当前位置:文档之家› 臭氧氧化对甲基苯磺酸的动力学模型

臭氧氧化对甲基苯磺酸的动力学模型

臭氧氧化对甲基苯磺酸的动力学模型
臭氧氧化对甲基苯磺酸的动力学模型

甲苯磺酸索拉非尼片

甲苯磺酸索拉非尼片 甲苯磺酸索拉非尼片,本品为多激酶抑制剂,能够抑制肿瘤细胞的生长。临床用于治疗不能手术的晚期肾细胞癌及远处转移的原发肝细胞癌。 通用名:甲苯磺酸索拉非尼片 英文通用名:Sorafenib tosylate 汉语拼音:Jiabenhuangsuan Suolafeini Pian 成分 化学名:4-{4-[3-(4-氯-3-三氟甲基-苯基)-酰脲]-苯氧基}-吡啶-2-羧酸甲胺-4-甲苯磺酸盐。 实验式:C21H16ClF3N4O3 * C7H8O3S。 分子量:637.0克/摩尔。 性状 本品为红色圆形片 适应症 治疗不能手术的晚期肾细胞癌。 规格 0.2g 用法用量 推荐剂量:推荐服用索拉非尼为每次0.4 g(2x0.2g),每日两次,空腹或伴低脂、中脂饮食服用。 服用方法:口服,以一杯温水吞服。 治疗时间:应持续治疗直至患者不能临床受益或不能耐受的毒性反应 禁忌 对索拉非尼或药物的非活性成分有严重过敏症状的患者禁用。 注意事项 尚缺乏充分的中国人群临床研究数据,因此须在有本品使用经验的医生指导下使用。 皮肤毒性:手足皮肤反应和皮疹是服用索拉非尼最常见的不良反应。皮疹和手足皮肤反应通常多为NCI CTC(国际肿瘤通用毒性标准)1到2级,

且多于开始服用索拉非尼后的6周内出现。对皮肤毒性反应的处理包括局部用药以减轻症状,暂时性停药或/和对索拉非尼进行剂量调整。对于皮肤毒性严重且反应持久的患者可能需要永久停用索拉非尼。严重者应永久停药。 高血压:服用索拉非尼的患者高血压的发病率会增加。药物相关的高血压多为轻到中度,多在开始服药后的早期阶段就出现,用常规的降压药物即可控制。应常规监控血压,如有需要则按照标准治疗方案进行治疗。对应用降压药物后仍严重或持续的高血压或出现高血压危象的患者需考虑永久停用索拉非尼。 出血:服用索拉非尼治疗后可能增加出血的机会。严重出血病不常见。一旦出现需治疗,建议考虑永久停用索拉非尼。 华法林:部分同时服用索拉非尼和华法林治疗的患者偶发出血或凝血时间国际标准化比值(INR)升高。对合用华法林的患者应常规检测凝血酶原时间、INR值并注意临床出血迹象。 伤口愈合并发症:服用索拉非尼对伤口愈合的影响未进行专门的研究。需要做大手术的患者建议暂停索拉非尼,手术后患者何时再应用索拉非尼的临床经验有限,因此决定患者再次服用前应先从临床考虑,确保伤口愈合。 心肌缺血和/或心肌梗死:在试验11213中,治疗相关的心肌缺血/心肌梗死在索拉非尼组的发生率(2.9%)高于安慰剂组(0.4%)。不稳定的冠心病患者和近期的心肌梗死患者没有入组该试验。对于发生心肌缺血和/或心肌梗死的患者应该考虑暂时或长期终止索拉非尼的治疗。 胃肠道穿孔:胃肠道穿孔较为少见。在使用索拉非尼的患者中报告出现胃肠道穿孔的不足1%。在一些病例中,胃肠道穿孔未伴随显在腹腔内肿瘤出现,应停止本品治疗(见【不良反应】)。 肝损:没有肝损害Child Pugh C级的患者的研究资料。由于索拉非尼主要是经肝脏消除,其在肝功能严重受损的患者中暴露量会升高。 药物相互作用 索拉非尼与阿霉素或依立替康合用时,后两者的药时曲线下面积(AUC)将分别增加21%和26%~42%,目前尚不清楚上述现象是否具有临床意义,但一般建议索拉非尼与上述两种药物合用时应注意密切观察。索拉非尼与酮康唑合用时较安全。从理论上说,任何能够诱导CYP3A4的药物均能加快索拉非尼的代谢,降低其血药浓度和临床疗效。索拉非尼是CYP2C9的竞争性抑制剂,因此,它有可能会升高其他经CYP2C9代谢的药物的血药浓度。当索拉非尼与其他治疗范围较窄的CYP2C9底物(如塞来昔布、双氯芬酸、屈大麻酚、THC、苯妥英或磷苯妥英、吡罗昔康、舍曲林、甲苯磺丁脲、托吡酯和华法林等)合用时应注意观察,以防出现严重不良反应。

臭氧联合氧化技术在污水处理方面的新进展

臭氧联合氧化技术在污水处理方面的新进展 贾瑞平,陈烨璞 (上海大学理学院化学系,上海200444) 【摘要]介绍了近年来国内外采用臭氧以及臭氧联合氧化技术在污水处理研究方面的新进展。在低剂量和短时间内臭氧难以完全矿化有机物,且分解生成的中间产物会阻止臭氧的进一步氧化。但以其他方法与臭氧联用,可大大促进臭氧分解,提高有机物的去除率。因此臭氧与过氧化氢、紫外线、超声波、光催化以及生物技术等多种手段联用于水处理已经成为目前研究的热点,并取得了显著的进步。 【关键词]臭氧;污水处理;高级氧化;生物处理;联合氧化 水是人类社会得以存在和发展的重要资源。随着人们对水的需求越来越多。污水处理后回用成为解决水资源短缺问题的有效途径。 臭氧是一种强氧化剂。用于污水处理可有效地消毒、除色、除臭、改善水味、去除有机物和降低COD等。因此,近年来臭氧及其与其他手段联合用于处理各种污水的技术获得了迅速的发展。笔者着重讨论了近年来臭氧联合氧化技术用于污水处理方面的新进展。l臭氧氧化法 臭氧是一种强氧化剂,氧化电势为2.07V,与有机物反应时速度快并且可就地生产,原料易得,使用方便,不产生二次污染。臭氧能与水中各种形态存在的污染物质(溶解、悬浮、胶体物质及微生物等)起反应,将复杂的有机物转化成为简单有机物,使污染物的极性、生物降解性和毒性等发生改变。多余O3可自行分解为O2。 刘和义等对极难生物降解的呋吗唑酮模拟废水进行了臭氧化处理研究。当模拟废水中呋吗唑酮初始质量浓度为500mg/L,pH128,臭氧投加量2g/L时,BOD5/COD>03,可生化性显著高;臭氧投加量6g/L时,脱色率达100%,CODQ和TOC去除率分别达到95.9%和95.2%。水中有机物基本矿化。卢宁川等采用臭氧氧化的方法.对某厂苯酐车间的增塑剂废水的氧化降解过程进行了探讨。结果表明,将废水pH调至9、臭氧氧化时间为60min时,对增塑剂废水中COD的去除率较高,可达41.5%,适当提高pH可加快污染物的氧化速率,同时降低了臭氧投加计量比值。从而增加了臭氧的利用率。 王长友等采用臭氧氧化法降解金矿氰化废水,废水水样pH为8.0~9.0,当氧化反应时间达到12min,臭氧投加量为133.33mg/L时,氰化物去除率达到98.1%.残余氰化物质量浓度为0.43mg/L。 Y.Chen等研究了臭氧氧化降解水溶液中的2-巯噻唑(2一MT)。当2一MT全部分解时,硫酸盐生成率和TOC去除率分别为24%和2.3%。在实验中,增加臭氧量,则硫酸盐生成率和TOC去除率最大值分别可达48%和16%。实验结果同时也表明,在2一MT的杂环结构中,N、S原子很难被氧化成硝酸盐和硫酸盐。所以2一MT臭氧化的产物还需进一步氧化。 2臭氧联合氧化法 2.1高级氧化技术 利用催化降解技术或光化学方法氧化降解污染物的过程通常称为高级氧化过程(AdvancedOxidationProcessAOP)。与其他传统水处理方法相比,高级氧化技术具有选择性小、反应速度快、可有效减少THMs的生成量、可将THMs的前体物彻底氧化为二氧化碳和水以及对TOC和COD去除效率高等优点。

臭氧氧化技术在废水处理的运用

臭氧是一种具有强氧化性的化学药剂,可在水中开展如氧化还原等各类化学反应,利用臭氧氧化技术对污水进行二次处理可有效提升水的质量。相较于世界其他国家,我国对于臭氧氧化技术的应用时间较晚,因此,臭氧氧化技术在我国工程中的实际应用效果与其他国家相比也具有一定差距。此种状况下,我们更加致力于研究臭氧氧化技术于工程中的应用,努力拓展臭氧氧化技术的使用范围,使之更加广泛的服务于我国各类工程废水处理工作当中。 1利用臭氧氧化技术处理废水的工作过程 现如今,臭氧氧化技术已然成为废水处理领域的未来趋势,臭氧氧化技术与废水处理领域的运用可有效降低废水处理工艺中所耗费 的各项资金。臭氧氧化技术可有效降解废水中的各类生物,并对其中包含的化合物进行良好处理。在臭氧氧化技术的实际应用过程中需充分考量废水溶剂流量及符合率,并以此两者的实际变化程度作为依据,选取不同的处理方式。若废水具有较高的容积流量且具有较低的符合率,可利用生物处理-臭氧的方法来开展废水处理工作,此种处理方法的操作流程较为简单,具有较强实用性,处理起来也较为方便,臭氧消耗程度较低。若废水处理工作中需用到生物处理-臭氧-生物处理方法,则需在对其的实际应用过程中细致分析臭氧投加量,并对其予以良好管控,通过调节臭氧投加量的方式来提升废水处理过程中生物的可降解程度。在各领域应用臭氧氧化方法行废水处理操作时需充

分考虑所运用处理方法的经济效益,以在使废水处理质量得到保障的同时降低对各项能源与资金的消耗[1]。 2臭氧氧化技术在我国废水处理工作中的实际应用 饮用水处理领域是臭氧氧化技术与我国大规模工业化应用的首要阵地,臭氧氧化技术是近些年来才开始逐步应用于我国废水处理领域中的。臭氧氧化技术在我国废水处理工作中的实际应用案例如下:(1)我国某公司污水处理站以往采用的污水处理工艺为混凝-厌氧-好氧 生物组合工艺,每天可处理废水15000立方米,出于对部分出水进行深度处理并回收利用的目的,其采取了一体化臭氧曝气生物滤池与上流式曝气生物滤池的组合工艺,将此项废水处理工艺作为后续膜分离系统的预处理方法,确保废水处理工序结束后所得的反渗透水可回收并应用于该公司的染整工序,且浓缩液质量达到国家相关排放标准。该公司污水处理站在升级改造后每天可多处理废水5000立方米,在公司生化出水后对废水行砂滤操作,并利用一体化臭氧曝气生物滤池与上流式曝气生物滤池对其进行处理,处理完毕后再对其进行砂滤、超滤操作,得到反渗透水。该公司共投入约800万元用以污水处理站的改造,改造结束后该公司的废水处理运行费用为每立方米废水0.45元[2]。(2)我国中石化某分公司将经过膜生物反应器处理的炼油废水作为原水,利用臭氧氧化-多级过滤-活性炭吸附-臭氧氧化方式对其进行处理,使废水中的污染物含量获得了有效降低,处理后的出水水质与中石化所制定的回用水水质要求相符,成功使处理后的废水成为了补充水与循环水。(3)我国某企业,以生产手机显示屏强化玻

浅谈对甲苯磺酸测定方法的比较

浅谈对甲苯磺酸测定方法的比较 浅谈对甲苯磺酸测定方法的比较 摘要:对甲苯磺酸作为催化剂广泛用于各种化学反应中,具有副反应少、产品纯度高、颜色浅等特点。随着应用范围的扩大,对其质量要求越来越高,这就要求对甲苯磺酸的分析测定越来越准确。因此,要科学合理运用对应的方法对甲苯磺酸的测定分析。 关键词:对甲苯磺酸测定方法对比 前言 对甲苯磺酸是一种用途广泛的精细化工用品,没有氧化性的有机强酸,作为中间体以及酯化反应、烷基化反应的催化剂。这种酸的独特之处是,它在通常情况下为固体,方便使用。对甲苯磺酸在水中最大溶解度为 222 nm(Log E=4.0),易潮解,可溶于水、醇和其他极性溶剂,可参与水体和大气循环造成污染。在体内代谢产物为3-甲基儿茶酚。LD50(半数致死量):2480 mg/kg(大鼠经口),燃烧后生成有毒氧化硫气体。高浓度 PTSA对眼睛、皮肤、上呼吸道有刺激作用,吸入气溶胶后可引起喉、支气管痉挛;肺水肿等。对甲苯磺酸用途广泛、用量大,对人体、环境都可能造成一定的伤害,因此有必要找到对其准确、高效、适用性广的测定方法。 1.对甲苯磺酸的测定方法 从产物的异构体含量,到混酸中的含量,一直发展到如今复杂基质中的痕量测定,有关对甲苯磺酸的测定方法一直在不断改进中。目前有关其含量的主要测定方法有紫外分光光度法、离子色谱法、气相色谱法、液相色谱法、毛细管电泳色谱法等,以下是对这些方法进行分析比较。 1.1 紫外分光光度法 张凌等采用紫外分光光度法同时测定强力霉素废水中磺基水杨酸与对甲基苯磺酸含量。选择 pH=7 的 KH2PO3-Na2HPO3缓冲溶液体系,有效排除了废水中硫酸钠、甲醇等基质的干扰。磺基水杨酸和对甲基苯磺酸两者之间的定量可通过计算分离。张红兵等采用紫外分光

均相催化臭氧氧化设备处理染料废水技术

均相催化臭氧氧化设备处理染料废水技术 催化臭氧氧化设备是使催化剂和反应物作用, 形成不稳定的中间产物, 改变反应途径, 或加快氧化剂的分解并使之与水中有机物迅速反应, 在较短的时间内降解染料分子并提高氧化剂的利用效率的方法。而光电催化氧化技术根据催化剂的形态不同又分为均相催化臭氧化和非均相催化臭氧化。 催化臭氧氧化设备 1、均相催化臭氧氧化设备处理染料废水技术 前人多选用均相催化剂处理染料废水,虽然均相催化臭氧氧化可以达到令人满意的处=理效果, 但因为催化剂是以离子的形态分布在水中,无法与反应体系分离, 处理完毕后催化剂便同染料废水一起排放, 不仅造成催化剂的流失浪费, 同时也造成了水体的金属离子的二次污染。为了解决这一问题, 研究人员把具有催化作用的活性组分通过某些方法固定到一些载体上, 把负载了活性组分的固体催化剂投入到废水中在臭氧存在的条件下与废水反应, 进行非均相催化臭氧氧化反应。 2、非均相催化臭氧氧化设备处理染料废水技术 在非均相催化中, 催化剂是以固态存在, 主要有贵金属系、铜系和稀土系三大类。而贵金属因为价格昂贵其应用受到限制, 目前研究最多的是廉价金属及金属氧化物。非均相催化剂根据其制备工艺分为非负载型和负载型, 目前研究的重点在负载型非均相催化剂。负载型非均相催化剂由载体、活性组分和助剂三部分组成。常用的载体有Al2O3、沸石、活性炭纤维、分子筛等, 活性组分多为过渡金属。

为了进一步提高催化臭氧氧化的效果, 往往需要在单组分催化剂的基础上进行多元组分催化剂的研究, 根据催化剂的制备条件、各种活性组分的配比和助剂的选择来制备催化效率更高的催化剂。

废水中甲苯的臭氧氧化动力学的研究

收稿日期:1999-04-19 基金项目:广东省自然科学基金资助项目(970457) 作者简介:钟理(1956-),男,湖北人,教授,博士. 废水中甲苯的臭氧氧化动力学的研究 钟 理1 ,Kuo C.H. 2 (11华南理工大学化工学院,广东广州 510641;21Dept.of Chemical Engineering,M i ssissippi State University,M S 39762U SA) 摘要:采用臭氧氧化降解含甲苯的废水,实验研究了在温度为298K 时,不同pH 值、反应物的初始浓度对甲苯降解反应过程及其动力学的影响,初步探讨了甲苯液相臭氧氧化降解过程机理。关键词:降解;甲苯;臭氧 中图分类号:X783 文献标识码:A 文章编号:1001-6929(2000)02-0020-03 Investigation of Kin etics for Toluene in Wastewater by Ozonation ZH ONG Li 1,KUO C.H.2 (1.College of Chemical Eng ineering,South China U niv.of T ech.,Guangzhou,Guangdong 510641; 2.Dept.of Chemical Engineer ing ,M ississippi State U niv ersity,M S 39762USA) Abstract:Ozone was used fo r ox idizing and degrading toluene in w astewater.T he effect of different pH v alues and initial toluene con -centrations on its deg radation and kinetics at 298K w as studied ex perimentally.T he mechanism of deg radation for toluene by ozona -tion in aqueous so lutions w as ex plor ed primarily.Key words:deg radation;toluene;ozone 芳香烃类有机物如甲苯废水已被EPT 列为有害致癌物。该类废水因有机物结构较稳定,采用其他的方法难以奏效[1],本课题采用臭氧氧化过程降解该类废水,研究了不同pH 值臭氧氧化降解污染物的过程,在高的pH 值时,臭氧可被催化产生一种氧化能力极强的活性基团OH # 自由基,其氧化电位为2180V,比臭氧(2107V)的高35%,氧化能力仅次于氟[2]。OH #自由基在氧化污染物时无选择性,可引发链反应,直接将有害物氧化为二氧化碳,水或矿物盐,不会造成二次污染。 1 实验部分 实验装置是由英国H i -Tech 公司研制的(M odel SF-51)Stopped Flow 系统(反应器)如图1。由流动子系统,光路部分,流动激发子系统,电子部分,数据处理子系统,控温子系统(未画出)6个部分组成。该仪器通过测定反应物的吸收率随时间的变化,根据Beer-Lamer 定律将吸收率随时间的变化转化为浓度随时间的关系,得到甲苯臭氧氧化降 解过程的动力学常数。实验过程是:臭氧和甲苯溶液分别放在2个储存管中,通过驱动注射器(靠流动激发器推动)使反应物注入混合室中快速混合(可在01001s 内混合均匀),反应物流过检测器(反应器), 1)放大器;2)A/D 板;3)数据处理系统;4)光增大器;5)样品储存管;6)信号检测器;7)检测器;8)混合室;9)阀门;10)驱动注射器;11)流体流动激发器;12)电源与光放大器;13)单色仪;14)停止流动激发器;15)按纽;16)控制板;17)电源;18)U V 光源 图1 Stopped Flow 光谱仪反应器F ig 11 Stopped flow spectrophotometer reactor 第13卷 第2期 环 境 科 学 研 究Research o f Environmental Sciences V ol.13,No.2,2000

对甲苯磺酸

对甲苯磺酸 对甲苯磺酸 概述参考质量标准 MSDS 用途与合成方法对甲苯磺酸价格(试剂级) 上下游产品信息价格专题 中文名称: 对甲苯磺酸 中文同义词: 对甲苯磺酸;4-甲苯磺酸;4-甲基苯磺酸;对甲基苯磺酸;亚苄基酸;甲苯磺酸;对甲苯磺酸 P-TOLUENESULFONIC ACID;对甲苯磺酸(定做3-4周) 英文名称: p-Toluenesulfonic acid 英文同义词: TL65;TL65LS;PARATOLUENE SULPHONIC ACID;P-TOLUENESULFONIC ACID;PTS ACID;P-TOLUENE SULPHONIC ACID;TSA-65IP;TSA-65M CAS号: 104-15-4 分子式: C7H8O3S 分子量: 172.2 EINECS号: 203-180-0 相关类别: 合成材料中间体;中间体;有机原料;芳香族化合物;有机中间体;染料中间体;FINE Chemical & INTERMEDIATES;Organics Mol文件: 104-15-4.mol 对甲苯磺酸性质 熔点106~107℃ 沸点116 °C 密度 1.07 折射率 1.3825-1.3845 闪点41 °C 储存条件Flammables area 水溶解性soluble CAS 数据库104-15-4(CAS DataBase Reference) NIST化学物质信息 P-toluene sulfonic acid(104-15-4) EPA化学物质信息Benzenesulfonic acid, 4-methyl-(104-15-4) 对甲苯磺酸用途与合成方法 概述对甲苯磺酸(分子结构式:p-CH3C6H4SO3H,也写作TsOH,英文P-Toluene Sulfonic acid)简称PTS,是一个不具氧化性的有机强 酸,为白色针状或粉末状结晶,可溶于水、醇、醚和其他极性溶 剂。极易潮解,易使木材、棉织物脱水而碳化,难溶于苯和甲苯。 碱熔时生成对甲酚。常见的是对甲苯磺酸一水合物(TsOH·H2O)或 四水合物(TsOH·4H2O)。

催化臭氧技术

一、水处理催化臭氧技术 催化臭氧技术是基于臭氧的高级氧化技术,它将臭氧的强氧化性和催化剂的吸附、催化特性结合起来,能较为有效地解决有机物降解不完全的问题。催化臭氧化按催化剂的相态分为均相催化臭氧化和多相催化臭氧化,在均相催化臭氧化技术中,催化剂分布均匀且催化活性高,作用机理清楚,易于研究和把握。但是,它的缺点也很明显,催化剂混溶于水,导致其易流失、不易回收并产生二次污染,运行费用较高,增加了水处理成本。多相催化臭氧化法利用固体催化剂在常压下加速液相(或气相)的氧化反应,催化剂以固态存在,易于与水分离,二次污染少,简化了处理流程,因而越来越引起人们的广泛重视。 1催化臭氧化 对于催化臭氧化技术,固体催化剂的选择是该技术是否具有高效氧化效能的关键。研究发现,多相催化剂主要有三种作用。 一是吸附有机物,对那些吸附容量比较大的催化剂,当水与催化剂接触时,水中的有机物首先被吸附在这些催化剂表面,形成有亲和性的表面螯合物,使臭氧氧化更高效。 二是催化活化臭氧分子,这类催化剂具有高效催化活性,能有效催化活化臭氧分子,臭氧分子在这类催化剂的作用下易于分解产生如羟基自由基之类有高氧化性的自由基,从而提高臭氧的氧化效率。 三是吸附和活化协同作用,这类催化剂既能高效吸附水中有机污染物,同时又能催化活化臭氧分子,产生高氧化性的自由基,在这类催化剂表面,有机污染物的吸附和氧化剂的活化协同作用,可以取得更好的催化臭氧氧化效果[3]。在多 相催化臭氧化技术中涉及的催化剂主要是金属氧化物(Al 2O 3 、TiO 2 、MnO 2 等)、 负载于载体上的金属或金属氧化物(Cu/TiO 2 、Cu/Al 2 O 3 、TiO 2 /Al 2 O 3 等)以及具有 较大比表面积的孔材料。这些催化剂的催化活性主要表现对臭氧的催化分解和促进羟基自由基的产生。臭氧催化氧化过程的效率主要取决于催化剂及其表面性质、溶液的pH值,这些因素能影响催化剂表面活性位的性质和溶液中臭氧分解反应[4]。 1.1 (负载)金属催化剂 通过一定方式制备的金属催化剂能够促使水中臭氧分解, 产生具有极强氧

臭氧催化氧化

化学与环境工程学院水处理高级氧化处理 学号:122209201133 专业:环境工程 姓名: 任课老师: 2015年6月

臭氧催化氧化技术 摘要:近几年臭氧高级氧化技术已在我国各个行业污水处理方面迅速发展,自从“两会” 结束以后,我国更注重环境友好型社会建设,臭氧氧化技术在印染废水、煤化工废水、反渗透浓缩垃圾渗滤液、废乳化液等方面有了深一步进展,取得了很大的进步。 关键词:臭氧氧化技术、工业废水、臭氧利用率 1.臭氧氧化机理 1.1 臭氧性质 臭氧是一种氧化性极强的不稳定气体,须现场制备使用。臭氧是氧气的同素异形体,含有3 个氧原子,呈sp2 杂化轨道,成离域π键,形状为V 形,极性分子。臭氧在常温常压下为淡蓝色气体,水中的溶解度为9.2mlO3/L,高于氧气(42.87mg/L),水中溶解浓度高于20mg/L 时呈紫蓝色。臭氧有很强的氧化性,氧化还原电位为 2.07V,单质中仅低于F2(3.06V)。 1.2 臭氧的氧化机理 臭氧能够氧化大多数有机物,特别是氧化难以降解的物质,效果良好。臭氧在与水中有机物发生反应过程中,通常伴随着直接反应和间接反应两种途径,不同反应途径的氧化产物不同,且受控的反应动力学类型也不同。 (1)直接氧化反应 臭氧直接反应是对有机物的直接氧化,反应速率较慢,反应具有选择性,反应速率常数在1.0~103M-1S-1范围内。由于臭氧分子的偶极性、亲电、亲核性,臭氧直接氧化机理包括Criegree 机理、亲电反应、亲核反应三种。 (2)间接氧化反应 臭氧间接反应是有自由基参与的氧化反应,过程中产生了?OH,氧化还原电位高达2.80V,自由基作为二次氧化剂使得有机物迅速氧化,属于非选择性瞬时反应,反应速率常数为108~1010M-1S-1,氧化效率大大高于直接反应。此外?OH 与有机物发生的反应主要有三种:脱氢反应(Hydrogen abstraction),亲电加成( Electrophilic addition),转移电子(Electron transfer reaction)。 2 臭氧氧化法的影响因素 ⑴臭氧浓度 由于臭氧在水中的溶解度比较小,提高臭氧的浓度能够提高改变臭氧在水中中的溶解平衡,使水中臭氧的浓度上升,进而提高臭氧氧化的效果。 ⑵体系的pH 反应体系的pH对臭氧氧化降解的影响非常大。体系的pH会直接影响以羟基自由基为主的各类自由基的产生。 ⑶体系的温度 体系温度对反应速率有明显的影响,温度升高有助于提高臭氧分子在水溶液中自分解产生自由基的浓度,同时温度提高有助于水溶液的污染物分子与臭氧分子或是自由基的平均分子动能,有利于污染物分子与臭氧分子或是自由基的碰撞,从而提高氧化降解的速率。 3 以臭氧为主体的组合工艺

臭氧氧化对废水中有机物去除效率的影响

臭氧氧化对废水中有机物去除效率的影响 通过实验研究了臭氧接触氧化时间对于印染废水中有机物去除效率的影响。结果表明臭氧对CODC的去除效率并不与接触时间成正比,其反应过程可分为三个阶段,均属于一级反应。也表明单一利用臭氧氧化实现印染废水中有机物的降解不够经济合理。 印染废水是水环境主要污染源之一,它具有高浓度、高色度、成分复杂、可生化性差等特点,含有难以生物降解的有机质,排水水质水量变化波动也较大。要实现对该类废水中有机物的有效去除,必须对水中有机污染物的降解特性作深入的分析,掌握其在水中的分布特性,选择合适的处理技术。 臭氧是一种强氧化剂,将复杂的有机物转化成为简单有机物,使污染物的极性、生物降解性和毒性等发生改变。在理想条件下可把废水中的大多数单质和化合物氧化到最高化态,在净化污水的化学氧化工艺中,臭氧处理作为一个有力、有效和经济的氧化方法,地位稳步上升。 第一阶段,参加反应的物质主要是易被臭氧氧化分解的物质,这些物质具有很高的KM 值,进入反应塔的臭氧迅速与其反应,水中该类有机污染物被完全氧化为H2O和CO2,因此水中有机物浓度也迅速下降。 第二阶段,这一阶段的反应物质主要是上一阶段中未与臭氧反应的物质以及上一阶段被臭氧不完全氧化的产物,它们与臭氧的反应速率较低,KM值较小。 由于进入反应塔的臭氧流速是不变的,臭氧消耗速率的下降意味着反应器内的上升,从而使水中氧化还原电位(ORP)也上升到一个较高的值,水中难于氧化,ORP值高的有机物在这一新环境下也开始与臭氧反应。这一阶段KM值较小,较大,但斜率-KM比第一阶段仍有较大幅度下降,水中有机物浓度下降速率减缓,持续时间较长。 第三阶段,这一阶段水中残留有机物是较难被臭氧氧化的物质,它们与臭氧的反应速率很低,KM值很小,虽然此时、很大,可视为饱和,但是斜率-KM仍然相当小,近乎于0说明此时臭氧接触时间过长但对水中有机物的氧化效果不好,在实际水处理应用中意义不大。 臭氧对印染废水中有机物有一定去除,但主要以不饱和有机物为主,臭氧氧化印染废水中有机物可分为三个阶段,以CODCr表示印染废水中残留有机污染物指标,三阶段经历的时间分别为0~30min、30~75min和>75min,各阶段均属于一级反应。

对甲苯磺酸的检测方法

对甲苯磺酸的检测方法 一、游离硫酸含量的测定: 1.1原理:用Ba2+与磺酸中SO42-反应生成BaSO4沉淀,以茜素红为指示剂,用氯化钡标准溶液滴定游离硫酸含量。 1.2试剂和溶液: ⑴氯化钡标准溶液:C(?BaCl2)=0.10mol/L GB625 ⑵氢氧化钠标液:C(NaOH)=1.00mol/L GB629 ⑶盐酸标液:C(HCL)=0.10mol/L GB622 ⑷无水乙醇:分析纯GB678 ⑸茜素红指示剂:0.2% 1.3测定步骤: 试样的制备:称取4~5克混匀结晶物质(精确至0.0002g)于250mL 烧杯中,适量水溶解后转入250mL容量瓶中,定容至刻度,摇匀备用。 移取10.0mL该溶液于100mL烧杯中,加茜素红指示剂(0.2%)1滴,先用氢氧化钠标液(1.00mol/L)调至微红色突变,然后再以盐酸标液(0.10 mol/L)回调至黄色突变,此时溶液PH值应在3~4之间,加入20mL无水乙醇,再加入茜素红指示剂(0.2%)2~3滴,不断搅拌的条件下,用氯化钡标准溶液滴定至浑浊的红色刚出现为终点。 1.4结果表示和计算: 以质量百分含量表示的游离硫酸(H2SO4)含量按下式计算。 C1·V1×0.049 X1=—————————×100% 10/250×m 式中:

X1——表示游离硫酸(H2SO4)含量,单位%。 C1——表示氯化钡标准溶液的实际浓度,单位mol/L。 V1——表示消耗氯化钡标准溶液的体积,单位mL。 m——表示称取试样的质量,单位g。 10/250——表示分取试样的量。 1.5允许分析差: 两个平行测定结果之差不大于0.3%,取其算术平均值为测定结果。 二、对甲基苯磺酸含量的测定: 2.1原理:以酚酞为指示剂,用氢氧化钠标液滴定试样溶液测出其总酸度(以H2SO4表示)含量,然后减去游离硫酸含量X1,即为甲基苯磺酸含量相当于硫酸的量。 2.2试剂和溶液: ⑴氢氧化钠标液:C(NaOH)=0.10mol/L GB629 ⑵酚酞指示剂:1% 2.3测定步骤: 试样的制备:(同上)称取4~5克混匀结晶物质(精确至0.0002g)于250mL烧杯中,适量水溶解后转入250mL容量瓶,定容至刻度,摇匀备用。 移取25.0mL试样溶液于150mL三角瓶中,再量取20mL蒸馏水冲洗瓶壁,加酚酞指示剂(1%)2滴,不断摇匀的条件下,用氢氧化钠标液(0.10 mol/L)调至微红色(30秒不退色)为终点。 2.4结果表示和计算: 以质量百分含量表示的对甲基苯磺酸(CH3C6H4SO3H·HO2)含量按下式计算。

对甲苯磺酸

对甲苯磺酸 1物理性质 英文名:p-toluenesulfonic acid .(p-TSA)分子式:C7H8O3S,M=172g/mo; 性状:白色针状或粉末状结晶,易溶于水、醇和醚,极易潮解,易使棉织物、木材、纸张等碳水化合物脱水而碳化,难溶于苯、甲苯和二甲苯等苯系溶剂。碱熔时生成对甲酚。不具氧化性的有机强酸。常见的是对甲苯磺酸一水合物(TsOH·H2O)或四水合物(TsOH·4H2O)。 指标名称:分析纯(AR)、化学纯(CP)、精制级、特定级、工业优级 外观:白色针状或粉末结晶 含量%:≥ 99 98 98 97 96 硫酸盐(游离酸SO4):≤ 0.01 0.1 0.1 0.3 1.5 密度:1.34 折射率:1.563 闪点:41℃ 水溶性:可溶 沸点:140℃(2.67kPa) 熔点:103℃~105℃ NaCl:≤ 0.01% 灼烧残渣:≤0.1% ≤0.2% 水中溶解试验:合格合格 醇中溶解试验:合格合格 包装:10kg/盒(内衬塑)10kg/盒(内衬塑)25kg/袋(双层)25kg/袋(双层)25kg/袋(双层) CAS 编号:104-15-4 2用途 广泛用于合成医药、农药、聚合反应的稳定剂及有机合成(酯类等)的催化剂。用作医药、涂料的中间体和树脂固化剂,也用作电镀中间体。 3生产储运 生产方法:生产企业主要采用甲苯磺化法。连续生产采用三氧化硫磺化,南美国家采用比较多。连续生产产量高,能耗低,但砜类等副产物含量高。间歇生产采用硫酸磺化,欧美(日本江南等)、国内(苏州星火、连云港宁康等)均采用间歇法。间歇生产产量提高需要依靠平行的增加反应装置,能耗相对较高,但磺化副反应低,最终产品纯度相对较高。 生产历史:最早为苏州吴县化工二厂于1978年开发为常州制药厂生产强力霉素配套。之后各家民营企业开始生产对甲苯磺酸。 储运条件:库房通风低温干燥; 与碱分开存放。

高级氧化技术——臭氧氧化技术在水处理中的应用

高级氧化技术——臭氧氧化技术在水处理中的应用摘要:高级氧化技术(Advanced Oxidation Processes,简称AOP):运用点、光辐射、催化剂,有时还与氧化剂结合,在反应中产生活性极强的自由基(·OH),正在通过自由基与有机化合物之间的加合、取代、电子转移、断键等,使水体中的大分子难降解有机物氧化降解为低毒或无毒的小分子物质,甚 至直接降解成为CO 2和H 2 O,接近完全矿化。 关键词:水污染高级氧化技术臭氧氧化 1简介 随着工业的迅猛发展和人类物质生活水平的提高,水环境污染已是普遍存在的问题。过去十年,许多国家都制定了十分严格的标准,这些标准都特别要求对生态系统有毒害影响的物质实施严格监控。对那些有毒且难以生物降解的化合物,需要用非生物降解的其它处理技术去除,化学氧化法就是其中之一,其目的就是将这些难降解的有害物质氧化成二氧化碳、水和无机物或至少也要氧化成无害的物质。许多文献报道那些难生物降解的污染物常常具有高化学稳定性,很难完全氧化,因此采用比常规净化处理工艺更有效的技术是必要的。【1】高级氧化技术是近年发展起来的一种新型的在常温常压下将那些难以用臭 氧单独氧化或降解的有机物氧化的方法。同其它高级氧化技术如O 3/H 2 O 2 、UV/ O 3、UV/ H 2 O 2 、UV/ H 2 O 2 / O 3 、TiO 2 / UV和CWAO 等一样,催化臭氧化技术也是 利用反应过程中产生大量高氧化性自由基(羟基自由基) 来氧化分解水中的有机物从而达到水质净化。 2臭氧氧化技术的特点 相对于传统工艺来说,臭氧氧化技术拥有它不可代替的领先优势: O 3+H 2 O+hv → O 2 +H 2 O 2 H 2O 2 +hv → 2·OH (1)此反应过程中产生大量氢氧自由基·OH(表现强氧化性的原因),反应速度快,多数有机物在此过程中的氧化速率常数可达106 ~109 L/(mol.s)。 (2)适用范围广,较高的氧化电位使得·OH几乎可将所有有机物氧化直至矿化,不会产生二次污染。

对甲基苯磺酸

化学品安全技术说明书 化学品中文名:对甲苯磺酸 化学品英文名:p-toluene sulfonic acid; p-toluenesulfonic acid monohydrate 企业名称: 生产企业地址: 邮编: 传真: 企业应急电话: 电子邮件地址: 技术说明书编码: √纯品混合物 有害物成分浓度CAS No. 对甲苯磺酸6192-52-5 危险性类别:第8.1类酸性腐蚀品 侵入途径:吸入、食入、经皮吸收 健康危害:吸入、摄入或经皮肤吸收后对身体有害。本品对眼睛、皮肤、粘膜和上呼吸道有强烈刺激作用。吸入后,可引起喉、支气管的痉挛、水肿,化学性肺 炎或肺水肿。中毒表现有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和 呕吐。 环境危害:对环境有害。 燃爆危险:可燃,其粉体与空气混合,能形成爆炸性混合物。 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗20~30分钟。如有不适感,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗10~15分钟。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:用水漱口,给饮牛奶或蛋清。就医。

危险特性:受高热分解产生有毒的硫化物烟气。 有害燃烧产物:一氧化碳、硫化物。 灭火方法:用雾状水、泡沫、干粉、二氧化碳、砂土灭火。 灭火注意事项及措施:消防人员必须穿全身耐酸碱消防服、佩戴空气呼吸器灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。 应急行动:隔离泄漏污染区,限制出入。消除所有点火源。建议应急处理人员戴防尘口罩,穿防酸碱服。穿上适当的防护服前严禁接触破裂的容器和泄漏物。尽 可能切断泄漏源。用塑料布覆盖泄漏物,减少飞散。勿使水进入包装容器内。 用洁净的铲子收集泄漏物,置于干净、干燥、盖子较松的容器中,将容器移 离泄漏区。 操作注意事项:密闭操作,局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴防尘面具(全面罩),穿连衣式防毒衣,戴橡胶手套。 远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。避免 产生粉尘。避免与氧化剂、碱类接触。搬运时要轻装轻卸,防止包装及容器 损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可 能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。应与氧化剂、碱类、食用化学品分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备 有合适的材料收容泄漏物。 接触限值: MAC(mg/m3): 未制定标准PC-TWA(mg/m3): 未制定标准 PC-STEL(mg/m3): 未制定标准TLV-C(mg/m3): 未制定标准 TLV-TWA(mg/m3): TLV-STEL(mg/m3): 监测方法:无资料。 工程控制:密闭操作,局部排风。 呼吸系统防护:可能接触其粉尘时,必须佩戴防尘面具(全面罩)。紧急事态抢救或撤离时,应该佩戴空气呼吸器。 眼睛防护:呼吸系统防护中已作防护。 身体防护:穿连衣式防毒衣。 手防护:戴橡胶手套。 其他防护:工作完毕,淋浴更衣。注意个人清洁卫生。

对甲苯磺酸安全技术说明书

对甲苯磺酸安全技术说明书 第一部分:化学品名称 化学品中文名称:对甲苯磺酸化学品俗名: 化学品英文名称:p-toluene sulfonic acid 英文名称: 技术说明书编码:1817 CAS No.:6192-52-5 生产企业名称: 地址: 生效日期: 第二部分:成分/组成信息 有害物成分含量CAS No. 对甲苯磺酸6192-52-5 第三部分:危险性概述 危险性类别: 侵入途径: 健康危害:吸入、摄入或经皮肤吸收后对身体有害。本品对眼睛、皮肤、粘膜和上呼吸道有强烈刺激作用。吸入后,可引起喉、支气管的痉挛、水肿,化学性肺炎或肺水肿。中毒表现有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和呕吐。 环境危害:对环境有危害,对水体和大气可造成污染。 燃爆危险:本品可燃,具强刺激性。 第四部分:急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:用水漱口,给饮牛奶或蛋清。就医。 第五部分:消防措施 危险特性:受高热分解产生有毒的硫化物烟气。 有害燃烧产物:一氧化碳、二氧化碳、硫化物。 灭火方法:消防人员须戴好防毒面具,在安全距离以外,在上风向灭火。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 第六部分:泄漏应急处理 应急处理:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘面具(全面罩),穿防毒服。用洁净的铲子收集于干燥、洁净、有盖的容器中,转移至安全场所。也可以用大量水冲洗,洗水稀释后放入废水系统。若大量泄漏,收集回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:密闭操作,局部排风。操作人员必须经过专门培训,严格遵守操作规程。

甲苯磺酸妥舒沙星滴眼液项目介绍

甲苯磺酸妥舒沙星片、胶囊、滴眼液项目介绍甲苯磺酸妥舒沙星滴眼液是一种喹诺酮类广谱抗菌药,经国外临床应用表明,甲苯磺酸妥舒沙星滴眼液在治疗眼睑炎、泪囊炎、结膜炎、角膜炎等眼科感染性疾病时,疗效显著,抗菌谱广,杀菌力强,是日本新开发的眼科临床抗感染的药物。目前本品国内还没有申报。 【剂型】滴眼液 【类别】化药3.3类 【规格】0.3%(5ml:15mg) 【适应症】眼睑炎、泪囊炎、结膜炎、角膜炎等。 【用法用量】点眼。每日3次,每次1滴。 【性状及参数】本品为无色澄明的无菌滴眼用液体。实验室研究表明,本品pH 值为4.9~5.5,渗透压比0.9~1.1。 【药理毒理】本品为喹诺酮类广谱抗菌药。体外对下列细菌有抗菌作用:革兰阳性菌:肺炎球菌、化脓性链球菌、溶血性链球菌、肠球菌、葡萄球菌属细菌等。革兰阴性菌:肠杆菌科细菌如不动杆菌属、变形杆菌属、柠檬酸菌属、沙门菌属(伤寒和副伤寒沙门菌除外)、沙雷菌属细菌及大肠埃希菌等。其他革兰阴性菌包括铜绿假单胞菌、淋病奈瑟菌、流感嗜血杆菌等。厌氧菌:消化链球菌、痤疮丙酸杆菌等。 本品是通过抑制细菌DNA旋转酶而达到抑菌或杀菌作用。 【国内外上市信息】甲苯磺酸妥舒沙星是日本富山化学工业株式会社开发的氟喹诺酮类抗菌药,1990年在日本获得批准。2006年4月,日本富山化学工业株式会社的甲苯磺酸妥舒沙星滴眼液获得批准上市,商品名OZEX,日本标准商品分类番号为871319,售价为154.7日元/支。 目前国内有珠海经济特区生物化学制药厂、赤峰万泽制药有限公司和浙江海正公司生产本品原料药,但不对外销售。甲苯磺酸妥舒沙星滴眼液国内没有厂家申报。 【日本临床研究结果】 在日本对本品进行了一项临床试验, 304例眼外部感染患者(包括眼睑炎、泪囊炎、麦粒肿、结膜炎、睑板腺炎、角膜炎等症状)使用本品进行了临床比较试验,各症状应用本品的临床表现见下表:

对甲苯磺酸检测标准

对 甲 苯 磺 酸 1 范围 本标准规定了对甲苯磺酸的要求,试验方法,检验规则,标志、包装、运输、贮存。 本标准适用于石油甲苯、浓硫酸(或三氧化硫)经磺化制得的对甲苯磺酸。产品用于制药及其它有机合成,亦可用于脂化反应催化剂和树脂、涂料的固化剂。 结构式: H 3C ——SO 3H ·H 2O 分子式:C 7H 8O 3S ·H 2O 相对分子质量:190.20(按1997年国际相对原子质量)。 2 规范性引用文件 下列文件中的条款通过本标准的引用而且成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 191 包装储运图示标志 GB/T 601-1998 化学试剂 滴定分析(容量分析)用标准溶液的制备 GB/T 603-1998 化学试剂 试验方法中所用制剂及制品的制备 GB/T 617-1988 化学试剂 熔点范围测定通用方法 GB/T 6679-1986 固体化工产品采用通则 GB/T 6682-1992 分析实验室用水规格和试验方法 GB 15346-1994 化学试剂 包装及标志 3 要求 3.1 外观 产品呈白色柱状结晶(工业级允许呈现微黄色)。

3.2 质量指标 产品质量指标由表1给出。 4 试验方法 表1 质量指标 所用试剂除另有注明外,均使用分析纯试剂。所用标准滴定液、制剂及制品在没有注明其他规定时,均按GB/T 601-1988、GB/T 603-1998规定制备。实验室用水应符合GB/T 6682-1992中三级水的规格。 4.1 外观的测定 目视。 4.2 含量的测定 4.2.1 试剂和溶液 氢氧化钠标准滴定溶液C(NaOH)=0.1 mol/L 酚酞指示液(10 g/L)

对甲苯磺酸的制备

对甲苯磺酸的设计实验指导书 实验目的:学习芳香族的磺化反应制备芳磺酸;巩固分水器的使用、回流以及重结晶操作反应原理: 主反应: 副反应: 原料与产物的物理常数Array 装置图

实验内容 仪器药品:烧杯(100ml)、布氏漏斗、抽滤瓶、圆底烧瓶、球形冷凝管、分水器、锥形瓶。甲苯25ml(21.7g,0.24mol),浓硫酸(d=1.84)5.5ml(0.10mol),精盐,浓盐酸。 实验步骤: ①在50ml圆底烧瓶内放入25ml甲苯,一边摇动烧瓶,一边缓慢地加入5.5ml浓硫酸,投入几根上端封闭的毛细管,毛细管的长度的长度应能使其斜靠在烧瓶颈内壁。在石棉网上用小火加热回流2h或至分水器中积存2ml水为止 ②静置。冷却反应物。将反应物倒入60mL锥形瓶内,加入1.5mL水,此时有晶体析出。用玻璃棒慢慢搅动,反应物逐渐变成固体。用布式漏斗抽滤,用玻璃瓶塞挤压以除去甲苯和邻甲苯磺酸,得粗产品约15g。(实验到此约3h) ③若欲获得较纯的对甲苯磺酸,可进行重结晶。在50ml烧杯里,将12g粗产物溶于约6ml 水里。往此溶液里通入氯化氢气体,直到有晶体析出。在通氯化氢气体时,要采取措施,防止“倒吸”。析出的晶体用布氏漏斗快速抽率。晶体用少量浓盐酸洗涤。用玻璃瓶塞挤压去水分,取出后保存在干燥器里。 注意事项 1)滴加浓硫酸时一定要在振摇下用滴管慢慢加入。 2)控制加热强度。 3)析晶时要慢慢搅拌。 问题: 1)利用什么性质除去对甲苯磺酸中的邻位衍生物? 2)在本实验条件下,会不会生成相当量的甲苯二磺酸?为什么? 八、设计要求: 从实验原理出发设计原料配比。 从实验反应条件出发设计实验装置 从原料的物理常数等条件设计实验步骤和反应温度、催化剂、溶剂、反应终点的确定。

相关主题
文本预览
相关文档 最新文档