当前位置:文档之家› 实验报告——线性规划建模与求解

实验报告——线性规划建模与求解

实验报告——线性规划建模与求解
实验报告——线性规划建模与求解

数学实验报告

实验序号:1 日期:2012年6月1日

数学建模线性规划的求解

实验二线性规划的求解 学号:41011 姓名:何科 班级:2015级10班 一、实验目的 1.熟悉并掌握MATLAB的线性规划求解函数linprog()及其用法; 2.熟悉并掌握LINGO软件求解线性规划的方法; 3.能运用LINGO软件对线性规划问题进行灵敏度分析。 二、实验任务 1.对例1和例2,在MATLAB进行求解。 2.对例3、4、5,在LINGO软件进行求解,并作灵敏度分析. 3.对“3.3 投资的收益与风险"的模型I,在MATLAB中进行求解。 4.对“习题5,6,7,8”进行建模与求解。 三、实验过程与结果(对重要实验结果,截取全屏图,保存为JPG/PNG图 片) 1.例1: 代码: f=[13 9 10 11 12 8]; A=[0。4 11 1 0 00; 0 0 0 0.5 1。2 1。3]; b=[800;900]; Aeq=[1 0010 0; 0 1 0 0 1 0; 0 01 0 0 1]; beq=[400;600;500]; vlb=zeros(6,1); vub=[]; [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub) 结果: x = 0.0000 600.0000 0。0000 400.0000 0.0000 500.0000 fval =1.3800e+04 例2: 代码: c=[40 36]; A=[-5 —3];

b=[-45]; Aeq=[]; beq=[]; vlb=zeros(2,1); vub=[9;15]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) ?结果: ?x = 9.0000 0.0000 fval = 360 例3: ?代码: max=72*x1+64*x2; x1+x2<=50; 12*x1+8*x2〈=480; 3*x1<=100; ?结果: ?? Global optimal solution found. Objective value:3360。000 Infeasibilities:0.000000 Total solver iterations: 2 Variable Value Reduced Cost X1 20。00000 0.000000 X2 30.00000 0.000000 RowSlack or Surplus DualPr ice 1 3360.000 1.000000 2 0.00000048。00000 3 0。000000 2。000000 4 40.00000 0.000000 ?灵敏度分析: ?

线性规划模型及其举例

线性规划模型及其举例 摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。 关键词:资源规划;约束条件;优化模型;最优解 在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。 一.背景介绍 如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式: 1()n i ij j j f x a x ==∑,1,2,,,1i m m =+ (1) 若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为: OPT. 1()n j j j f x c x ==∑ ST. 1 n ij j j a x =∑> ( =, < )i b , 1,2,,i m = (2) 0,j x ≥ 1,2,,j n =… (2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。 1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数大小的变量。决策变量表示一种活动,变量的一组数据代表一个解决方案,通常这些变量取非负值。 2.约束条件(Subject To,ST )在资源有限与竞争激烈的环境中进行有目的性的一切活动,都

运筹学作业习题

线性规划建模及单纯形法 思考题 主要概念及内容: 线性规划模型结构(决策变量,约束不等式、等式,目标函数);线性规划标准形式; 可行解、可行集(可行域、约束集),最优解;基、基变量、非基变量、基向量、非基 向量;基本解、基本可行解、可行基、最优基。 复习思考题: 1、线性规划问题的一般形式有何特征? 2、建立一个实际问题的数学模型一般要几步? 3、两个变量的线性规划问题的图解法的一般步骤是什么? 4、求解线性规划问题时可能出现几种结果,哪种结果反映建模时有错误? 5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 6、试述线性规划问题的可行解、基本解、基本可行解、最优解、最优基本解的概念及它 们之间的相互关系。 7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个 最优解、无界解或无可行解。 8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什 么?最大化问题呢? 10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情 况下,继续第二阶段? 作业习题 1、将下列线性规划问题化为标准型 (1)???????≥=--+-≥-+-≤+-++-+=0,,953413223183622453max 4214321432143214321x x x x x x x x x x x x x x x x x x x z (2)???????≤≥=+-+-≥-+--≤--++++=0 ,0,15 2342722351232243min 4214321432143214 321x x x x x x x x x x x x x x x x x x x f 2、(1)求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点): ?????≥≤++-≤++0,,1243263323 21321321x x x x x x x x x (2)对下述线性规划问题找出所有基本解,指出哪些是基本可行解,并确定最优解. ??? ????≥=-=+-+=+++++=)6,,1(00 31024893631223max 61532143213 21K K j x x x x x x x x x x x x x x z j 3、用图解法求解下列线性规划问题

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

运筹学线性规划实验报告

《管理运筹学》实验报告 实验日期:2016年04月21日——2016年05月18日 实验目的: 通过实验学生应该熟练掌握“管理运筹学 3.0”软件的使用,并能利用“管理运筹学 3.0” 对具体问题进行问题处理,且能对软件处理结果进行解释和说明。实验所用软件及版本:管理运筹学3.0 实验过程:(含基本步骤及异常情况记录等―) 一、实验步骤(以P31页习题1为例) 1?打开软件“管理运筹学3.0” 2?在主菜单中选择线性规划模型,屏幕中会出现线性规划页面 3?在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“w”、“》”或“二”, 如图二所示,最后点击解决 班级2014级04班姓名杨艺玲学号2014190456实验 名称 管理运筹学问题的计算机求解 n 幵 目标的数 娈童个数约束条件个数 芙 遇出 保存解决关于

X 4?注意事项: (1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。 (2)输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果, 如 图所示 D tiff 0% 关于遇出 变童个数约朿条件个数F目标的数3V 标淮北结杲: 上一曲

5.输出结果如下 me車最优解如下***#尊1林*祜除目标函数最优值知2?20 变1 最优解相差値 XI 4.00 0.00 X2 8.00 0100 釣束松弛颅11余变量对偶价格 01. 00 16. 5€ 0.00 13.33 目标函数系数范園: 娈1下限当前值上限 XI 120. 30 200.00430. 00 X2 100. 0D 240.00400.00 常数【页范園; 的束T眼当前值上限 143.00120 00152.00 240.00 64.00 160.00 5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240 元. max z = 200x 240y; 约束条件:6x,12心2°, 8x +4y 兰64, x 一0, y -0. 问题: (1)甲、乙两种柜的日产量是多少?这时最大利润是多少? 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个

运筹学-线性规划模型在实际生活中的应用

线性规划模型在实际生活中的应用 【摘要】线性规划在实际生活中扮演着很重要的角色,研究对象是计划管理工作中有关安排和估值的问题,其广泛应用于经济等领域,是实际生活中进行管理决策的最有效的方法之一。解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。本文通过对例题利用线性规划分析,如何合理的分配利用,最终找到最优解使企业利润最大,说明了线性规划在实际生活中的应用,而且对线性规划问题模型的建立,模型的解进行了分析,运用图解法和单纯形法解决问题。 【关键词】线性规划、建模、实际生活、图解法、单纯形法 前言:线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其有利的条件。线性规划已经成为现代化管理的一种重要的手段。本文运用常用的图解法和单纯形法解决利润最大化决策问题,贴近生活,很好的吧线性规划应用到生活实践中。 1、简单线性问题步骤简单介绍 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际容,要明确目标函数和约束条件,通过表格的形式把问题中的已知

数学建模实验报告3 线性规划与整数规划、

数学建模与实验课程实验报告 实验名称三、线性规划与整数规划实验地点日期2014-10-28 姓名班级学号成绩 【实验目的及意义】 [1] 学习最优化技术和基本原理,了解最优化问题的分类; [2] 掌握规划的建模技巧和求解方法; [3] 学习灵敏度分析问题的思维方法; [4] 熟悉MATLAB软件求解规划模型的基本命令; [5] 通过范例学习,熟悉建立规划模型的基本要素和求解方法。 通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和 建立优化模型,并且使学生学会使用MATLAB、Lingo软件进行规划模型求解的基本命令, 并进行灵敏度分析。解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因 此,本实验对学生的学习尤为重要。 【实验要求与任务】 根据实验内容和步骤,完成以下实验,要求写出实验报告(符号说明—模型的建立—模型 的求解(程序)—结论) A组 高校资金投资问题 高校现有一笔资金100万元,现有4个投资项目可供投资。 项目A:从第一年到底四年年初需要投资,并于次年年末回收本利115%。 项目B:从第三年年初需要投资,并于第5年末才回收本利135%,但是规定最大投资总 额不超过40万元。 项目C:从第二年年初需要投资,并于第5年末才回收本利M%,但是规定最大投资总 额不超过30万元。(其中M为你学号的后三位+10) 项目D:五年内每年年初可以买公债,并于当年年末归还,并可获得6%的利息。 试为该校确定投资方案,使得第5年末他拥有的资金本利总额最大。 该校在第3年有个校庆,学校准备拿出8万元来筹办,又应该如何安排投资方案,使得 第5年末他拥有的资金本利总额最大。 B组题 1)最短路问题, 图1中弧上的数字为相邻2点之间的路程,求从1到7的最短路。 图1 图 2 r为你的学号后2位+10 其中 1 2)最大车流量, 图1中弧上的数字为相邻2点之间每小时的最大车流量。求每小时1到7最大

非线性规划模型

非线性规划模型 在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在 实际问题中并不是所有的问题都可以利用线性规划模型求解。实际问题中许多都 可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。 一、非线性规划的分类1无约束的非线性规划当问题没有约束条件时,即求多元函数 的极值问题,一般模型为 I r m i n f(X) X 一0 此类问题即为无约束的非线性规划问题 1.1无约束非线性规划的解法 1.1.1 一般迭代法 即为可行方向法。对于问题J mnf(X) [X X O 给出f (X)的极小点的初始值X(O),按某种规律计算出一系列的X(k)(k =1,2,…), 希望点阵{X (k)}的极限X "就是f (X)的一个极小点。 由一个解向量X(k)求出另一个新的解向量X(kI) 向量是由方向和长度确定的,所以XZ I)=X k「k P k(k =12…) 即求解A和P k,选择'k和P k的原则是使目标函数在点阵上的值逐步减小,即 f (X0) 一f (X1) 一- f (X k) 一. 检验{X(k)}是否收敛与最优解,及对于给定的精度;7,是否IIlf(X k JlF ; 1.1.2 一维搜索法 当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。一维搜索的方法很多,常用的有: (1)试探法(“成功一失败”,斐波那契法,0.618法等); (2)插值法(抛物线插值法,三次插值法等); (3)微积分中的求根法(切线法,二分法等)。考虑一维极小化问题 a?f(t) 若f (t)是[a,b]区间上的下单峰函数,我们介绍通过不断地缩短[a,b]的长度,来

线性规划问题建模与求解

线性规划问题建模与求解 一.实验目的 1. 掌握线性规划问题建模基本方法。 2. 熟练应用Excel “规划求解”功能对线性规划问题进行建模与求解。 3.掌握线性规划问题的对偶理论和灵敏度分析。 二.实验设备 硬件:PC 机。 软件:Microsoft Excel 。 三.实验内容 1.建立线性规划问题的数学模型。 2.利用Excel “规划求解”功能对线性规划问题进行建模与求解。 3.根据实验优化结果,进行灵敏度及经济分析。 四.实验步骤 一.某厂准备生产A,B,C 三种产品,它们都消耗劳动力和材料,有关数据见表3。 表3 某厂生产利润与消耗资源表 A B C 拥有量 (单位) 劳动力 6 3 5 47 材料 3 4 5 30 单位产品利润(元) 3 1 4 问: ①如何确定产品的生产计划使该厂获利最大? ②产品A 的利润在什么范围内变动时,上述最优计划不变? ③如劳动力数量不变,材料不足时可从市场购买,每单位0.4元,问该厂要不要购进原材料扩大生产,购多少为宜? ④生产产品B 的方案之一是降低成本,问产品B 的成本降低多少时,生产该产品才有利? 要求:(1)建立该问题的数学模型 (2)利用EXCEL “规划求解”软件进行模型的求解,并产生分析报告。 (3)进行灵敏度与经济分析。 二 :建立生产计划优化问题模型 解:设三种产品的生产量分别是X 1,X 2,X 3 产 品 资源

MaxZ=3X1+X2+4X3 6X1+X2+4X3≤47 3X1+4X2+5X3≤30 X1,X2,X3≥0 3.利用Excel “规划求解”功能建模与求解 (1)Excel “规划求解”的安装 1)启动Excel,打开“工具”菜单。如果没有“规划求解”,单击“加载宏”。 2)复选框中选中“规划求解”,单击“确定”后返回Excel。则在“工具”菜单中出现“规划求解”。 (2)线性规划模型的求解 1)启动Excel,输入线性规划模型的约束条件系数,右边常数项系数和目标变量系数。并定义线性规划的变量单元格、约束条件左边单元格和目标函数单元格 2)输入公式 E3 =SUMPRODUCT(B3:D3,B6:D6) E4=SUMPRODUCT(B4:D4,B6:D6) B7=SUMPRODUCT(B5:D5,B6:D6) 3)将光标停留在“总利润”单元格B7上,打开“工具”菜单中的“规划求解”,弹出下面

数学建模之线性规划

第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则2 1,x x 应满足 (目标函数)2134m ax x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min beq x Aeq =? ub x lb ≤≤ 其中c 和x 为n 维列向量,A 、Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向 量。 例如线性规划 b Ax x c x T ≥ that such max

运筹学线性规划实验报告

《管理运筹学》实验报告实验日期: 2016年 04月 21日—— 2016 年 05 月 18 日

3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤”、“≥”或“=”,如图二所示,最后点击解决

4.注意事项: (1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。(2)输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示

5.输出结果如下

5.课后习题: 一、P31习题1 某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元. 约束条件: 问题: (1)甲、乙两种柜的日产量是多少?这时最大利润是多少? 答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。 . 0,0,6448,120126;240200 z max ≥≥≤+≤++=y x y x y x y x

(2)图中的对偶价格13.333的含义是什么? 答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。 (3)对图中的常数项围的上、下限的含义给予具体说明,并阐述如何使用这些信息。 答:当约束条件1的常数项在48~192围变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40~180围变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为13.333。 (4)若甲组合柜的利润变为300,最优解不变?为什么? 答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。 二、学号题 约束条件: 无约束条件 (学号)学号43214321432143214321 0 0,30 9991285376)(53432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-+≥-+-+=-++-+++=??????????????-≥?-?-?-?-?-7606165060~5154050~414 )30(40~313)20(30~21210 20~11 10~1)(学号)(学号)(学号学号学号)(学号不变学号规则

(一)线性规划建模与求解

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大? 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1、x 2单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线z=2 x 1+x 2与 约束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

数学建模 matlab求解线性规划实验报告

实验三 线性规划 程序: linprog c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) Exam5: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2 实验目的 2、掌握用数学软件包求解线性规划问题。 1、了解线性规划的基本内容。 例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++= 85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s 70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10 =≥j x j

x0=[1;1]; A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[]; [x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB) 书 求下列非线性规划 2221232212322 1232 12223123min 8020 ..2023,,0x x x x x x x x x s t x x x x x x x +++?-+≥?++≤??--+=??+=? ?≥? 在Matlab 2013软件中输入如下程序: (i )编写M 文件fun1.m 定义目标函数 function f=fun1(x); f=sum(x.^2)+8; (ii )编写M 文件fun2.m 定义非线性约束条件 function [g,h]=fun2(x); g=[-x(1)^2+x(2)-x(3)^2 x(1)+x(2)^2+x(3)^3-20]; %非线性不等式约束 h=[-x(1)-x(2)^2+2 x(2)+2*x(3)^2-3]; %非线性等式约束 (iii )编写主程序文件example2.m 如下: options=optimset('largescale','off'); [x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[], ... 'fun2', options) 就可以求得当1230.5522 1.2033,,0.9478x x x ===时,最小值y =10.6511。 4. 选修课的策略 决策目标为选修的课程总数最少,即 921min x x x +++ 约束条件: (1) 满足课程要求:(至少2门数学课程,3门运筹学课程和2门计算机课程)

线性规划建模实验题

线性规划建模实验题 一、李四企业的生产经营规划问题 李四经营着一个小企业,这个企业最近出现了一些问题,资金周转出现困难。该企业一共生产经营着三种产品,当前有两种产品赔钱,一种产品赚钱。其中,第一种产品是每生产一件赔100元,第二种产品每生产一件赚300元,第三种产品每生产一件赔400元。 三种产品分别消耗(或附带产出)三种原料,其中第一种产品每生产一件附带产生100千克原料A,需要消耗100千克原料B和200千克原料C;第二种产品每生产一件需要消耗100千克原料A和100千克原料C,附带产生100千克原料B;第三种产品每生产一件需要消耗原料A、B、C各100千克。由于生产第一种产品的设备已经损坏,且企业也无能力筹集资金修复之,所以该企业现已无法组织生产第一种产品。 现在仓库里还存有A原料40000千克,后续货源供应难以得到保证;库存B原料20000千克,如果需要,后续容易从市场采购得到;库存C原料30000千克,如果需要,后续容易从市场采购得到。 李四想转行经营其他业务,但苦于仓库里还积压着90000千克原料,如果直接出售原料,则比生产后出售成品赔得更多。没有办法,李四只好向运筹学专家咨询,看看如何组织生产才能将损失降到最低。 请对李四企业的生产经营情况进行考查和分析,建立该问题的线性规划模型,并使用Excel软件和LINDO软件求解该问题(要求附带结果分析报告)。

二、王五管理的科研课题的经费使用规划问题 王五管理着一个科研课题,根据课题进展情况看,不久就要结题了。由于课题的管理采用经费与任务包干制,所以可以通过节约开支来预留课题完成后的产业推广经费。现王五需要制订出这样的一个方案:既按期完成科研任务,又要尽可能多地节省费用,人员的收入还不能减少。同时他还想知道这笔可节省的费用究竟是多少? 课题组的费用构成有两个部分:一是人员经费开支,二是试验消耗与器材采购费用开支。其中,由于出台了增收节支激励政策,所以人员经费开支与原计划相比每月可节省1万元,试验消耗与器材采购费用开支每月可节省4万元。 该课题由两个子课题构成。其中第一个子课题的开支情况为:每月人员经费为1万元,每月试验与器材经费的开支为10万元;第二个子课题的开支情况为:人员经费计划为1万元,实际上该子课题每月可通过边研制边推广应用的方式获得净收入1万元,这样就可以保证每月正常的人员经费开支,所节余的1万元可向课题组上缴,同时该子课题的试验与器材经费开支需求是每月8万元。 第一个子课题的总经费还剩20万元,但如果申请,还可以增加;第二个子课题的经费还有40万元,但即使申请也不可能再增加。 课题组研究后一致决定采用如下原则进行决策: (1)所节余的人员经费用于奖励,不计入节省费用的总额当中。 (2)在保证圆满完成课题任务的前提下,最大限度地积累课题应用性推广经费。 请建立该问题的线性规划模型,帮助王五制订最合理的科研结题周期以及可节省的费用(要求使用Excel软件和LINDO软件求解该问题,并附带结果分析报告)。

线性规划建模求解

线性规划建模求解 第一题某食品厂在第一车间用1单位原料N可加工3单位产品A及2单位产品B,产品A可以按单位售价8元出售,也可以在第二车间继续加工,单位生产费用要增加6元,加工后单位售价增加9元。产品B可以按单位售价7元出售,也可以在第三车间继续加工,单位生产费用要增加4元,加工后单位费用可增加6元。原料N的单位购入价为2元,上述生产费用不包括工资在内。3个车间每月最多有20万工时,每工时工资0.5元,每加工1单位N需1.5个工时,如A 继续加工,每单位需3工时,如B继续加工,每单位需2个工时。原料N每月最多能得到10万单位。问如何安排生产,使工厂获利最大。 第二题某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到第三年年初都可以投资。预计每年年初投资,年末可收回本利120% ,每年又可以重新将所获本利纳入投资计划;项目Ⅱ需要在第一年初投资,经过两年可收回本利150% ,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目Ⅲ需要在第二年年初投资,经过两年可收回本利160% ,但用于该项目的最大投资额不得超过15万元;项目Ⅳ需要在第三年年初投资,年末可收回本利140% ,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 第三题某工厂生产Ⅰ、Ⅱ、Ⅲ、Ⅳ四种产品,产品Ⅰ需依次经过A、B两种机器加工,产品Ⅱ需依次经过A、C两种机器加工,产品Ⅲ需依次经过B、C两种机器加工,产品Ⅳ需依次经过A、B机器加工。有关数据如表所示,请为该厂制定一个最优生产计划。 第四题某石油公司有两个冶炼厂。甲厂每天可生产高级、中级和低级的石油分别为200,300和200桶,乙厂每天可生产高级、中级和低级的石油分别为100,200和100桶。公司需要这三种油的数量分别为14000,24000和14000桶。甲厂每天的运行费是5000元,乙厂是4000元。问:1)公司应安排这两个厂各生产多少天最经济?2)如甲厂的运行费是2000元,乙厂是5000元。公司应如何安排两个厂的生产。 第 五题某旅馆每日至少需要下列数量的服务员,有关数据如表所示。每班服务员从开始上班到下班连续工作八小时,为满足每班所需要的最少服务员数,这个旅馆至少需要多少服务员。

线性规划作业

1.(建模) Metalco 公司生产一种新的合金,新合金的成分为40%的锡、35%的锌和25%的 请建立数学模型确定各种合金的比例,以使新产品的生产成本最低。(财经社,数据模型与决策4.18,p137) 2.用单纯形法求解下列线性规划问题。(清华编写组,运筹学第三版,1.4,p45) (1)?????≥≤+≤++=0 ,24 261553.2max 2121212 1x x x x x x t s x x z (2) ???????≥≤+≤≤+=0 ,18231224 .52max 2121212 1x x x x x x t s x x z 3.(同上,2.9,p76)现有线性规划问题 ??? ??≥≤++≤++-++-=0,,) 2(9010412)1(20 3..1355max 3 21321321321x x x x x x x x x t s x x x z 先用单纯形法求出最优解,然后分析在下列条件下,最优解分别有什么变化? (1) 约束条件(1)的右端常数由20变为30; (2) 约束条件(2)的右端常数由90变为70; (3) 目标函数中x3的系数由13变为8; (4) x1的系数列向量由???? ??-121变为??? ? ??50; (5) 增加一个约束条件(3)10010510321≤++x x x 4.(蓝伯雄,管理数学(下),2.11,p90)某厂生产甲、乙两种产品,需要A 、B 两种原料, (1) 请构造数学模型使该厂利润最大,病求解该问题。 (2) 原料A 、B 的影子价格为多少? (3) 现有新产品丙,每件需消耗3千克原料A 和4千克原料B ,问该产品的销售价格至 少为多少时才值得生产? (4) 工厂可在市场上买到原料A 。工厂是否应该购买该原料以扩大生产?在保持原问题

线性规划问题及其数学模型

第二章 线性规划的对偶理论与灵敏度分析习题 1. 写出下列线性规划问题的对偶问题。 (1)????? ? ?≥=++≤++≥++++=无约束 3213213213213 21,0,5343 32243422min x x x x x x x x x x x x x x x z (2) ????? ? ?≤≥≤++≥-+-=++++=0 ,0,8374355 22365max 3213213213213 21x x x x x x x x x x x x x x x z 无约束 (3)?? ??? ??? ???==≥=====∑∑∑∑====) ,,1;,,1(0) ,,1(),,1(min 1 111n j m i x n j b x m i a x x c z ij m i j ij n j i ij m i ij n j ij (4)???????????=≥++==<=<=∑∑∑===),,,,1(0),,2,1() ,,1(min 1 211111n n j x m m m i b x a m m i b x a x c z j n j i j ij n j i j ij n j j j 无约束 2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; (4)任何线性规划问题具有唯一的对偶问题。 3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

模糊线性规划实验报告

姓名: 学号: 实验二 求解模糊线性规划 实验目的: 掌握将模糊线性规划转化为一般线性规划的方法,会使用数学软件Matlab 工具箱求解一般线性规划. 实验学时:2学时 实验内容: 将已知模糊线性规划问题标准化后,再用Matlab 工具箱求解相应的各个线性归化问题,最后得到模糊最优解。 实验日期:2017年12月02日 实验步骤: 1 问题描述: 某种药物主要成分为A 1、A 2、A 3,含量分别为585±-1mg 盒?、5100±-1mg 盒?、 10100±-1mg 盒?。这三种成分主要来自五种原材料B 1、B 2、B 3、B 4、B 5,各种原 表一 2 解决步骤 设成本为)(b f ,买入原材料B 1、B 2、B 3、B 4、B 5分别为54321b b b b b 、、、、千克。为使成本最小,建立如下模糊线性规划模型: ??? ??? ?≥=++++=++++=++++++++=0,,,,]10,100[200120150120001]5,010[601609015008]5,85[120801206085.8.17.16.15.11.3)(min 543215432154321543215 4321b b b b b b b b b b b b b b b b b b b b t s b b b b b b f (1)求解没有伸缩率经典线性规划:

??? ??? ?≥=++++=++++=++++0,,,,10020012015012000110060160901500885120801206085.54321543215432154321b b b b b b b b b b b b b b b b b b b b t s 使用Matlab 实现代码如下: 实验结果: 图一 没有伸缩率经典线性规划求解结果 因此我们可以得知: 0000.0b 3021.00.00000000.01.014454321=====、、、、b b b b 从而得到最优解: 1.8322)(=b f (2)求解有伸缩率的普通线性规划:

相关主题
文本预览
相关文档 最新文档