为档位切换开关。U2对输出电压进行放大,调节RP1阻值大小可以给便放大倍数,5脚对应电位器为调零电位器。

八、思考题

分析放大电路芯片选用条件。

实验三、光电报警设计实验

一、实验目的

1、了解红外砷化镓发光二极管与光电二极管的具体应用。

2、练习自拟简单的光电系统试验。

3、了解主动式光电报警系统设计原理。

4、了解锁相环的原理及应用。

5、对影响光电探测性能的各种参数进行探讨,以求最大限度地发挥系统的探测能力。

二、实验内容

1、锁相环原理及应用测试实验

2、利用锁相环设计光电报警系统实验

3、设计性实验

三、实验仪器

1、光电创新实验仪主机箱

2、光电报警实验模块

3、连接线

4、示波器

四、实验原理

光电报警系统是一种重要的监视系统,目前其种类已经日益增多。有对飞机、导弹等军事目标入侵进行的报警系统,也有对机场、重要设施或危禁区域防范进行报警的系统。一般说来,被动报警系统的保密性好,但是设备比较复杂;而主动报警系统可以利用特定的调制编码规律,达到一定的保密效果,设备比较简单。

本系统调制电源提供红外发射二极管确定规律变化的调制电流,使发光管发出红外调制光。光电二极管接收调制光,转换后的信号经放大,整形,解调后控制报警器。

(1)用NE555定时器构成多谐振荡器作调制电源。

NE555定时器构成多谐振荡器

NE555集成电路用它构成占空比为50%的多谐振荡器原理图如上图所示。下面对照电路图简述其工作原理及参数选择。

在前半周期,V1通过R2、D 对C1充电,由于二极管D 的作用,电流不经过R1,因此其充电时间T1为:

2ln 3

231ln 12121C R V V V V C R T cc

cc cc

cc =--= 而在后半周期,电容放电时,二极管反向电阻无穷大,555内部的三极导通,电流通过R1至7脚直接放电,此时其放电时间T2为:

2ln 3

231ln 11112C R V V V V C R T cc

cc cc

cc =--= 当A 点电压上升到上限阈值电压(约CC V 3

2)时,定时器输出翻转成低电平。这时,A

点电压将随1C 放电而按指数规律下降。当A 点下降到下限阈值电压(约C V 32)时,定时器输出又变成高电平,调整1R 、2R 的电阻值得到严格的方波输出。当R1=R2时,输出为方波信号。其输出频率为:

2

ln 21

11121C R T T f =+=

参考值:1216.56.5C K R K R ,,Ω=Ω==μF ,

()Z KH C R f 3.1244

.111≈≈ 。

用NE555组成振荡器来作红外发光管BT401时,由于红外发光管BT401的工作电流在30mA 以上,因此一定加一个三极管驱动电路。使输出电流大于或等于红外发光管的最小工作电流F I 。其驱动电路的参考电路图如下图:

(2)信号放大电路原理

电路如图所示,由运算放大器OP07构成放大电路,将光敏二极管所接收的电流信号放大,放大增益通过调节R3阻值改变。

外发射二极管

红外发光二极管驱动电路

V

-V

+3532

1

LF +

-

48

1

2C 1

D 45R 8

R LED

6

5

7

9

R +5V

W1

检波

判决报警

(3)锁相环原理

下图为锁相环电路原理图。LM567是一片锁相环电路,采用8脚双列直插塑封。其⑤、⑥脚外接的电阻和电容决定了内部压控振荡器的中心频率f2,f2≈1/。其①、②脚通常分别通过一电容器接地,形成输出滤波网络和环路单级低通滤波网络。②脚所接电容决定锁相环路的捕捉带宽:电容值越大,环路带宽越窄。①脚所接电容的容量应至少是②脚电容的2倍。③脚是输入端,要求输入信号≥25mV。⑧脚是逻辑输出端,其内部是一个集电极开路的三极管,允许最大灌电流为100mA 。LM567的工作电压为~9V ,工作频率从直流到500kHz ,静态工作电流约8mA 。LM567的内部电路及详细工作过程非常复杂,这里仅将其基本功能概述如下:当LM567的③脚输入幅度≥25mV、频率在其带宽内的信号时,⑧脚由高电平变成低电平,②脚输出经频率/电压变换的调制信号;如果在器件的②脚输入音频信号,则在⑤脚输出受②脚输入调制信号调制的调频方波信号。在图4的电路中我们仅利用了LM567接收到相同频率的载波信号后⑧脚电压由高变低这一特性,来形成对控制对象的控制。

锁相环电路

五、注意事项

1、不得扳动面板上面元器件,以免造成电路损坏,导致实验仪不能正常工作。

2、金色测试钩说明:Ft 为调制频率测试点、Ff 为光电二极管输出放大信号测试点,Fy 为整形后信号测试点、FC 为锁相环中心频率测试点、GND 为系统接地点。

六、实验步骤

1、红外发射二极管“L+” “L-”对应接入电路中发射部分“L+” “L-”;光电二极管“P+” “P-”对应接入电路中接收部分“P-” “P+”。

2、打开电源,示波器观测Ft 点波形,调节调制频率调节旋钮,使波形输出为1比1方波。

3、示波器观测Ff 点波形,调节增益调节使波形最好。

4、示波器观测Fy 点波形,调节阈值调节旋钮,使输出方波波形最好,并记录频率。

5、示波器观测Fc 点波形,调节中心频率调节旋钮使波形频率与Fy 波形频率相等。

6、用手遮挡光路,观测LED 发光二极管指示状况。

七、设计性实验

1、红外调制发射电路原理图如下

图5 报警用参考电路

2、放大电路如下,调节RP3可以改变放大电路增益,T12 T13为光电二极管输入端。

3、整形电路如下,调节RP4可以改变阈值电压大小。

4、锁相环电路图如下,改变W4可以改变中心频率。

八、思考题

1、为了提高作用距离,光源调制频率和占空比如何取值

2、当拦截光束的目标运动较快或较慢,接收电路和电路参数应如何考虑能保证正常报警。

实验四、红外遥控设计实验

一、实验目的

1、了解红外遥控原理

2、了解掌握红外遥控电路设计方法

二、实验内容

1、红外遥控编解码实验

2、4路遥控原理实验

3、设计性试验

三、实验仪器

1、光电创新实验仪主机箱

2、红外遥控实验模块

3、连接线

4、示波器

四、实验原理

PT2262/2272是台湾普城公司生产的一种CMOS工艺制造的低功耗低价位通用编解码电路,PT2262/2272最多可有12位(A0-A11)三态地址端管脚(悬空,接高电平,接低电平),任意组合可提供531441地址码,PT2262最多可有6位(D0-D5)数据端管脚,设定的地址码和数据码从17脚串行输出,可用于无线遥控发射电路。

编码芯片PT2262发出的编码信号由:地址码、数据码、同步码组成一个完整的码字,解码芯片PT2272接收到信号后,其地址码经过两次比较核对后,相应的数据脚也输出高电平。

PT2262特点: CMOS工艺制造,低功耗、外部元器件少、RC振荡电阻、工作电压范围宽:、数据最多可达6位、地址码最多可达531441种。

应用范围:车辆防盗系统、家庭防盗系统、遥控玩具、其他电器遥控

引脚图:

管脚说明:

在具体的应用中,外接振荡电阻可根据需要进行适当的调节,阻值越大振荡频率越慢,编码的宽度越大,发码一帧的时间越长。

注意:下图电路应用在无线遥控,如果在红外遥控领域,需要芯片型号为PT2262-IR。

解码电路 PT2272 引脚图:

地址码和数据码都用宽度不同的脉冲来表示,两个窄脉冲表示“0”;两个宽脉冲表示“1”;一个窄脉冲和一个宽脉冲表示“F”也就是地址码的“悬空”

上面是我们从超再生接收模块信号输出脚上截获的一段波形,可以明显看到,图上半部分是一组一组的字码,每组字码之间有同步码隔开,所以我们如果用单片机软件解码时,程序只要判断出同步码,然后对后面的字码进行脉冲宽度识别即可。图下部分是放大的一组字码:一个字码由12位AD码(地址码加数据码,比如8位地址码加4位数据码)组成,每个AD位用两个脉冲来代表:两个窄脉冲表示“0”;两个宽脉冲表示“1”;一个窄脉冲和一个宽脉冲表示“F”也就是地址码的“悬空”

2262每次发射时至少发射4组字码,2272只有在连续两次检测到相同的地址码加数据码才会把数据码中的“1”驱动相应的数据输出端为高电平和驱动VT端同步为高电平。

因为无线发射的特点,第一组字码非常容易受零电平干扰,往往会产生误码,所以程序可以丢弃处理。

PT2272解码芯片有不同的后缀,表示不同的功能,有L4/M4/L6/M6之分,其中L表示锁存输出,数据只要成功接收就能一直保持对应的电平状态,直到下次遥控数据发生变化时改变。M表示非锁存输出,数据脚输出的电平是瞬时的而且和发射端是否发射相对应,可以用于类似点动的控制。后缀的6和4表示有几路并行的控制通道,当采用4路并行数据时(PT2272-M4),对应的地址编码应该是8位,如果采用6路的并行数据时(PT2272-M6),对应的地址编码应该是6位。

PT2262/2272芯片的地址编码设定和修改:

在通常使用中,我们一般采用8位地址码和4位数据码,这时编码电路PT2262和解码PT2272的第1~8脚为地址设定脚,有三种状态可供选择:悬空、接正电源、接地三种状态,3的8次方为6561,所以地址编码不重复度为6561组,只有发射端PT2262和接收端PT2272的地址编码完全相同,才能配对使用,遥控模块的生产厂家为了便于生产管理,出厂时遥控模块的PT2262和PT2272的八位地址编码端全部悬空,这样用户可以很方便选择各种编码状态,用户如果想改变地址编码,只要将PT2262和PT2272的1~8脚设置相同即可,例如将发射机的PT2262的第1脚接地第5脚接正电源,其它引脚悬空,那么接收机的PT2272只要也第1脚接地第5脚接正电源,其它引脚悬空就能实现配对接收。当两者地址编码完全一致时,接收机对应的D1~D4端输出约4V互锁高电平控制信号,同时VT端也输出解码有效高电平信号。用户可将这些信号加一级放大,便可驱动继电器、功率三极管等进行负载遥控开关操纵。

五、注意事项

1、不得扳动面板上面元器件,以免造成电路损坏,导致实验仪不能正常工作。

2、地址编码和地址解码编码方法:编解码均为三态,高、低和悬空,分为上中下3排,每排对应地址位看模块上标示。短接上两排为低,下两排为高,不短接则为悬空。

六、实验步骤

1、将模块上红外发射二极管的金色插孔“L+”“L-”通过连线连接至发射金色插孔“L+”“L-”,红外接收头金色插孔“GND”“VCC”“SIG”通过连线连接至接收金色插孔“GND”“VCC”“SIG”(GCC GND为接收头的供电端,SIG为接收头的信号输出端)。

2、“TE”分别设为3态,用示波器观察编码芯片PT226217脚输出波形状态。

3、“TE”分别设为低电平,按下4路控制任何一路开关,用示波器观察接收头“SIG”波形。

4、使用短路块将编码解码设置相同状态,按下4路控制任何一路开关,观察4路输出只是状态。

5、使用短路块将编码解码设置不同状态,按下4路控制任何一路开关,观察4路输出只是状态。

6、分析红外遥控原理。

七、设计性实验

上图为编码发射电路。U1为芯片PT2262,在没有按键按下时,U1不通电,任意按键按下时,+5V通过二极管4148后为芯片供电,这样设计可以降低产品功耗。U1输出波形通过三极管Q1调制到红外发射二极管上。3排9针插针用来对芯片进行3态编码。

下图为接收解码电路。U2为芯片PT2272,红外接收头接收到得信号经过三极管Q2驱动后送入芯片PT2272输入端,3排8针插针用来对芯片进行3态编码。

本实验手册提供的原理图为4路编解码原理,同学们有兴趣可以根据芯片原理设计相应其它路数的遥控。

八、思考题

分析红外接收头SM0038原理。

实验五、PSD 位移测试设计实验

一、实验目的

1、了解PSD 位置传感器工作原理及其特性

2、了解并掌握PSD 位置传感器测量位移的方法

3、了解并掌握PSD 位置传感器输出信号处理电路原理

二、实验内容

1、一维PSD 光学系统组装调试实验

2、PSD 输出信号处理实验

3、PSD 输出信号误差补偿实验

4、PSD 测位移原理实验

5、设计实验

三、实验仪器

1、光电创新实验仪主机箱

2、PSD 位移测试模块

3、连接线

4、万用表

四、实验原理

PSD 为一具有PIN 三层结构的平板半导体硅片。其断面结构如图1所示,表面层P 为感光面,在其两边各有一信号输入电极,底层的公共电极是用与加反偏电压。当光点入射到PSD 表面时,由于横向电势的存在,产生光生电流0I ,光生电流就流向两个输出电极,从而在两个输出电极上分别得到光电流1I 和2I ,显然012I I I =+。而1I 和2I 的分流关系则取决于入射光点到两个输出电极间的等效电阻。假设PSD 表面分流层的阻挡是均匀的,则PSD 可简化为图2所示的电位器模型,其中1R 、2R 为入射光点位置到两个输出电极间的等效电阻,显然1R 、2R 正比于光点到两个输出电极间的距离。

入射

输出电极

P I N

输出电极

R1R2

图11-1

图11-2

图1

图2

因为 I 1 / I 2 = R 2 / R 1 = (L-X )/ L+X ) I 0 = I 1 + I 2

所以可得 I 1 = I 0(L-X )/2L I 1 = I 0(L+X )/2L X =( I 2 - I 1 / I 0)L

当入射光恒定时,0I 恒定,则入射光点与PSD 中间零位点距离X 与21I I 成线性关系,与入射光点强度无关。通过适当的处理电路,就可以获得光点位置的输出信号。

五、注意事项

1、激光器输出光不得对准人眼,以免造成伤害。

2、激光器为静电敏感元件,因此操作者不要用手直接接触激光器引脚以及与引脚连接的任何测试点和线路,以免损坏激光器。

3、不得扳动面板上面元器件,以免造成电路损坏,导致实验仪不能正常工作。

六、实验步骤

1、将激光器引线红色接模块上+5V 金色插孔,黑色接GND5金色插孔。PSD 后金色插孔“I1” “I2”为PSD 电流输出,对应接到金色插孔“T6”“T8”, PSD 后金色插孔“C ”为PSD 供电端,对应接到金色插孔“T4”。

2、将PSD 传感器实验单元电路连接起来:“T7”接“T10” “T9”接“T12” “T13”接“T14” “T15”接“T16”, “T17”接“T118”对应接到万用表电压档正负极,用来测量输出电压。

3、打开主机箱电源开关,打开模块上电源开关,实验模块开始工作。调整测微头,使激光光点能够在PSD 受光面上的位置从一端移向另一端,最后将光点定位在PSD 受光面上的正中间位置(目测),调节零点调整旋钮,使电压表显示值为0。转动测微头使光点移动到PSD 受光面一端,调节输出幅度调整旋钮,使电压表显示值为3V 或-3V 左右。

4、从PSD 一端开始旋转测微头,使光点移动,取△X =0.5mm ,即转动测微头一转。读取电压表显示值,填入表1,画出位移-电压特性曲线。

5、根据表1所列的数据,计算中心量程2mm 、3mm 、4mm 时的非线性误差。

七、设计性实验

1、PSD 供电电路如下图

2、PSD 输出处理电路如下图,原理:运算放大器U4A U4B 完成PSD 两路电流输出I/V 变换;U5A 为加法电路,对两路输出进行加法运算,用来验证PSD 两路输出之和不随光电位置变化而改变;U5B 为减法电路,实现PSD 位移测量;U3A 为放大电路,W1用来调节放大增益。U3B 为调零电路,通过调节W2阻值大小进行电路调零。

八、思考题

试分析一下二维PSD的工作原理。

实验六、热释电报警器设计实验

一、实验目的

1、了解热释电传感器的工作原理及其特性

2、了解并掌握热释电传感器信号处理方法及其应用

3、了解并掌握超低频前置放大器的设计

二、实验内容

1、热释电传感器系统安装调试实验

2、热释电传感器信号处理实验

(1)超低频放大电路实验

(2)窗口比较电路实验

(3)延时开关量输出实验

(4)延时时间控制实验

3、设计性实验

三、实验仪器

1、光电创新实验仪主机箱

2、热释电报警器模块

3、连接线

4、万用表

四、实验原理

1、热释电探测器简介

热释电探探器是一种利用某些晶体材料自发极化强度随温度变化所产生的热释电效应制成的新型热探测器。当晶体受辐射照射时,由于温度的改变使自发极化强度发生变化,结果在垂直于自发极化方向的晶体两个外表面之间出现感应电荷,利用感应电荷的变化可测量光辐射的能量。因为热释电探测器输出的电信号正比于探测器温度随时间的变化率,不像其他热探测器需要有个热平衡过程,所以其响应速度比其它热探测器快得多,一般热探测器典型时间常数值在1~范围,而热释电探测器的有效时间常数低达10-4~3x10-5s。虽然目前热释电探测器在比探测率和响应速度方面还不及光子探测器,但由于它还有光谱响应范围宽,较大的频响带宽,在室温下工作无需致冷,可以有大面积均匀的光敏面,不需要偏压,使用方便等优点而得到日益广泛的应用。

2、热释电效应

某些物质(例如硫酸三甘肽、铌酸锂、铌酸锶钡等晶体)吸收光辐射后将其转换成热能,这个热能使晶体的温度升高,温度的变化又改变了晶体内晶格的间距,这就引起在居里温度以下存在的自发极化强度的变化,从而在晶体的特定方向上引起表面电荷的变化,这就是热释电效应。

在32种晶类中,有20种是压电晶类,它们都是非中心对称的,其中有10种具有自发极化特性,这些晶类称为极性晶类。对于极性晶体,即使外加电场和应力为零,晶体内正、负电荷中心并不重合,因而具有一定的电矩,也就是说晶体本身具有自发极化特性,所以单位体积的总电矩可能不等于零。这是因为参与晶格热运动的某些离子可同时偏离平衡态,这时晶体中的电场将不等于零,晶体就成了极性晶体。于是在与自发极化强度垂直的两个晶面上就会出现大小相等、符号相反的面束缚电荷,极性晶体的自发极化通常是观察不出来的,

因为在平衡条件下它被通过晶体内部和外部传至晶体表面的自由电荷所补偿。极化的大小及由此而引起的补偿电荷的多少是与温度有关的。如果强度变化的光辐射入射到晶体上,晶体温度便随之发生变化,晶体中离子间的距离和链角跟着发生相应的变化,于是自发极化强度也随之发生变化,最后导致面束缚电荷跟着变化,于是晶体表面上就出现能测量出的电荷。 3、热释电探测器工作原理

当已极化的热电晶体薄片受到辐射热时候,薄片温度升高,极化强度下降,表面电荷减少,相当于”释放”一部分电荷,故名热释电。释放的电荷通过一系列的放大,转化成输出电压。如果继续照射,晶体薄片的温度升高到C T (居里温度)值时,自发极化突然消失。不再释放电荷,输出信号为零,见图1。

S

P S

T C

T

图9-1 热释电效应

图 1

因此,热释电探测器只能探测交流的斩波式的辐射(红外光辐射要有变化量)。当面积为A 的热释电晶体受到调制加热,而使其温度T 发生微小变化时,就有热释电电流i 。

A 为面积,P 为热电体材

料热释电系数,是温度的变化率。

五、注意事项

1、不得随意摇动和插拔面板上元器件和芯片,以免损坏,造成实验仪不能正常工作。

2、实验完成后相关器件放回指定存放位置。

3、在使用过程中,出现任何异常情况,必须立即关机断电以确保安全。

4、相关信号测量可使用万用表。

六、实验步骤

1、将实验模块上的金色插孔“D ” “S ”和 “G ”对应用导线连接(热释电传感器接入电路,D 为热释电传感器供电端,S 为热释电传感器输出端,G 为热释电传感器地), “O1”为热释电传感器输出信号测试点,“O2”为超低频放大电路输出端,“VH ”“VL ”分别为窗口比较电路上下限电压测试点,“O3”为窗口比较电路输出信号测试点,“O4”为延时电路输出信号测试点。

2、数字万用表黑色表笔接地(GND ),红色表笔接热释电红外探头“O1”端,选择直流电压2V 档。打开实验箱电源,观察万用表数值变化,约2分钟左右,直至数值趋于稳定,实验仪开始正常工作。

3、用手在红外热释电探头端面晃动时,探头有微弱的电压变化信号输出(可用万用表测量)。经超低频放大电路放大后,万用表选择直流电压20V 档,通过万用表可检测到“O2”输出端输出的电压变化较大。再经电压比较器构成的开关电路和延时电路(延时时间可以通过电位器调节),使指示灯点亮。观察这个现象过程。通过调节“灵敏度调节”电位器,可以调整

dT i AP

dt dT dt

热释电红外探头的感应距离。

七、设计性实验

原理图如下图:

+5V电源通过电阻R5和电容E4后给热释电传感器供电。热释电传感器输出信号O1经过U1A、U1B组成的超低频放大电路后由U1B的7脚输出O2(超低频放大后信号),RP2用来调节灵敏度。O2输出到U1C、U1D组成的窗口比较电路,与上下限电压VH、VL进行比较,输出高低电平。当O2信号电压值在窗口比较电路上下限电压之间时,输出电平无变化,O3输出低电平,当O2信号电压值在窗口比较电路上下限电压之外时,O3输出高电平,这个电平跳变输入到有U2组成的延时电路,延时电路输出O4由低电平跳变为高电平并持续一段时间,持续时间长短可以通过调节RP2来改变。持续时间过后,O4输出低电平。O4输出驱动后面的LED驱动电路使LED发光。O4为高电平时,LED发光,反之LED不发光。

八、思考题

1、在通常情况下,热释电红外传感器都会配合菲涅尔透镜使用,请想一下菲涅尔透镜的作用是什么

2、简述热释电红外探测器的使用场合。

实验七、光电转速计设计实验

一、实验目的

1、了解光开关对射式的工作原理及其特性

2、了解并掌握使用光开关测量转速的原理及方法

二、实验内容

1、对射式光开关实验

2、对射式光开关转速测量实验

3、设计性实验

三、实验仪器

1、光电创新实验仪主机箱

2、光电转速里程测量模块

3、连接线

4、示波器

四、实验原理

1、光电耦合器件的含义和特点

光电耦合器件的含义

在工业检测、电信号的传送处理和计算机系统中,常用继电器、脉冲变压器和复杂的电路来实现输入、输出端装置与主机之间的隔离、开关、匹配和抗干扰等功能。而继电器动作慢、有触点工作不可靠;变压器体积大,频

带窄,所以它们都不是理想的部件。随着光电技术的发展,70年代以后出现了一种新的功能器件——光电耦合器件。它是将发光器件(LED)和光敏器件(光敏二、三极管等)密封装在一起形成的一个电—光—电器件,如下图所示。

把发光器件与光敏器件封装在一起构成光电耦台器件

这种器件在信息的传输过程中是用光作为媒介把输入边和输出边的电信号耦合在一起的,在它的线性工作范围内,这种耦合具有线性变化关系。由于输入边和输出边仅用光来耦合,在电性能上完全是隔离的。因此,光电耦台器件的电隔离性能、线性传输性能等许多特性,都是从“光耦合”这一基本特点中引伸出来的。故有人把光电耦合器件也称为光电隔离器或光电耦合器。这些名称的共同点都是为了突出“光耦合”这一基本特匪,这也是它区别于其它器件的根本特征。由于这种器件是一个利用光耦合做成的电信号传榆器件.所以一般称为光电耦合器件。

光电耦合器件的特点

光电实验

光电综合实验(2) 实验报告 姓名学号 学院: 专业: 类型大型综合实验 指导教师: 年月日

实验一阿贝成像原理和空间滤波实验 1.引言 阿贝所提出的显微镜成像的原理以及随后的阿—波特实验在傅里叶光学早期发展历史上具有重要的地位。这些实验简单而且漂亮,对相干光成像的机理、对频谱的分析和综合的原理做出了深刻的解释。同时,这种用简单模板做滤波的方法,直到今天,在图像处理中仍然有广泛的应用价值。 人眼对灰度图像的分辨率是不高的,最多有15~20个层次。但是人眼对色度的识别能力却很高,可以分辨数十种乃至上百种色彩。若能将图像的灰度分布转换为彩色分布,势必大大提高人们对图像的分辨能力,这种技术称为图像的假彩色编码。黑白图像的假彩色化已经在遥感、生物医学、信息处理中得到了广泛的应用。 1.1实验目的和意义 1、通过实验来重新认识夫琅禾费衍射的傅里叶变换性质,加深对空间频率、空间频谱和空间滤波等概念的理解; 2、熟悉阿贝成像原理,从信息量的角度理解透镜孔径对分辨率的影响; 3、完成一维空间滤波、二维空间滤波及高通空间滤波; 4、掌握θ调制假彩色编码的原理; 5、巩固和加深对光栅衍射基本理论的理解; 6、通过实验,利用一张二维黑白图像获得假彩色编码图像; 7、巩固光学实验中有关光路调整和仪器使用的基本技能。 2.系统概述 2.1 系统原理 1、共轴光路调节 调节激光束平行于光具座,并位于光具座正上方,把屏Q插在光具座滑块上, 并移近激光架L S ,把L S 作上下、左右移动,使光束偏离O,调节L S 的俯仰及侧转, 使光束又穿过小孔;再把Q推至L S 边上,反复调节,直到Q在光具座平移时激 光束均穿过O为圆心的孔,以后就不再需要改变L S 的位置。

光电材料与器件实验指导书

《光电材料与器件》实验指导书 何宁编 桂林电子科技大学信息与通信学院 2008年12月

实验一光电池及LED光源特性测试 一.实验目的 1 理解光电池的光电转换机理及主要特性参数。 2 理解LED光源的电光转换机理、驱动方式及主要特性参数。 3 掌握两种器件的应用及参数的测试方法。 二.实验内容 1 测量光电池的开路电压、短路电流和伏安特性。 2 测量LED光源的驱动特性及电光转换效率。 三.实验原理 光电池是由一个面积较大的PN结构成,它是一种直接将光能转换成电能的光电器件,这种器件是利用光生伏特效应,当光线照射到P-N结上时,就会在P-N结两端出现电动势(P区为正;N区为负),若负载接入PN结两端,光电池就有功率输出。光电池对不同的波长的光反映的灵敏度是不同的,按制作材料不同可分为硅光电池和硒光电池,光谱特性如图1所示。 图1 光谱特性图2 光电特性 图1中硅光电池的光谱响应范围是波长4000?——12000?,在波长为8000?时达到峰值,而硒光电池的峰值出现在5000 ?左右,波长的范围是3800——7500?,1埃=0.1nm。 图2中硅光电池的开路电压与光照是一种非线性关系,当光照强度在200勒克斯时就趋向饱和。而短路电流在很大的范围内与光照成线型关系,因此使用光电池作为测量元件使用时,应该把它当成电流源的形式来研究,因为短路电流与光强是线性的,处理起来比较方便,而不要当成电压源使用。需要说明的是这里说的短路电流与开路电压与平时意义上不同,它是指外负载电阻相对与内阻非常小时候的电流值,以及外负载很大时的端电压。实验时外负载电阻<15Ω时,就认为是短路电流,而>5.0K时,就认为是开路电压。经实验证明外负载越小线性度越好。 不同颜色的光有不同的波长,因此光电池的光照频率也不同,光电池的频率特性是指输出电流随调制光的频率变化的关系,图3分别表示硅光电池与硒光电池的频率响应曲线,可见硅光电池有较好的频率特性,而硒光电池则较差。太阳能辐射能量主要集中在1.3-32um的波长范围,表面温度近6000K的太阳能辐射出的能量95%以上的部分分布在波长小于2um的光谱范围。而对于温度为几百K的物体其辐

现代传感器检测技术实验-实验指导书doc

现代(传感器)检测技术实验 实验指导书 目录 1、THSRZ-2型传感器系统综合实验装置简介 2、实验一金属箔式应变片——电子秤实验 3、实验二交流全桥振幅测量实验 4、实验三霍尔传感器转速测量实验 5、实验四光电传感器转速测量实验 6、实验五 E型热电偶测温实验 7、实验六 E型热电偶冷端温度补偿实验 西安交通大学自动化系 2008.11

THSRZ-2型传感器系统综合实验装置简介 一、概述 “THSRZ-2 型传感器系统综合实验装置”是将传感器、检测技术及计算机控制技术有机的结合,开发成功的新一代传感器系统实验设备。 实验装置由主控台、检测源模块、传感器及调理(模块)、数据采集卡组成。 1.主控台 (1)信号发生器:1k~10kHz 音频信号,Vp-p=0~17V连续可调; (2)1~30Hz低频信号,Vp-p=0~17V连续可调,有短路保护功能; (3)四组直流稳压电源:+24V,±15V、+5V、±2~±10V分五档输出、0~5V可调,有短路保护功能; (4)恒流源:0~20mA连续可调,最大输出电压12V; (5)数字式电压表:量程0~20V,分为200mV、2V、20V三档、精度0.5级; (6)数字式毫安表:量程0~20mA,三位半数字显示、精度0.5级,有内侧外测功能; (7)频率/转速表:频率测量范围1~9999Hz,转速测量范围1~9999rpm; (8)计时器:0~9999s,精确到0.1s; (9)高精度温度调节仪:多种输入输出规格,人工智能调节以及参数自整定功能,先进控制算法,温度控制精度±0.50C。 2.检测源 加热源:0~220V交流电源加热,温度可控制在室温~1200C; 转动源:0~24V直流电源驱动,转速可调在0~3000rpm; 振动源:振动频率1Hz~30Hz(可调),共振频率12Hz左右。 3.各种传感器 包括应变传感器:金属应变传感器、差动变压器、差动电容传感器、霍尔位移传感器、扩散硅压力传感器、光纤位移传感器、电涡流传感器、压电加速度传感器、磁电传感器、PT100、AD590、K型热电偶、E型热电偶、Cu50、PN结温度传感器、NTC、PTC、气敏传感器(酒精敏感,可燃气体敏感)、湿敏传感器、光敏电阻、光敏二极管、红外传感器、磁阻传感器、光电开关传感器、霍尔开关传感器。包括扭矩传感器、光纤压力传感器、超声位移传感器、PSD位移传感器、CCD电荷耦合传感器:、圆光栅传感器、长光栅传感器、液位传感器、涡轮式流量传感器。 4.处理电路 包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、V/I、F/V转换电路、直流电机驱动等 5.数据采集 高速USB数据采集卡:含4路模拟量输入,2路模拟量输出,8路开关量输入输出,14位A/D 转换,A/D采样速率最大400kHz。 上位机软件:本软件配合USB数据采集卡使用,实时采集实验数据,对数据进行动态或静态处理和分析,双通道虚拟示波器、虚拟函数信号发生器、脚本编辑器功能。

光电技术与实验

《光电技术》课程是光电信息科学与工程类专业(包括光信息科学与技术、电子信息科学与技术、电子科学与技术、信息工程、测控技术与仪器、光电信息工程和应用物理学)的专业基础必修课。是一门以光电子学为基础,将光学技术、现代微电子技术、精密机械及计算机技术紧密结合,成为获取光信息或借助光提取其他信息的重要手段。对培养光电信息科学与工程类人才的基本工程技术能力非常重要。 它将电子学中的许多基本概念与技术移植到光频段,解决光电信息系统中的工程技术问题。这一先进技术使人类能更有效地扩展自身的视觉能力,使视觉的长波延伸到亚毫米波,短波延伸紫外、X射线、射线,乃至高能粒子,并可在飞秒级记录超快现象的变化过程。光电技术在现代科技、经济、军事、文化、医学等领域发挥着极其重要的作用,以此为支撑的光电子产业是当今世界争相发展的支柱产业,是竞争激烈、发展最快的信息技术产业的主力军。光电技术迅速发展,半导体激光器、上千万像素的CCD与CMOS固体图像传感器、PIN与APD光电二级管及液晶显示等在工业与民用领域随处可见,热成像技术也已广泛应用于军事和工业领域。光电技术不断渗透到国民经济的各个方面,成为信息社会的支撑技术之一。该课程以基本物理理论为基础,讲解光电器件的工作原理及特性,使学生掌握应用这些光电器件的方法。在光电变换与信号处理中,以光电器件的应用为主导,课堂讲解与辅助作业相结合的形式,引导学生应用光电器件来解决光电变换与信号处理问题,使学生能够把握光电技术的总体框架,有兴趣、有信心地投入到创新活动实践中,培养学生独立思考的习惯和解决实际工程问题的能力。 在教育部高等学校光电信息科学与工程类专业指导性专业规范中,《光电技术与实验》是该类专业的专业基础必修课。因此,我校光信息科学与技术、电子信息科学与技术及电子科学与技术等专业自2000年起开设了《光电技术》课程并延续至今。我院的光信息科学与技术、电子信息科学与技术两个专业都开设了光电技术课程,内容主要是光电器件和红外,但在理论深度和范围上有所区别,光信息科学与技术专业由于开设了光学、半导体光电子学等课程,有良好的基础,因为课程的理论深度更深,涉及的光电技术领域也更广。此外,对于光信科和电信科两个专业,讲授内容方面各有侧重,对光信息专业,在光电器件方面讲授的内容多一些。 为适应新世纪人才培养,2004年学校对本科教学计划进行了较大的调整,为了适应新的改革形势,保证教学质量,我院将光电信息科学类课程整合作为一个重要教研项目进行立项研究,这次调整强调了光电技术课程的重要性,在“厚基础、宽口径”的培养战略指导下,搭建起以光电技术为核心的光信息平台,作为光信息科学与技术专业的专业必修课。光电技术课程理论课学时调整到40学时,实验部分单独设课,加强到24学时,强化了综合实验的内容,强调基本技能训练和学生综合能力的培养,并使学生的创新意识和动手能力得到训练和加强。同时为适应课程的改革需要,光电技术课程组自编了《光电信息技术实验》和《光电技术》部分讲义,实验教材中突出了与信息学科相关的光电技术知识以及光电器件在信息技术中的应用知识。目前光电信息技术实验作为开放性实验面向全校供相关专业选修。 近10年来,伴随着专业建设和发展,光电技术课程已发展成为拥有一支素质良好、勇于创新的教师队伍,先进的教学体系、教学方法和教学手段的重要基础课程,光电技术课程建设和发展将为培养面向二十一世纪的新型复合型人才做出更大的贡献。

实验七 光电倍增管的特性与特性参数测试

实验七光电倍增管的特性与特性参数测试 1. 实验目的: 光电倍增管是最灵敏的光电器件。它的暗电流、噪声、灵敏度大范围可调和时间响应等特性都具有独特的特点,因此,光电倍增管是非常优秀的光电器件。掌握光电倍增管的主要特性参数,及其它的供电电路对于正确应用光电倍增管解决微弱辐射的测量技术是非常重要的。 2. 实验仪器: 1)GDS-Ⅱ型光电综合实验平台主机; 1)GDBS-Ⅰ型光电倍增管实验装置; 3. 实验内容: 1、光电倍增管阳极暗电流I D的测量; 2、光电倍增管阳极光照灵敏度S a的测量;光电倍增管的灵敏度S a与电源电压U bb 的关系; 3、测量光电倍增管的增益G; 4. 实验原理 1)光电倍增管工作原理 光电倍增管是真空光电器件,它主要由光入射窗、光电阴极面、电子聚焦系统、倍增电极和阳极等5部分构成。其工作原理如“光电技术”教材第4章所讲述,分下面5部分: (1)光子透过入射窗口玻璃入射到玻璃内层光电阴极上,窗口玻璃的透过 率满足光电倍增管的光谱响应特性; (2)进入到光电阴极上的光子使光电阴极材料产生外光电效应,激发出电 子,并飞离表面到真空中,称其为光电子; (3)光电子通过电场加速,并在电子聚焦系统的作用下射入到第一倍增极 D1上,倍增极D1将发射出比入射光电子数目增多δ倍,这些二次电子又在电场 作用下射入到下一增极; (4)入射电子经N级倍增后,电子数就被放大δN倍; (5)经过电子倍增后的二次电子由阳极收集起来,形成阳极电流,在负载上产生压降,输出电压信号U o。 2)光电倍增管的基本特性参数 光电倍增管的特性参数包括光电灵敏度、电流增益、光电特性、阳极特性、暗电流特性与时间响应等特性。 ①光电灵敏度 光电灵敏度是光电倍增管探测光信号能力的一个重要标致,光电灵敏度通常分为阴极灵

《光电子技术实验》指导书

《光电子技术实验》指导书 北京航空航天大学 仪器科学与光电工程学院 2010年12月 实验规则及注意事项 由于本实验课所用设备属于高技术实验系统,许多组件价格昂贵,易于损坏,所以实验者在做实验前应该充分复习实验大纲上的内容,实验者在做实验时应注意以下几点事项: 1.操作光纤时应注意不能用力拉扯光纤,不能随意弯曲光纤。实验时不要用手碰动与实验无关的光纤部分。 2.实验调节电流时注意不要使工作电流超过限额。电流过大有可能损坏光源和光探测器以及其它有源器件。 3.不能直视光纤、激光器出射的光束! 4.调节光学微调架时要小心、轻力,严禁强力搬拧光学微调架。 目录 实验1:光源与光纤耦合调整及光纤损耗特性测量实验 (4) 实验2:光纤温度传感系统特性实验 (8) 实验一.光源与光纤耦合调整及光纤损耗特性测量实验 一.实验目的 (1)了解提高光源与光纤耦合效率的原理及方法。重点掌握光路调整及光纤处理的基本方法。

(2) 了解光纤损耗的定义,掌握光纤衰减的测试方法。 二. 实验原理 1. 光源与光纤耦合调整实验原理 (1) 直接耦合:这种方法将光纤的端面直接靠近光源的发光面,为了保证耦合 的效率,光纤的端面必须经过特殊处理,而且光纤端面与光源发光面的距离要尽可能的近。光源的发光面不应该大于纤芯的横截面面积,这是为了避免较大的耦合损耗。通常带尾纤的光源都使用这种耦合方式。这种耦合方法对光源耦合封装工艺技术要求较高。 (2) 使用透镜耦合:具体方法描述如下——将光源发出的光通过透镜聚焦到光 纤的纤芯上,可以使光源与光纤的耦合效率提高。具体原理见图1。 五维调节架五维调节架 图1.透镜耦合 (3) 利用五维调节架对光纤入端及出端进行位置调整,使输出功率达到最大。 (4) 耦合效率的计算(适合所有的耦合方法): 2 1P P ≡η 其中P 1为输出功率,P 2为输入功率。 2. 光纤损耗特性测量实验 光纤衰减是光纤中光功率减少量的一种度量,它取决于光纤的工作波长类型和长度,并受测量条件的影响。

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

光伏工程实验室建设仪器清单

光伏工程实验室仪器清单 设备名称/支出项目设备型号规格数量光电综合实验平台 彩色面阵CCD/CMOS综合实验仪 太阳能电池实验系统 光纤特性及传输实验仪 太阳能—氢能转换综合实验仪 单晶硅太阳电池组件120W 单晶硅太阳电池组件55W 多晶硅太阳电池组件80W 多晶硅太阳电池组件25W 多晶硅太阳电池组件10W 太阳能草坪灯 太阳能草坪灯 太阳能路灯 蓄电池12V 100Ah、 蓄电池12V 200Ah 蓄电池12V 65Ah 蓄电池24V 100Ah 蓄电池24V 200Ah 蓄电池24V 65Ah 光伏控制器DC12V 10A 光伏控制器DC12V 20A 光伏控制器DC12V 30A 光伏控制器DC12V 50A 光伏控制器DC12V 80A 光伏控制器DC24V 10A 光伏控制器DC24V 20A 光伏控制器DC24V 30A 光伏控制器DC24V 50A 光伏控制器DC24V 80A 光伏控制器用PIC开发系统 便携式光伏方阵测试仪 真空吸盘 冰箱 氙灯光源 卤钨灯光源 硅光电探测器 恒温电焊台942 恒温电焊台936A PSP太阳总辐射表 太阳能便携式电源 阳光辐照计

数字存储示波器 手持式数字万用示波表 LED灯(带灯套)DC 12V 18W LED灯(带灯套)DC 12V 35W 节能灯泡AC 220V 8W 节能灯泡DC 12V 11W 低压钠灯(带灯套)DC 24V 18W 低压钠灯(带灯套)DC 24V 30W 粉末压片机 温控仪 台式离心机 实验室球磨机 光谱辐射分析仪 电脑 电脑 太阳模拟器 风力储能电池12V 22Ah 风光互补控制器fg24-1000 风光互补控制器fg24-600 控制逆变器SK12-240 半导体传感器实验仪 振动样品磁强计 多晶X射线衍射仪 风力发电机 光伏逆变器DSP开发套件 光伏逆变器DSP开发套件 光伏逆变器DSP仿真器 并网逆变电源BNSG1KD 并网逆变电源BNSG1K5D 并网逆变电源SG3K 正弦波逆变器SK2000 -212 正弦波逆变器SK2000-224 直流稳压稳流电源WYK-6010B2-H 锁相放大器 光谱仪 斩波器 太阳电池单片测试仪 精密金相研磨抛光机 电热恒温干燥箱202-2(A)箱式电阻炉 色度实验装置 太阳电池组件测试仪 氢气发生器普用

传感器与检测实验指导书2013.

传感器与检测技术实验指导书电气工程学院自动化专业 专业名称 班级 学生姓名 学号 实验成绩 辽宁工业大学 2013年9月

目录 实验一电阻应变式传感器特性实验 (1) 实验二电容传感器特性实验 (5) 实验三电涡流式传感器特性实验 (8) 实验四压电式传感器特性实验 (12) 实验五光电式传感器特性实验 (15) 实验六热电式传感器特性实验 (20) 附录一CSY2000系列传感器实验台说明书 (26) 附录二CSY-V8.1软件操作说明书 (27)

实验一电阻应变式传感器特性实验 一、实验目的 1.熟悉电阻应变式传感器的结构。 2.了解单臂、半桥和全桥测量电路工作原理和性能。 3.比较单臂与半桥、全桥的不同性能,了解各自特点及全桥测量电路的优点。二、基本原理 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K 为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态,对单臂电桥输出电压U O1= EKε/4。 2.对半桥测量电路而言,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 3.全桥测量电路中,将受力性质相同的两应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U O3=EKε。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。 三、实验仪器及材料 1.应变式传感器实验模板(应变式传感器-电子秤)、砝码盘、砝码;

最新光电显示技术实验讲义

光电显示技术实验讲 义

实验一有机发光器件(OLED)参数测量 一、实验目的: 1.了解有机发光显示器件的工作原理及相关特性; 2.掌握OLED性能参数的测量方法; 二、实验原理简介: 1979年,柯达公司华裔科学家邓青云(Dr. C. W. Tang)博士发现黑暗中的有机蓄电池在发光,对有机发光器件的研究由此开始,邓博士被誉为OLED之父。 OLED (Organic Light Emitting Display,中文名有机发光显示器)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。OLED用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。

图1:OLED结构示意图 与LCD相比,OLED具有主动发光,无视角问题,重量轻,厚度小,高亮度,高发光效率,发光材料丰富,易实现彩色显示,响应速度快,动态画面质量高,使用温度范围广,可实现柔软显示,工艺简单,成本低,抗震能力强等一系列的优点。 如果一个有机层用两个不同的有机层来代替,就可以取得更好的效果:当正极的边界层供应载流子时,负极一侧非常适合输送电子,载流子在两个有机层中间通过时,会受到阻隔,直至会出现反方向运动的载流子,这样,效率就明显提高了。很薄的边界层重新结合后,产生细小的亮点,就能发光。如果有三个有机层,分别用于输送电子、输送载流子和发光,效率就会更高。 为提高电子的注入效率,OLED阴极材料的功函数需尽可能的低,功函数越低,发光亮度越高,使用寿命越长。可以使用Ag 、Al 、Li 、Mg 、Ca 、In等单层金属阴极,也可以将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一起蒸发形成合金阴极。如Mg: Ag(10: 1),Li:Al (0.6%Li),功函数分别

光电技术实验

光电技术实验实验报告

目录 一、光源与光辐射度参数的测量(必做) (3) 二、PWM调光控实验 (5) 三、LED色温控制实验 (8) 四、光敏电阻伏安特性实验 (11) 五、线阵CCD驱动电路及特性测试(必做) (13) 六、相关器的研究及其主要参数的测量(必做) (15) 七、多点信号平均器(必做) (19) 八、考试内容 (23)

实验一 光源与光度辐射度参数的测量 一、实验目的 1.熟悉进行光电实验过程中所用数字仪表使用方法 2.了解LED 发光二极管 3.研究影响LED 光照度的参数 二、实验仪器 光电综合实验平台主机系统 1 台、发白光的 LED 平行光源(远心照明光源)及其夹持装置各 1 个 三、实验原理 (1)LED 发光原理:LED 发光二极管为 PN 结在正向偏置下发光的特性。有些材料构成的 PN 结在正向电场的作用下,电子与空穴在扩散过程中要产生复合。复合过程中电子从高能级的“导带”跌落至低能级的“价带”, 电子在跌落过程中若以辐射的形式释放出多余的能量,则将产生发光或发辐射的现象。并且,可以通过控制电流来控制(或调整)发光二极管的亮度,即可以通过改变发光管的电流改变投射到探测器表面上的照度,这就是 LED 光源具有的易调整性。 (2)光度参数与辐射度参数:光源发出的光或物体反射光的能量计算通常是用“通量”、“强度”、“出射度”和“亮度”等参数,而对于探测器而言,常用“照度”参数。辐照度或光照度均为单位探测器表面所接收的辐射通量或光通量。即 )/(2m W S e Ee φ= 或 )(lx S v Ev φ= 式中S 为探测器面积。 (3)点光源照度与发光强度的关系:各向同性的点光源发出的光所产生的照度与发光强度 I v 成正比,与方向角的余弦(COS φ)成正比,与距离光源的距离平方(l^2)成反比,即 )(cos 2 lx l Iv Ev φ = 四、实验内容 (1)安装LED 发光装置与照度探测器装置,并在电路中接入电流表、限流电阻和可调电阻测量发光LED 的电流。 (2)测量发光管未点亮时的暗背景照度。 (3)测量同一距离、同一LED 的照度值随电流变化的情况。记录实验数据。 (4)调节LED 与照度探测器间的距离,重复步骤(3)。记录实验数据。 (5)更换不同的LED ,重复步骤(3)和(4)。 (6)测量遮罩时红光LED 的照度值和与探测器间距的关系,实验步骤类似,注意保持LED 电流不变。记录实验数据。 (7)关机结束实验。 五、数据处理 (1)测量不同距离、不同LED 光照度参数的测量 背景光强:Evb=7.35×10 Lx

光电报警实验指导书

目录 第一章光电报警红外遥控实验仪说明............................................... - 2 - 一、内容简介 (2) 二、实验仪说明 (3) 第二章实验指南 ................................................................................ - 5 - 一、实验目的 (5) 二、实验内容 (5) 三、实验仪器 (5) 四、实验原理 (6) 1、光电报警系统设计原理 (6) 2、单路红外遥控电路设计原理 (10) 五、注意事项 (12) 六、实验步骤 (12) 1、红外发光二极管驱动电流测试实验 (12) 2、锁相环原理及应用测试实验 (13) 3、利用锁相环设计光电报警实验 (13) 4、信号检波设计光电报警系统实验 (15) 5、单路红外遥控设计实验 (17) 6、自拟红外报警系统实验 (18) 7、自拟红外遥控系统实验 (19) 七、思考题 (20)

第一章光电报警红外遥控实验仪说明 一、内容简介 GCGDBJ-B型光电报警及红外遥控实验仪是光电检测器件应用实验仪,是一种半自拟实验,利用一些光电器件及外围电路设计成实现某种实际应用的功能的产品模型,如光电报警、红外遥控等等。光学器件采用金属封装,并配备有光学导轨,设计调节记录方便。电路部分模块化功能设计,有电源模块、光调制模块、光电弱信号放大模块、判决模块、锁相环模块、报警保持模块、报警电路、电子器件设计区等几部分组成,各功能模块的输入输出留有连接插座,实现的功能独立,选用不同的模块以实现不同的功能。另外,还配备有大量的电源输出、电阻、电容、二极管、粗调电位器、细调电位器、运算放大器,作为学生自已设计以及扩展使用,提高学生动手动脑能力。 光电报警系统是采用砷化镓发光管组成的发射系统,在发射和接收系统之间有红外光束警戒线。当警戒线被阻断时,接收系统发出报警信号。要求系统在给定器件的条件下作用距离尽可能远。 红外遥控与电视的遥控器原理一样,通过发射编码,接收解码的方式识别所发射的数据,再对所解码的数据进行处理。

光电信息技术实验

光电信息实验(二)学生姓名:代中雄 专业班级:光电1001 学生学号:U201013351 指导老师:黄鹰&陈晶田

实验一阿贝原则实验 一、实验目的 1.熟悉阿贝原则在光学测长仪中的应用。 二、基本原理 1.阿贝比较原则 万能工具显微镜结构及实物图所示。 万能工具显微镜的标准件轴线与被测件轴线不在一条直线上,而处于平行状况。产生的阿贝误差如下: 1=tan a δ? g 35 =(13215) a??? +++??? g a? ≈g 一阶误差,即阿贝误差 2.结论 1)只有当导轨存在不直度误差,且标准件与被测件轴线不重合才产生阿贝误差(一阶误差)。 2)阿贝误差按垂直面、水平面分别计算。 3)在违反阿贝原则时,测量长度为τ的工件所引起的阿贝误差是总阿贝误差的L τ。 4)为了避免产生阿贝误差,在测量长度时,标准件轴线应安置在被测件轴线的延长线上(阿贝原则)。

5)满足阿贝原则的系统,结构庞大。 3.阿贝测长仪 阿贝测长仪中,标准件轴线与被测件轴线为串联形式,无阿贝误差,为二阶误差,计算形式如下: 22=C ?δ 三、 实验内容 1. 万能工具显微镜进行测长实验 1)仪器:万能工具显微镜,精度:1微米。 用1元、5角、1角的硬币,分别测它们的直径,用数字式计量光栅读数及传统的目视法读数法。每个对象测8次,求算数平均值和均方根值。 2)实验步骤: 瞄准被测物体一端,在读数装置上读一数;瞄准被测物体另一端,在读数装置上再度一数(精度1微米);两次读数之差即为物体长度。 3)实验结果: 数据处理: 由8次测量结果可以算出硬币的平均直径,算数平均值: ()1 11.45311.45111.45611.45811.46411.43811.44511.4508 11.452D mm =?+++++++=

光纤光缆性能测试技术实验指导书

光纤光缆性能测试技术实验指导书 姚燕李春生 北京邮电大学机电工程实验教学中心 2006.5

实验一 数字发送单元指标测试实验 一、实验目的 1、了解数字光发端机输出光功率的指标要求 2、掌握数字光发端机输出光功率的测试方法 3、了解数字光发端机的消光比的指标要求 4、掌握数字光发端机的消光比的测试方法 二、实验内容 1、测试数字光发端机的输出光功率 2、测试数字光发端机的消光比 3、比较驱动电流的不同对输出光功率和消光比的影响 三、预备知识 1、输出光功率和消光比的概念 四、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、FC接口光功率计 1台 3、FC/PC-FC/PC单模光跳线 1根 4、万用表 1台 5、850nm光发端机(可选) 1个 6、ST/PC-FC/PC多模光跳线(可选) 1根 7、连接导线 20根 五、实验原理 光发送机是数字光纤通信系统中的三大组成部分(光发送机、光纤光缆、光接受机)之一。其功能是将电脉冲信号变换成光脉冲信号,并以数字光纤通信系统传输性能所要求的光脉冲信号波形从光源器件组件的尾纤发射出去。 光发送机的指标有如下几点: 1、输出光功率:输出光功率必须保持恒定,要求在环境温度变化或LD器件老化的过程中,其输出光功率保持不变,或者其变化幅度在数字光纤通信工程设计指标要求的范围内,以保证其数字光纤通信系统能长期正常稳定运行。 输出光功率是指给光发端机的数字驱动电路送入一伪随机二进制序列作为测试信号,用光功率计直接测试光发端机的光功率,此数值即为数字发送单元的输出光功率。 输出光功率测试连接如图1-1所示。 图1-1 输出光功率测试连接示意图 根据CCITT标准,信号源输出信号为表1-1所规定的要求。 表1-1 信号源输出信号要求 数字率(kbit/s) 伪随机测试信号 2048 215-1

光电技术实验指南

光电技术 实验指南 上实验课前务必仔细阅读本实验讲义

目录 前言……………………………………………………………………………………………错误!未定义书签。 目录 (3) 第一章产品说明书 (4) 第二章实验指南 (6) 实验一光电基础知识实验 (5) 实验二光敏电阻实验 (11) 实验三光敏二极管的特性实验 (15) 实验四光敏三极管特性实验 (19) 实验五光开关实验(透射式) (23) 实验六红外线光电开关 (25) 实验七光电池实验 (258) 实验八热释电红外传感器实验 (30) 实验九光源及光调制解调实验 (33) 实验十 PSD位置传感器实验 (36)

第一章CSY2000G光电传感器实验仪说明 CSY2000G光电传感器实验仪主要有主机箱、传感器装置、实验模板、实验桌四大部分组成 (一)主机箱:供电电源AC220V,50HZ。额定功率200W。 1、有实验所需的电源、压力源 0-12V连续可调直流稳压电源。 0-5V连续可调直流稳压电源。 ±15V、+12V、+5V稳压电源。 2、显示压力源:气压量程4-20KPa(通过调节玻璃转子流量计、旋钮、气压输出大小可调) 电流表:DC20μA-20mA(量程三档切换) 电压表:DC200mV-20V(量程三档切换) 光功率计:1999mW 光照度计:1999Lx 频率/转速表:f:0-9999Hz、n:0-9999 r/min 计时器(秒表):9999S 气压表:4-40 KPa 3、温控仪: PID位式调节仪:0-2000C (二)传感器装置 光学传感器由底座,升降支架、遮光筒、滑轨等组成,可卸式活动安装各种光电器件探头,光源等。 1、光敏器件及传感器 光敏电阻 光敏二极管 光敏三极管 红外光敏二极管(光接受)

实验一 电力系统综合实验平台认识与基本要求

实验一电力系统综合实验平台认识与基本要求 内容一:电力系统综合实验平台认识 一、THLZD-2型电力系统综合自动化实验台 实验台包括以下单元: 1.输电线路单元:采用双回路输电线路,每回输电线路分两段,并设置有中间开关站,可以构成四种不同的联络阻抗。输电线路的具体结构如下图所示: 图1-3 单机-无穷大系统电力网络结构图 输电线路分“可控线路”和“不可控线路”,在线路XL4上可设置故障,该线路为“可控线路”,其他线路不能设置故障,为“不可控线路”。 ⑴“不可控线路”的操作 操作“不可控线路”上的断路器的“合闸”或“分闸”按钮,可投入或切除线路。按下“合闸”按钮,红色按钮指示灯亮,表示线路接通;按下“分闸”按钮,绿色按钮指示灯亮,表示线路断开。 ⑵“可控线路”的操作 在“可控线路”上预设有短路点,并在该线路上装有“微机线路保护装置”,可实现过流保护,并具备自动重合闸,通过控制QF4和QF6来实现。QF4和QF6上的两组指示灯亮或灭分别代表QF4和QF6的A相、B相和C相的三个单相开关的合或分状态。 为了实现非全相运行和分相切除故障,QF4和QF6的分、合控制与“不可控线路”上断路器操作不同,区别如下: 正常工作时,按下QF4合闸按钮,三个单相指示灯亮,而QF4红色合闸按钮灯不亮,手动分闸或微机线路保护装置动作三相全跳时,绿色分闸指示灯亮,三个单相指示灯全灭;当保护装置跳开故障相时,故障相的指示灯灭。 ⑶中间开关站的操作 中间开关站是为了提高暂态稳定性而设计的。不设中间开关站时,如果双回路中有一回路发 生严重故障,则整条线路将被切除,线路的总阻抗将增大一倍,这对暂态稳定是很不利的。 设置了中间开关站,即通过开关QF5的投入,在距离发电机侧线路全长的1/3处,将双回路并联起来,XL4上发生短路,保护将QF4和QF6切除,线路总阻抗也只增大2/3,与无中间开关站相比,这将提高暂态稳定性。中间开关站线路的操作同“不可控线路”。 ⑷短路故障的设置 实验台面板右下方有短路类型设置模块,由短路类型设置按钮,设置短路持续时间用的

互换性与测量技术实验指导书(2016-2017-1-32)课件

《互换性与技术测量实验》实验指导书 (2016-2017-1) 互换性与技术测量教研组编 机械工程学院 2016年08月 班级: 学号: 姓名:

目录 实验一长度测量 (3) 实验二表面粗糙度测量 (9) 实验三齿轮齿圈径向跳动的测量 (13)

实验一长度测量 一、实验目的 1.了解和掌握杠杆千分尺、和立式数显光学计的测量原理、主要结构及使用方法。 2.应用上述仪器检验光滑极限量规。 3.巩固尺寸公差的概念,学会由测得数据判断零件合格性的方法。 二、仪器结构及工作原理 1.杠杆千分尺 杠杆千分尺相当于外径千分尺与杠杆式卡规组合而成,其外形如图1-1(a)所示。它的工作原理与杠杆式卡规及千分尺相同。可以用作相对测量,也可以作绝对测量。杠杆式卡规的工作原理如图1-1(b)所示。 (a)(b) 图1-1杠杆式卡规的工作原理图 当测量杆1移动时,使杠杆2转动,在杠杆的另一端装有扇形齿轮,可使小齿轮3和装牢在小齿轮轴的指针4转动,在刻度盘5上便可读出示值。为了消除传动中的空程,装有游丝6。测量力由弹簧8产生。为了防止测量面磨损和测量方便,装有退让器9。 杠杆千分尺刻度值有0.001毫米和0.002毫米两种(现在使用的是前者),表盘的示值范围±0.02毫米,测量力是500-800克,测力变化不大于100克。 2.立式数显光学计 立式光学计又称光学比较仪,集光电、机电于一体,是我国最先进的数显式光学仪器。直接测量可以达到10毫米。测量结果可以根据需要选择工、英制在显示屏上显示,也可以在任意位置置零。当被测工件大于10毫米时,在测量前用量块(或标准件)对准零位,被测尺寸与量块尺寸的差值在屏幕上读得。 立式数显光学计对五等量块和一级精度的量块,球形和圆柱形工件得直径和不圆度,线型、板型、金属及非金属薄膜的厚度和平行度进行高精度测量。 仪器基本度量指标:

光电技术综合实验

光电技术综合实验——光电相位探测传感器设计 班级:光通信082 姓名: 学号: 指导老师:张翔

光电相位探测传感器的重要意义: 基于光电探测技术检测输出波前相位特性,对改善光束的质量有着重要的意义。光波在大气中传输会受到大气湍流、温度等因素的影响,使激光辐射在传播过程中随机地改变其光波参量,使光束质量受到严重影响,出现所谓光束截面内的强度闪烁、光束的弯曲和漂移(亦称方向抖动)、光束弥散畸变以及空间相干性退化等现象。为了改善光束的质量,主动光学诞生了,在观测过程中内置的光学修正部件对像质进行自动调整,即自适应光学。目前探测波前扭曲程度的传感器主要有两类:沙克-哈特曼(Shack-Hartmann)波前传感器,它通过由每一个附属的图像探测器产生的参考星星像来探测实际波前的扭曲情况。另一个是曲率探测系统,它的改正是通过双压电晶片自适应透镜来完成的,透镜由两个压电平面组成。 大气湍流将使在大气中传输的光波的光束质量明显变坏,产生波前相位畸变;自适应光学系统可以对畸变的光波相位波前进行实时探测、波前复原和预先进行实时的波前校正,从而显著改善到达靶面的光束质量。光波相位的探测,进而控制光波的相位来提高光束的质量。 一、设计目的与要求 1、设计目的 利用所学知识设计光电相位探测传感器,着重研究其前端激光器及光电探测模块。 2、设计内容 ①光电相位探测器器的基本结构及原理示意图 ②光电相位探测传感器的构成 ③掌握激光器的的组成,和各组件的作用,特别是前端激光器和光电探测模块 ④阐述高斯匹配问题 ⑤定性绘出采用圆形镜稳定腔He-Ne激光器输出光强分布特性,并对模式特性进行细致阐述 ⑥叙述扩束系统的结构形式 ⑦微透镜器件基本原理和参数选取 ⑧光电探测器件的分类 二、光电相位探测器的基本结构及原理示意图 1、基本结构 (1)光学匹配系统:将入射光束的口径缩小(放大)到与微透镜阵列相匹配尺寸。 (2)微透镜阵列:将入射光瞳分割,对分割后的入射波波前成像。 (3)光电探测器:接收光电信号,目前多用CCD探测器。 (4)图像采集卡:微透镜阵列与光电探测器之间加入匹配透镜。 (5)数据处理计算机:通过数据处理,进一步得到波前相位分布。 (6)光波相位模式复原软件等。

光电传感器实验平台软件设计

光电传感器实验平台软件设计 摘要:此光电传感器实验平台软件设计包括光电转换、测量计算、输入输出三部分,光源信号作用于各光电传感器,由模数 转换ADC0809采集光敏电阻、光敏二极管、光敏三极管、光电池的输出信号,透射式光电开关、热释电红外器件的输出信号 为开关量,不需要经过模数转换ADC0809,把采集到的数据经单片机测量编程测量计算,将传感器主要特征参数实时显示出 来。我们用按键选择要进行的实验项目。测量计算的核心器件为单片机,单片机系统实时测算并显示出传感器元件的主要参 数。 关键字:传感器;转换模块;单片机 第1章引言 我国理工科院校现有的大学实验教学仪器都属于单一模式的仪器,即光学工程类、模电类、数电类、 传感器类等单一功能的实验教学方法和仪器。这些实验教学仪器虽然能够进行本学科的单科教学实验,但 不能进行多学科综合性的实验教学,更无法培养学生的综合实验技能。 此光电传感器实验平台由光源、光电转换、测量计算、输入输出部分组成。可以完成光电传感器的原理性实验,同时可进行应用性实验;整体结构紧凑,功能完整,实验平台即构成完整的光电传感器系统。 所有器件均在同一侧,有利于对具体的光电元件和转换电路的感性认识,深刻理解具体电路的参数与组成。通过更换光源器件可以进行光谱特性的初步测量。单片机系统对光电传感器信号进行处理是传感器系统的重要应用方向。 第2章方案设计

本设计由光源、光电转换、测量计算、输入输出部分组成。可以完成光电传感器的原理性实验,同时可进行应用性实验,以实验平台构成完整的光电传感器系统。 安装不同的光源,通过调节电路改变光强,经过光电转换部分得到合适的处理信号,用ADC0809来采集。 测量计算部分包括AD转换和单片机,采用ADC0809作为模数转换控制器,单片机采用51单片机,且支持在线调试,学生可以充分理解软件框架与控制流程;可以对实验软件做自主性的修改。进行模数转换的器件都有一定的电压输入范围,当传感器信号经调理过程进入模数转换器时电压量也应保持在两成范围内。接入模数转换控制器的信号有两路,第一路信号为光源电路中的电压信号,第二路信号为光电传感器输出经信号调理电路调整后的电压信号。51单片机将第二路信号经电路模型和算法处理,得出光电传感器元件的主要参数送驶入输出部分。 输入输出部分包括LCD显示器,小键盘和执行部件。显示器件为字符型液晶显示器,显示光源信号值和光电传感器主要参数;小键盘包括0~9的数字键和“确定”、“返回”,共12个按键,实现实验项目的选择;电子音响和LED作为执行部件,在光电传感器应用系统中根据传感器的信号做出不同执行动作。 可以进行各种光电传感器的原理与应用实验,基本光电传感器包括:光敏电阻、光敏二极管、光敏三极管、光电池、透射式光电开关、热释电红外器件。 2.1光电传感器实验平台模块分布 图2 2.2光电传感器实验平台的硬件结构[1] (1)光源通过调节电路改变光强,不同的实验给出不同的光强。 (2)在实验平台上用遮光板盖住光源和光敏电阻,入射光强,电阻减小,入射光弱,电阻增大。 (3)在实验平台上用遮光板盖住光源和光敏二极管,当有光照的时候,光敏二极管的暗电流增大,无光照的时候,其暗电流很小。 (4)在实验平台上用遮光板盖住光源和光敏三极管,其测试电路就有暗电流,取走遮光板时即有光电流。(5)在实验平台上当有光入射到光电池表面时,电路中产生光电流。 (6)在实验平台上安装好光源和接收器,用遮光板盖住光源和接收器,测试透射式光电开关接收器的信号量。 (7)在实验平台上安装好光源和接收器,用遮光板盖住或移开光源和接收器,观察热释电红外传感器信号的变化。将以上试验测得数据,通过ADC0809的采集,送到单片机通过相应的公式计算得出要测得参数,并显示出来。

相关主题
文本预览
相关文档 最新文档