当前位置:文档之家› 矩阵理论试题

矩阵理论试题

矩阵理论试题
矩阵理论试题

矩阵理论2007年考试

一、判断题(40分)(对者打∨,错者打?)

1、设,n n A B C ?∈的奇异值分别为120n σσσ≥≥≥> ,'''120n σσσ≥≥≥> ,

如果'(1,2,,)i i i n σσ>= ,则22||||||||A B ++>. ( )

2、设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( )

3、设n n C

A ?∈可逆,n n C

B ?∈,若对算子范数有1||||||||1A B -?<,则B A +可逆.

( ∨ ) 4、设323121000a a A a a a a -?? ?=- ? ?-??

为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵. ( )

5、设A 为m n ?矩阵,P 为m 阶酉矩阵, 则P A 与A 有相同的奇异值. ( )

6、设n n A C ?∈,且A 的所有列和都相等,则()r A A ∞=. ( )

7、如果12(,,,) T n n x x x x C =∈,则1||||min i i n x x ≤≤=是向量范数. ( )

8、0010140110620

118A ??????=??????

至少有2个实特征值. ( ) 9、设,n n A C ?∈则矩阵范数m A ∞与向量的1-范数相容. ( )

10、设n n A C ?∈是不可逆矩阵,则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩阵. ( )

二、计算与证明(60分)

1. (10分)设矩阵n n A C

?∈可逆, 矩阵范数||||?是n

C 上的向量范数||||v ?诱导出的算子范数, 令()L x Ax =, 证明: ||||1

1||||1max ||()||||||||||min ||()||v v v x v

y L x A A L y =-==?. 证明: 根据算子范数的定义, 有||||1max ||()||||||x L x A ==,

1

1100||||1||||10||||||||111||||max max ||||||||||||min ||||min ||()||min ||||y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠=====,

结论成立.

2.(10分) 已知矩阵110130110,112114A b ???? ? ?== ? ? ? ?????

,

(1) 求矩阵A 的最大秩分解;

(2) 求A +

;

(3) 用广义逆矩阵方法判断方程组Ax b =是否有解?

(4) 求方程组Ax b =的最小范数解或最佳逼近解?(要求指出所求的是哪种解) 解: (1)10110101011011A BD ???? ?== ? ??? ???

, (2)12111()1213T T B B B B +--??== ?-??, 121121()13521T T D D DD +--?? ? ?== ?- ? ?-??, 541033157215541A D B +++-?? ? ?== ?- ? ?-??

, (3) 314AA b b +?? ?== ? ???

, 方程组Ax b =有解;

(4) 最小范数解:()01101T

x A b +==. 3. (10分) 设矩阵n n A C

?∈为单纯矩阵, 证明: A 的特征值都是实数的充分必要条件是存在正定矩阵n n H C ?∈, 使得HA 为Hermite 矩阵.

证明: (充分性) (0)Ax x x λ=≠, ,(0,)H H H H x HAx x Hx R x Hx x HAx R λ=∈>∈,

R λ∈.

(必要性) A 为单纯矩阵, 所以11, (,,), n i A P DP D diag R λλλ-==∈,

令H H P P =, 则1H H HA P PP DP P DP -==为Hermite 矩阵.

4. (10分) 设矩阵n n A C ?∈为行严格对角占优矩阵, 用Gerschgorin 圆盘定理证明:

(1) 矩阵A 为可逆矩阵;

(2) 如果矩阵A 的所有主对角元均为负数, 证明A 的所有特征值都有负实部.

5. (10分)

(1) 设矩阵()m n A C m n ?∈<, 且H m AA I =, 其中m I 为单位矩阵, 证明H

A A 酉相似于对角矩阵, 并求此对角矩阵.

证明: 由于矩阵H A A 和H m AA I =的非零特征值相同, 所以矩阵H A A 的特征值为1(m 个)和 0(n m -个), 同时由于矩阵H A A 为Hermite 矩阵, 所以矩阵H A A 酉相似于对角矩阵000m

n n

I D ???= ??? (2) 设矩阵m n n A C ?∈, 证明: 2||||1AA +=.

证明: 令2B AA B B +=?=. 设B 的特征值为λ, 则2λλ=, 即0,1λ=.设

,00n x C x Ax ∈≠?≠, 所以有()1()B Ax AA Ax Ax +==?, 即1是矩阵B 的特征值, 故()1r B =, 1/22||||[()]()1H B r B B r B ?===.

6. (10分) (1) 设矩阵()ij n n A a ?=, 则

,||||max ||a ij i j

A n a =? 是矩阵范数.

(2) 设,,,n x y p q C ∈, 矩阵H H A xp yq ,x y,p q =+⊥⊥其中,求2||||m A .

上海交通大学2010-2011学年《矩阵理论》试卷本试卷共四道大题,总分

上海交通大学2010-2011学年《矩阵理论》试卷 本试卷共四道大题,总分100分,其中*A 表示矩阵A 的共轭转置. 一、 单项选择题(每题3分,共15分) 1. 设???? ? ??=001001001A ,则=-199200A A ( ) (A )E ; (B )0; (C )A ; (D )2A . 2. 下列集合对所给运算构成实数域上线性空间的是( ) (A ) 次数等于)1(≥m m 的实系数多项式的集合,对于多项式的通常加法和数与 多项式的通常乘法; (B ) Hermite 矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法; (C ) 平面上全体向量的集合,对于通常的加法和如下定义的数乘运算 0x x k =?,k 是实数,0x 是某一取定向量; (D ) 投影矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法. 3. 线性变换为正交变换的必要而非充分条件的是( ) (A )保持向量的长度不变; (B )将标准正交基变为标准正交基; (C )保持任意两个向量的夹角不变;(D )在任意标准正交基下的矩阵为正交矩阵. 4. 设A 是幂等矩阵,则下列命题中不正确的是( ) (A )A 与对角矩阵相似; (B )A 的特征值只可能是1或者0; (C )A A )1sin()sin(=; (D )幂级数10)(-∞ =-=∑A E A k k . 5. 设21,V V 是V 的两个线性子空间,则与命题“21V V +的任意元素的分解式唯一”不等价的命题是( ) (A ){}021=?V V ; (B )2121dim dim )dim (V V V V +=+; (C )21V V +的零元素的分解式唯一; (D )V V V =?][21. 二、填空题(每空3分,共15分) 设二维线性空间V 的线性变换V V T :1与V V T :2在基21,αα下的矩阵分别为

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

矩阵理论(16-17)试卷

2016——2017学年第一学期 《矩阵理论》考试试卷 试卷审核人: 考试时间: 2016.12.4 注意事项:1.本试卷适用于16级研究生学生考试使用。 2.本试卷共8页,满分100分。答题时间150分钟。 学院: 姓名:_________________学号: 一.(本题满分12分) 设3[]P x 是次数不超过3的实系数多项式空间, { } 2301233()(1)0; ()[]W f x f a x a x a x f x a P x ==+++∈=, 1. 证明W 按照多项式的加法与数乘运算构成3[]P x 的线性子空间; 2. 求W 的维数及其一组基.

二. (本题满8分)求矩阵 524 212 425 A ?? ?? ?? ?? ?? - =- -- 的LU分解和LDU分 解.

三.(本题满分12分) 设T 为线性空间22R ?的一个线性变换 , 对任意的22 a b R c d ???∈????, 232a b a b b T c d c d d ??+???? = ?????+???? ? ? ; 1. 求T 在22 R ?的标准基 1112211 00 10 0,,, 000 01 0E E E ?? ?? ?? ===? ??????????? 220 00 1E ?? =? ??? 下的矩阵; 2. 求T 在22R ?的另一基 12 3 1 1010 0,,, 111 11 1G G G ???? ?? ===? ????????? ?? 4000 1G ?? =? ??? 下的矩阵.

四.(本题满分8分)设A()λ为6阶λ矩阵,其秩为4,初等因子为 3212111,,,,,,,()λλλλλλλλ--+++,试求A() λ的不变因子与Smith 标准型.

矩阵理论2017-2018学年期末考试试题

矩阵理论2017-2018学年期末考试试题 ?、选择题 (每题5分,共25分) 1.下列命题错误的是(A)(B)若,且,则(C)设且,令,则的谱半径为1 (D)设为空间的任意?空间,则2.下列命题错误的是(A)若,则(B)若,则(C)若,则(D)设的奇异值分别为,,如果,则3.下列说法正确的是(A)若,则(B)若为收敛矩阵,则?定可逆 (C)矩阵函数对任何矩阵均有定义,?论A 为实矩阵还是复矩阵 (D)对任意?阵,均有4.下列选项中正确的是(A)且,则为收敛矩阵; (B)为正规矩阵,则(C),则(D)为的所有正奇异值,5.下列结论错误的是(A)若和分别是列满秩和?满秩矩阵,则(B)若矩阵为?满秩矩阵,则是正定矩阵(C)设为严格对?占优矩阵,,则的谱半径(D)任何可相似对?化的矩阵,皆可分解为幂等矩阵的加权和,即?、判断题(15分)(正确的打√,错误的打×) 1.若,且,,则 2.若且,则为到的值域上的正交投影 3.设都是可逆矩阵,且齐次线性?程组有?零解,为算?范数,则 4.,定义,则是上的范数 5.设矩阵的最?秩分解为,则当且仅当 ( ) (A ?B =?)H A H B H A ∈C n ×n =A A 2rank (A )=tr (A )μ∈C n μ=1μH H =E ?2μμH H ,V 1V 2V dim (+)=dim ()+dim () V 1V 2V 1V 2( ) =A ,=A A H A 2=A A +A =A A H A H (=(A m )+A +)m x ∈C n ∥x ≤∥x ≤∥x ∥∞∥2∥1 A , B ∈ C n ×n ≥≥?≥>0σ1σ2σn ≥≥?≥>0σ′1σ′2σ′ n >(i =1,2,?,n )σi σ′i ∥>∥A +∥2B +∥2 ( )A =????π000π001π????sinA =????0000000sin 10?? ??A E ?A e A A A ,B =e A e B e A +B ( )A ∈C n ×n ∥A <1∥m A A ∈C n ×n r (A )=∥A ∥2A ∈(r >0)C m ×n r ∥A =A +∥F r √≥≥?≥σ1σ2σr A ∥=A +∥21σ1 ( ) A B (AB =)+ B +A + A A A H Hermite A =()∈(n >1)a ij C n ×n D =diag (,,?,)a 11a 22a nn E ?A D ?1r (E ?A )≥1 D ?1(i =1,2,?,n )A i A =∑n i =1λi A i A ∈C m ×n A ≠0(A =A A ?)H A ?∥A =n A ?∥2 ( ) A ∈,G ∈C m ×n C n ×m AGA =A y =AGx ,?x ∈C m C m A ( ) A , B ∈ C n ×n (A +B )x =0∥?∥∥A ∥≥1B ?1 ( )?(x ,y )∈R 2f (x ,y )=2+3?4xy x 2y 2 ̄  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄√f (x ,y )R 2 ( )A A =BD Ax =0Dx =0 ( )

研究生2008矩阵理论试卷

矩阵理论试卷(A )(2008级) (共1页) 成绩 学院班级__ _; 姓名___ __; 学号_ __ __ 1 (15分)给定 2222{()|}ij ij R A a a R ??==∈(数域R 上二阶实方阵按通常矩阵的加法与数乘构成的线性空间)的子集 221122i j {()|0, } i j V A a a a a R ?==+=∈ (1)证明V 是22R ?的子空间;(2)求V 的维数和一组基;(3)求3253A ??= ?-?? 在所求基下的坐标。 2 (15分)设α为n 维欧氏空间V 中的单位向量,对V 中任意一向量x , 定义线性变换: ()2(,)T T x x x αα=-, (1)证明:T 为正交变换; (2)证明 T 对应特征值1有n-1 个线性无关的特征向量;(3)问T 能否在某组基下的矩阵为对角阵,说明理由。 3 (15分)设矩阵010120110A ?? ?=- ? ?-?? (1)求A 的若当标准形;(2)求A 的最小多项式;(3)计算532()45g A A A A E =+-+。 4(10分)设3 R 中的线性变换T 如下:123122323(,,)(2,,) ; ()i T x x x x x x x x x x R =--+∈ (1) 写出T 在基T T T 123 =(1, 1, 0),=(0, 1, 1), =(0, 0, 1)βββ下的矩阵;(2) 求3()T R 及()Ker T 。 5 (10分)已知多项式矩阵 2210007(2)00()00(1)00 00(1)(5)A λλλλλλλ-?? ?++ ?= ?- ?++??,求()A λ的初等因子及史密斯标准形。 6(10分)在欧氏空间4R 中, 对任意两个向量12341234(,,,) , (,,,),T T a a a a b b b b αβ==定义内积 1122334(, )2a b a b a b a b αβ=+++ 求齐次方程组1234123 20 = 0x x x x x x x +-+=??+-? 的解空间的一组标准正交基。 7 (10分)(1) 设A 为可逆矩阵, 证明对任何矩阵的算子范数, 都有11||||||||--≥A A 。 (2)设???? ? ??--+-=21512363 11684i i A , 利用(1)的结论分别估计11||||-A 和∞-||||1A 的下界。 8(15分)已知200111113?? ?= ? ?-?? A , 求矩阵函数()e t f =A A 。

矩阵论试题

2017—2018学年第一学期《矩阵论》试卷 (17级专业硕士) 专业 学号 姓名 得分 一.判断题(每小题3分,共15分) 1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零, 即ker A =0。( ) 2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个 线性空间。( ) 3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分 必要条件是A 的谱半径1)(

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D 在基12,,,,1-n x x x 以及基12)! 1(1,,!21, ,1--n x n x x 下的矩阵分别为 , 。 5.设A 是复数域上的正规矩阵,则A 满足: ,并 写出常用的三类正规矩阵 。 三.计算题(每小题12分,共48分) 1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α 变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。 。

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

矩阵理论资料期末考试试题整理版

矩阵重点(仅供参考) 第一章 线性空间的证明 例8.1 1}在三维空间 用 中求下列各线性变换f 在指定的基下的矩阵:已知 f &「巧23)= (2眄一忑2卫2 + 乌,巧)’ 求 f 在基 Q =(1,0,0)…62 = (0,1,0),£3 = (0,0,1)下的距阵; 2)已知线桂变换f 在基0 - (一1」,1),血-(1,(),-1),773 - ((J, 1,1)下的輕阵 10 1' 1 1 0 ,求f 在基 -1 2 1 耳己知 /(//I)二(-5,0,3) J(也)二(0, -1,6) 二(-5,-1,9),其中切- (—13),2)= (0,1,1) ,% = (3, -1,0)是一个基,求/在 £1 = (1,0, G) , £2 = (0,1,0),^3 - (0,0,1)下的矩阵以及在基 W 二(一12,2),"二(0丄 1),脚二 (3,-1,0)下的矩阵. [解]1)因为/(叼卫2十』=(2工1 一孔,^2 +衍卫J 所以 /(^1) = /(1.0,0)=(2,0,1), /(E J = /(OJ4)= (—1J2), /(叼)=/(0小1) = (0丄0). 由于三维向莹在标准正楚基61, £2,^3下的坐标就是其分量, 力=(1, 0, 0)耳=(0,1,0) ,63 = (0,0,1)下的矩阵; 所以/ (G’F 刘旳)=(巧,£2,巾)0 1 因此/在基£?£2违3下的矩阵为 2-10 1 1 0 () 2 -1 □ 1 1 0

又(巾「乃Jb ) =(6^20」 线性变换的矩阵表示是重点 第二章 例2.2 在欧氏空间用 中对于基曲=(1」.1)?02 = 念=(1.0,0) 行正交化 方法”求出/?"的一个标准正交基. 73 =他一常帶bl 一錚Ibii = ;所以{九他斶是Q 的一 个正交基; 2)再令C1 =閔=(;^,為.雳)'厲2 =盘| =(為,吉?-搓); 。3 =希=(为,-爲 4); 则{创:血‘伽}却为欧氏空间R"的一个标准正交基. ■ ■ -110 ■ ■ 1 0 1 '"1 1 -1' "-1 1 -2' 10 1 1 1 0 0 1 -1 2 2 0 1-11 ■ ■ 一 1 2 1 ■ 1 0 1 3 0 2 H-由此可得/(…勿如二 (G 因此f 在基“T “疋3下的矩阵为 2) gwE = 5丄舟涉) 1 0 1 1 -1 2 (G 工2疋小=(加T 也胡叢) 1 0 0 1 -11 -1 I -2 2 2 0 3 0 2 [解]1)取 71 = 01 生二為一會;:卜1二1-3 1-3 .1,1),由旄来特止交化方 法: (71 rn )

2014年矩阵论试题A

长 春 理 工 大 学 研 究 生 期 末 考 试 试 题 科目名称: 矩 阵 论 命题人:姜志侠 适用专业: 理 工 科 审核人: 开课学期:2013 ——2014 学年第 一 学期 □开卷 √闭卷 一、(10分)F 为数域,对于线性空间22?F 中任意矩阵??? ? ??=d c b a A ,规则σ,τ分别为??? ? ??=???? ??=c a A c b a A )(,0)(τσ,问σ,τ是否为22?F 上的变换,如果是,证明该变换为线性变换,并求该变换在基???? ??=000111E ,???? ??=001012E ,???? ??=010021E ,??? ? ??=100022E 下的矩阵. 二、(10分) 已知正规矩阵??? ? ??-=1111A ,求酉矩阵U ,使得AU U H 为对角形矩阵。三、(10分) 用Schmidt 正交化方法求矩阵???? ? ??=101011110A 的QR 分解. 四、(10分) 设矩阵?????? ? ? ?-=2000120010201012A ,求A 的行列式因子,不变因子,初等因子组, Jordan 标准形。 五、(10分) 求可对角化矩阵460350361A ?? ?=-- ? ?--?? 的谱分解式. 六、(10分) 在线性空间n m C ?中,对任意矩阵n m ij a A ?=)(,定义函数ij j i a mn A ,max ?=,证明此函数是矩阵范数。

七、(10分) 已知函数矩阵 ???? ??????=32010cos sin )(x x e x x x x A x , 其中0≠x ,试求)(lim 0x A x →,dx x dA )(,2 2)(dx x A d ,dx x dA )(. 八、(10分)已知矩阵?? ????--=1244916A ,写出矩阵函数)(A f 的Lagrange-Sylvester 内插多项式表示,并计算A πcos . .

矩阵理论试卷(整理版)

山东科技大学2010研究生矩阵理论试卷 1、 在矩阵的四个空间中,行空间、列空间、零空间和左零空间中,维数与矩阵的秩相等的子空间是行空 间和列空间. 2、 在矩阵的四个基本子空间中,和列空间构成正交补的是 左零空间。 3、 利用QR 分解可以讲矩阵分解为正交阵和上三角形矩阵乘积。 4、 通过矩阵 svd 分解,可以获得矩阵四个基本子空间的标准正交基。 5、 将3×3矩阵的第一行加到第三行是初等变换,对应的初等矩阵式 ???? ? ??101010001 6、 当矩阵的零空间中有非零向量的时候,线性方程组Ax=b 有无穷多解。 7、 所有的2×2实矩阵组成一个向量空间,这个空间的标准基是 ???? ?????? ?????? ?????? ??1000010000100001 8、 通过施密特正交化可以获得矩阵的QR 分解。 9、 在选定一个基后,任何维数为n 的欧式空间与n R 同构。 10 如果将矩阵视为线性处理系统,矩阵有m 行,n 列,则输入空间的维数是n 。 二、判断题 1、给定一个线性空间,他的基不是唯一的,但是各个基中的基向量个数是相等的。(R ) 2、两个子空间的并集是一个子空间。(F ) 3、在线性方程组Ax=b ,当矩阵A 式列满秩的时候,无论向量b 是什么,方程组都有解。(F ) 4、线性变换在不同的基下的矩阵一般不同,同一线性变换的不同矩阵表示所对应的特征值都相同。(R ) 5、线性变换在不同基下的矩阵一般不同,但是对应同一线性变换的各个矩阵的特征向量都相同。(F ) 6、矩阵特征值的代数重数是该特征值对应的特征子空间的维数。(F ) 7、任何N ×N 的实矩阵都可以对角化。(F ) 8、矩阵的左逆就是矩阵的最小范数广义逆。(F ) 9、任何M ×N 实矩阵都有奇异值分解。(R ) 10、正交投影矩阵都是幂等矩阵。(R ) 三、(矩阵的四个基本子空间和投影矩阵) 设矩阵A 为 A=??? ? ??4242 1、求矩阵A 的四个基本子空间的基和维数 初等变换 ??? ? ??0042 dim R (A )=dim R (T A )=1 dim N (A )=dim N (T A )=1 R(A)的基 ???? ??22 R(T A )的基 ???? ??42 N(A)的基???? ??-12 N(T A )的基 ??? ? ??-11 2、画出矩阵A 的四个基本子空间的示意图。 自己画很好弄 3、写出投影到矩阵A 的列空间的正交投影矩阵,计算向量b=[0 1]T 在列空间上的投影矩阵。

矩阵论2015年试题

2015年矩阵论 一、判断题(2 X 6=12分) (1) 线性空间R 3中的正交投影是正交变换。 (2) 如果g (λ)=(λ?2)(λ?5)2是矩阵A 的化零多项式,即g(A)=0,则2和5是矩阵A 的特征值。 (3) 设A 为n 阶方阵,矩阵函数f(A)有意义,如果A 相似于对角矩阵,则f(A)也相似于 对角矩阵。 (4) 如果矩阵运算A ?B =0,则矩阵A=0或者B=0。 (5) 如果矩阵A 既有左逆又有右逆,则矩阵A 一定是方阵,且为可逆矩阵。 (6) 对于矩阵A 和矩阵A +的秩,有rank(A) = rank(A +) 二、填空题(每个空3分,共27分) (1) 设矩阵A =[11+2i 3 23?i ?21?22?3i ],其中 i =√?1,则‖A ‖∞=___________________ (2) 线性空间W =*A ∈R 4x4| A T =A +的维,dimW=____________________________ (3) 设A =[130?2 ],矩阵B 的特征值为2,3,4,则矩阵A ?B 的特征值为 (4) 设线性空间R 3中的线性变换T 被定义为绕向量e 2=,010-T ,逆时针旋转一个θ 角的旋转变换,则变换T 的一个二维不变子空间是 (5) 设矩阵A 的UV 分解为A =[50 033064?1][1270250 02],则矩阵A 的LDV 分解为 (6) 设函数矩阵A(t)=[10t 3t ],则d(A ?1(t))dt = _____________________________ 三、 (12分)设P 为R 3中的正交投影,P 将空间R 3中的向量投影到平面π上, π=*(x y z )T |x +y ?z =0+,求P 在线性空间R 3的自然基*e 1 e 2 e 3+下的变换矩阵A 。 四、 (15分)设矩阵A =[3 1?112?1210 ], (1) 求可逆矩阵P 和矩阵A 的Jordan 矩阵J A ,使得P -1AP = J A (2) 设参数t ≠0,求矩阵函数e At 和矩阵e At 的Jordan 矩阵J e At 五、 (15分)设矩阵A =[1 1111 ?1],(1)求矩阵A 的奇异值分解 (2)求A + 六、 (15分)设矩阵A =[?120t ],B =[1?2?10],D =[132?3 ],矩阵方程为AX+XB=D , (1) 讨论t 为何值,矩阵方程有唯一解 (2) 在矩阵方程有唯一解时,求解其中的未知矩阵X 七、证明题(6分+7分=13分) (1) 如果矩阵A 是正规矩阵,且矩阵函数f(A)有意义,证明f(A)也是正规矩阵。(6分) (2)(7分)假设A ∈C n×n 是可逆的,证明: ‖A ‖2‖A ?1‖2=σmax σmin 其中σmax ,σmin 分别为A 的最大和最小的奇异值

矩阵论试题

武汉理工大学研究生试卷---矩阵论(1) 222211A=011.(){}2.3.()C A S P AB BA P C A C A ???? ??? =∈=一.(15分)设证明:是的子空间;求()的一般表达式; 求的维数与一组基; 22222212212211111.10010000,00001001P a b a b a b P c d c d c d P E E E ???????????=∈ ? ??? ?-???????? ????????==== ? ? ? ????????? 11二.(15分)在中定义, T ;证明:T是上的线性变换;2.求T在基下E 的矩阵; 三.(20分) 1.已知某种材料在生产过程中的废品率y 与某种化学成分x 有关,下表记录了某厂生产中y 与相应x 的数值。 y (%) 1.00 0.9 0.9 0.81 0.60 0.56 0.35 x (%) 3.6 3.7 3.8 3.9 4.0 4.1 4.2 用最小二乘法求y 对x 的一个一次近似公式(y=ax+b ) 2. 求方程组 12121 202120x x x x x x +=??+=??+=? 的最优最小二乘解 四.(15分) 3321.010865A --?? ?- ? ??? 求矩阵=的Jordan标准形; 4222f 23m 23ordan A J λλλλλλ----2.已知A的特征多项式,最小多项式分别为: ()=()(); ()=()(); 求的标准形 8542102.10 011010g 34A A A A A A E ?? ?=- ? ??? -++-五(分)设试计算()=2 A At 01e e 02?? ??? 六.(15分)设A=,求和;

矩阵理论试题

矩阵理论2007年考试 一、判断题(40分)(对者打∨,错者打?) 1、设,n n A B C ?∈的奇异值分别为120n σσσ≥≥≥> ,'''120n σσσ≥≥≥> , 如果'(1,2,,)i i i n σσ>= ,则22||||||||A B ++>. ( ) 2、设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ) 3、设n n C A ?∈可逆,n n C B ?∈,若对算子范数有1||||||||1A B -?<,则B A +可逆. ( ∨ ) 4、设323121000a a A a a a a -?? ?=- ? ?-?? 为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵. ( ) 5、设A 为m n ?矩阵,P 为m 阶酉矩阵, 则P A 与A 有相同的奇异值. ( ) 6、设n n A C ?∈,且A 的所有列和都相等,则()r A A ∞=. ( ) 7、如果12(,,,) T n n x x x x C =∈,则1||||min i i n x x ≤≤=是向量范数. ( ) 8、0010140110620 118A ??????=?????? 至少有2个实特征值. ( ) 9、设,n n A C ?∈则矩阵范数m A ∞与向量的1-范数相容. ( ) 10、设n n A C ?∈是不可逆矩阵,则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩阵. ( ) 二、计算与证明(60分) 1. (10分)设矩阵n n A C ?∈可逆, 矩阵范数||||?是n C 上的向量范数||||v ?诱导出的算子范数, 令()L x Ax =, 证明: ||||1 1||||1max ||()||||||||||min ||()||v v v x v y L x A A L y =-==?. 证明: 根据算子范数的定义, 有||||1max ||()||||||x L x A ==, 1 1100||||1||||10||||||||111||||max max ||||||||||||min ||||min ||()||min ||||y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠=====,

南航07-14矩阵论试卷

南京航空航天大学07-14硕士研究生矩阵论试题 2007 ~ 2008学年《矩阵论》 课程考试A 卷 一、(20分)设矩阵 ?? ??? ??-----=111322211 A , (1)求A 的特征多项式和A 的全部特征值; (2)求A 的行列式因子、不变因子和初等因子; (3)求A 的最小多项式,并计算I A A 236 -+; (4)写出A 的Jordan 标准形。 二、(20分)设2 2?R 是实数域R 上全体22?实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。 (1)求2 2?R 的维数,并写出其一组基; (2)设W 是全体22?实对称矩阵的集合, 证明:W 是2 2?R 的子空间,并写出W 的维数和一组基; (3)在W 中定义内积W B A BA tr B A ∈=,),(),(其中,求出W 的一组标准正交基; (4)给出22?R 上的线性变换T : 22,)(?∈?+=R A A A A T T 写出线性变换T 在(1)中所取基下的矩阵,并求T 的核)(T Ker 和值域)(T R 。 三、(20分) (1)设 ? ??? ??-=121312A ,求1A ,2A ,∞A ,F A ; (2)设n n ij C a A ?∈=)(,令 ij j i a n A ,*max ?=, 证明: *是 n n C ?上的矩阵范数并说明具有相容性; (3)证明:*2*1 A A A n ≤≤。 四、(20分)已知矩阵 ?????? ? ??-=10010001111 1A ,向量 ??? ??? ? ??=2112b , (1)求矩阵A 的QR 分解;

矩阵论考试试题(含答案)

矩阵论试题 一、(10分)设函数矩阵 ()??? ? ??-=t t t t t A sin cos cos sin 求:()?t dt t A 0和(()?2 0t dt t A )'。 解:()?t dt t A 0=()???? ? ??-????t t t t tdt tdt dt t dt t 0 sin cos cos sin =??? ? ??---t t t t cos 1sin sin cos 1 (()?2 t dt t A )'=()??? ? ? ?-=?22 22 2sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基 ????? ??-=1111α,????? ??-=1202α,??? ?? ??-=1013α 变为基 ????? ??-=0111β,????? ??-=1102β,??? ? ? ??-=2303β (1)求σ在基321,,ααα下的矩阵表示A ; (2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。 解:(1)不难求得: ()2111ααβασ-== ()32122αααβασ++-== ()321332αααβασ++-==

因此σ在321,,ααα下矩阵表示为 ??? ? ? ??---=110211111A (2)设()??? ?? ??=321321,,k k k αααξ,即 ??? ? ? ??????? ??---=????? ??321111021101 321k k k 解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。 ()ξσ在321,,ααα下坐标可得 ???? ? ??--=????? ??--????? ??---=????? ??1332239410110211111321y y y (3)ξ在基321,,βββ下坐标为 ??? ? ? ??-=????? ??--????? ??--=????? ??---61519410011111101 94101A ()ξσ在基321,,βββ下坐标为 ????? ??--=????? ??--????? ??--=????? ??---94101332230111111011332231A 三、(20分)设??? ? ? ??-=301010200A ,求At e 。 解:容易算得 ()()()()212--=-=λλλλ?A I

矩阵理论试卷(整理版)

山东科技大学2010研究生矩阵理论试卷 1、 在矩阵的四个空间中,行空间、列空间、零空间和左零空间中,维数与矩阵的秩相等的子空间是行空间和列空间. 2、 在矩阵的四个基本子空间中,和列空间构成正交补的是 左零空间。 3、 利用QR 分解可以讲矩阵分解为正交阵和上三角形矩阵乘积。 4、 通过矩阵 svd 分解,可以获得矩阵四个基本子空间的标准正交基。 5、 将3×3矩阵的第一行加到第三行是初等变换,对应的初等矩阵式 ???? ? ? ?10 1010 001 6、 当矩阵的零空间中有非零向量的时候,线性方程组Ax=b 有无穷多解。 7、 所有的2×2实矩阵组成一个向量空间,这个空间的标准基是 ??? ? ?????? ?????? ?????? ??1000 0100 0010 0001 8、 通过施密特正交化可以获得矩阵的QR 分解。 9、 在选定一个基后,任何维数为n 的欧式空间与n R 同构。 10 如果将矩阵视为线性处理系统,矩阵有m 行,n 列,则输入空间的维数是n 。 二、判断题 1、给定一个线性空间,他的基不是唯一的,但是各个基中的基向量个数是相等的。(R ) 2、两个子空间的并集是一个子空间。(F ) 3、在线性方程组Ax=b ,当矩阵A 式列满秩的时候,无论向量b 是什么,方程组都有解。(F ) 4、线性变换在不同的基下的矩阵一般不同,同一线性变换的不同矩阵表示所对应的特征值都相同。(R ) 5、线性变换在不同基下的矩阵一般不同,但是对应同一线性变换的各个矩阵的特征向量都相同。(F ) 6、矩阵特征值的代数重数是该特征值对应的特征子空间的维数。(F ) 7、任何N ×N 的实矩阵都可以对角化。(F ) 8、矩阵的左逆就是矩阵的最小范数广义逆。(F ) 9、任何M ×N 实矩阵都有奇异值分解。(R ) 10、正交投影矩阵都是幂等矩阵。(R ) 三、(矩阵的四个基本子空间和投影矩阵) 设矩阵A 为 A=??? ? ? ?42 42 1、求矩阵A 的四个基本子空间的基和维数 初等变换 ??? ? ? ?00 42 dim R (A )=dim R (T A )=1 dim N (A )=dim N (T A )=1 R(A)的基 ???? ??22 R(T A )的基 ???? ??42 N(A)的基???? ??-12 N(T A )的基 ??? ? ??-11 2、画出矩阵A 的四个基本子空间的示意图。 自己画很好弄 3、写出投影到矩阵A 的列空间的正交投影矩阵,计算向量b=[0 1]T 在列空间上的投影矩阵。

矩阵理论试题参考答案

矩阵理论2007年考试参考答案 一、判断题(40分)(对者打∨,错者打?) 1、设,n n A B C ?∈的奇异值分别为120n σσσ≥≥ ≥>,'' ' 120n σσσ≥≥ ≥>, 如果'(1,2, ,)i i i n σσ>=,则22||||||||A B ++>. ( ? ) 2、设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ∨ ) 3、设n n C A ?∈可逆,n n C B ?∈,若对算子范数有1||||||||1A B -?<,则B A +可逆. ( ∨ ) 4、设323 12 1 00a a A a a a a -?? ?=- ? ?-?? 为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵 ( ∨ ) 5、设A 为m n ?矩阵,P 为m 阶酉矩阵, 则P A 与A 有相同的奇异值. ( ∨ ) 6、设n n A C ?∈,且A 的所有列和都相等,则()r A A ∞=. ( ? ) 7、如果12(,, ,)T n n x x x x C =∈,则1||||min i i n x x ≤≤=是向量范数. ( ? ) 8、00101 40110620 1 1 8A ????? ?=?????? 至少有2个实特征值. ( ∨ ) 9、设,n n A C ?∈则矩阵范数m A ∞ 与向量的1-范数相容. ( ∨ ) 10、设n n A C ?∈是不可逆矩阵, 则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩 阵. ( ∨ ) 二、计算与证明(60分) 1. (10分)设矩阵n n A C ?∈可逆, 矩阵范数||||?是n C 上的向量范数||||v ?诱导出的算子范数, 令()L x Ax =, 证明: ||||11||||1 max ||()||||||||||min ||()||v v v x v y L x A A L y =-==?. 证明: 根据算子范数的定义, 有||||1 max ||()||||||x L x A ==, 1 11 00||||1||||1 0||||||||111||||max max ||||||||||||min ||||min ||()||min |||| y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠===== ,

矩阵理论期末试题2016-2017第一学期A卷

1 电子科学与工程学院 硕士研究生 《 矩阵论 》期末考试试卷 闭 卷 任课教师姓名:____ ___ 考试日期: 2016.12.29 上午10:00-12:00 考试时长: 120 分钟 考生年级 考生专业 考生学号 考生姓名 一 .(10分) 设n s ?∈C A ,证明: )()()( +++-==AA I K A A R A R 二.(10 分) 设 ,求500 A -549A 。 三.(10分) 四.(15分) 设求 的特征值、最小多项式和Jordan 标准形。 ?? ??? ??---=502613803A ??? ?? ??----=411301221A 假设3[]V R x =中的内积定义为 1 1(),()()()f x g x f x g x dx -<>=? 求2x η=在(1,)W L x =中的正投影。

2 五.(15分) () 2222??∈C C Hom f ,,定义为:22C X ?∈?, X 1122(X)??? ? ??∈f 1. 求 f 在基22211211,,,E E E E 下的矩阵; 2. 求f 的特征值及其相应的特征子空间的基; 3. 问是否存在22C ?的基,使得f 的矩阵为对角阵,给出理由。 六.(10分) 七.(15分) 设 , 求A e e At A cos ,,。 八.(15分) 设矩阵 , 求A +。 ??? ?? ??=421101104321A 。3求行列式,)2(并且,,103满足,已知2I A p I A r I A A C A n n -=++=∈?? ???? ??---=10142681330A

终极资料整理版-山东科技大学矩阵理论往年试卷

山东科技大学2006—2007学年第一学期 《矩阵理论》考试试卷 班级 姓名 学号 一、单项选择题(每题2分,共8分) 1、设 1()k k A f A k ∞ ==∑ 收敛,则A 可以取为 A. 0091?? ??--?? B. 0091????-?? C. 1011?? ??-?? D. 100.11?? ???? 2、设211112121M --?? ??=--????--?? ,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 3、设2222221212134400033t t t t t t At t t t t e e e te e e e e e e e ?? -+-+ ?= ? ?-+? ? ,则A = A. 214020031?? ? ? ??? B. 11401006 1?? ? ? ?? ? C. 2 2 4020031?? ? ? ?? ? D. 204020061?? ? ? ??? 4、设3阶矩阵A 满足多项式2 2 2 (4)(3)A E A E O --=, 且其最小多项式m (x )满足条件 (1)(3)1m m ==,则A 可以相似于

A. 20 013 0002M ????=? ???-?? B. 2000 2 002M ????=????? ? C. 2 01 2 02M ?? -??=-????-? ? D. 200030013M -????=?????? 二、填空题(每题5分,共20分) 1、设 2 20A A -=,则cos2A = 。 2.已知n n A C ?∈,并且()1A ρ<,则矩阵幂级数 k k kA ∞ =∑= 。 3 .设矩阵 1111A ? =?? ,则A 的谱半径()A ρ= 。 4、设5阶复数矩阵A 的特征多项式为 22()(1)(2)f λλλλ=-+,则2|A +E |= . 三、(12分)设152010001A -?? ? =- ? ???,试求矩阵B 使得5B A =。 四、(10分)设221111122A -?? ? =-- ? ?--?? ,求At e 。 五、证明题(10分) 设()ij n n A a ?=是n 阶复数矩阵,()ij n n B a ?=是由A 的元素取模后得到的矩阵。设对一切欧几里德 x 均有* 1x Bx <,证明32E A +可逆,并求其逆。 六、(10分)复数域C 是实数域R 上的2维线性空间. 试定义C 上的一个内积,使得1与1i +成为C

相关主题
文本预览
相关文档 最新文档