当前位置:文档之家› 镁铝水滑石在无卤阻燃橡胶中的应用研究

镁铝水滑石在无卤阻燃橡胶中的应用研究

镁铝水滑石在无卤阻燃橡胶中的应用研究
镁铝水滑石在无卤阻燃橡胶中的应用研究

镁铝水滑石在无卤阻燃橡胶中的应用研究

周燕北

【期刊名称】《科园月刊》

【年(卷),期】2011(000)003

【摘要】镁铝水滑石(LDH或HgAl-LDH)作为一种新型的阻燃剂,已经引起了广泛关注.本文通过对橡胶试样进行氧指数测定,物理机械性能的测试,以及对水滑石的X光衍射分析后分析得到,当水滑石用量相同时,三元乙丙橡胶(EPDH)的阻燃性能优于天然橡胶(NR),三元乙丙橡胶(EPDH)更适合用于制备阻燃橡胶;水滑石的粒径越小,纯度越高,在基体中分散越好,阻燃效果越佳.

【总页数】2页(50-51)

【关键词】水滑石;三元乙丙橡胶;天然橡胶;无卤阻燃;偶联剂改性

【作者】周燕北

【作者单位】沈阳化工大学

【正文语种】中文

【中图分类】

【相关文献】

1.基于天然橡胶的无卤阻燃型及橡胶阻燃技术探究 [J], 殷小波

2.膨胀型阻燃剂功能化水滑石的制备及阻燃改性三元乙丙橡胶发泡材料的研究[J], 刘义林[1,2]

3.无卤低烟阻燃三元乙丙橡胶电缆绝缘材料的阻燃体系研究[J], 吴洪; 段国权; 陈卫; 代占勇

4.无卤磷氮系复合阻燃剂JHFR101在三元乙丙橡胶中的应用 [J], 贺春江; 张国

低烟无卤阻燃电缆料技术参数解读(精)

低烟无卤阻燃电缆料技术参数解读 众所周知,护套料起着对光电缆重要的保护作用。光电缆的种类也随着护套料品种的变化而变化,如护套料采用低烟无卤阻燃料,则该种光电缆就称为低烟无卤阻燃光电缆。然而,有些光电缆制造企业对护套料的认识不够全面,有时片面强调某些指标而忽略另一些指标,导致采购的护套料达不到要求的技术指标;更有甚者,会导致有些护套料制造企业趁机钻光电缆制造企业的空子,提供质量差的护套料。为了让光电缆制造企业对护套料有更全面的了解,采购到质优价廉的放心护套料,我们经过认真调查研究,对护套料的几项重要指标予以说明,并列出目前护套料市场存在的一些问题,供大家参考 1、低烟无卤阻燃电缆料 ★氧指数 几乎在所有人眼里,它都代表了无卤阻燃材料阻燃性能的指标。大多数人认为,氧指数越高则阻燃性能越好,或者说氧指数达标则材料阻燃性能达标。其实不然,氧指数高不一定通得过线缆阻燃试验,氧指数低也未必就通不过线缆阻燃试验。原因:材料在燃烧中是否滴流及滴流的程度大小很大程度决定了线缆是否能通过阻燃试验及线缆的阻燃水平。 ★热变形和高温压力 这是一个容易被忽视的、但却代表了耐温等级的指标。一提到耐温性能,大家都会想到热老化的指标,容易忽视掉热变形和高温压力这一指标。那么,对于热塑性低烟无卤阻燃料来说,热变形和高温压力性能不好则意味着 ①线缆护套熔点低、易变形,即在低于线缆最高使用温度时就能变软甚至熔化,同时在外力及自重的作用下使线缆变形甚至破坏,从而使线缆失去正常保护; ②线缆护套易开裂,即线缆局部受热受力时容易在较软的区域开裂,比如在阳光下爆晒或受到烘烤时,会在爆晒和烘烤面开裂; ③做成的线缆阻燃性差,即材料氧指数并不低,但做成的线缆在进行燃烧试验时通不过。原因:材料温度指数低及线缆燃烧时无卤材料滴流。 ★挤出性能 无卤料挤出性能比其它材料差,故大家都着力于挤出性能的改善,但非常好挤的无卤材料也必然会存在以下问题 ①可能阻燃剂添加量不足而导致阻燃性不够 ②材料太软而造成耐温性不够,致使高温压力不合格;同时,由于材料温度指数低及滴流,从而导致线缆阻燃性不合格。 2、PE护套料

聚碳酸酯用磺酸盐阻燃剂研究进展

聚碳酸酯用磺酸盐阻燃剂研究进展 肖元琴欧育湘赵毅 北京理丁大学材料学院 PC本身具有一定的阻燃性,依据相对分子质量及不同接枝情况,氧指数为21%--24%,阻燃性能达UL-94 V-2级,优于普通塑料,PC虽然能自熄,但仍难以满足某些应用领域如电视机、电脑、打印机的机壳和组件、变压器线圈、汽车部件、建筑材料等对PC阻燃性能的要求。此外,PC燃烧时滴落的热熔体很易引起附近的材料着火。为此,必须对PC进行阻燃改性。 目前PC常用的阻燃剂主要分为溴系、有机磷系、硅系、磺酸盐系、硼系等。溴系阻燃剂因其对环境造成污染而逐渐被限制使用。磷系阻燃剂添加量大:一般为10%-30%,多数分解温度比较低,易腐蚀模具,有些还会影响树脂的冲击强度,更甚者在较高温度下会导致PC材料发黄,有机磷系阻燃剂一般多用于PC/ABS合金。有机硅化合物被认为一类高效、无毒、低烟、环境友好性阻燃剂。但成本较高,常与其他阻燃剂复合使用。硼系阻燃剂阻燃效率不高,通常只有与聚硅氧烷并用才能达到较好的效果。 磺酸盐系阻燃剂阻燃效率高,添加极少量即可使PC达UL 94 V-0级(3.2mm厚),但要满足更高的阻燃性能则需与其他阻燃剂复配使用。 1 PC用磺酸盐阻燃机理 早在20世纪70年代:通用电器及拜耳公司就申请了磺酸盐化合物用于PC的阻燃的专利。目前工业中常用的商品主要有苯磺酰基苯磺酸钾(KSS)、全氟丁基磺酸钾(PPFBS)、2,4,5―三氯苯磺酸钠(STB)。―般阻燃剂的阻燃机理可分为:1、气相阻燃,即抑制在燃烧反应中起链增长作用的自由基;2、凝聚相阻燃,即在固相中终止聚合物的热分解和阻止聚合物释放出可燃气体;3、中断热交换,即将聚合物产生的热量带走而不反馈到聚合物上,使聚合物不再持续分解。但磺酸盐对PC的阻燃机理与上述不同,目前大多认为燃烧时它能加快PC 的成炭速率,促进聚合物分子交联。 图1: PC的TGA谱图 图1为PC与PC/PPFBS的热失重(TGA)谱图,从图1(b)可见在455℃-531℃间出现了一个尖峰,503℃时的质量损失速率(MLR)约20%/min,纯PC的TGA谱图显示此温度下的MLR 约9%/min,前者约为后者的两倍。此外,添加PPFBS后的PC与纯PC燃烧后的炭残余量并无多大变化(500℃下PC的残余量为40.1%,PC/PPFBS为43.6%,700℃两者的炭残余量均为21.5%),但添加PPFBS后PC的氧指数从26.8%增大为37.5%。另外根据PC/PPFBS 体系460.8℃及515.8℃下的FTIR谱图,并与纯PC的FTIR谱图对比,得出结论为:PPFBS 阻燃PC的作用为:1、促进二氧化碳和水的释放;2、促进酚类物质的生成;3、促进芳香族与脂肪族化合物的产生,表明PPFBS具有提高PC的成炭速率的作用。 关于PC的交联的研究。Brady利用裂解一色谱一质谱联用技术发现磺酸盐可以促进生成异丙酚的二聚体(交联),此反应为碱性催化反应。根据此机理,可认为PC/PPFBS体系热降解产生的碱性烷基氧化钾有利于保持PC的交联度。 Jameshines等从PC的结构出发探讨了在磺酸盐存在下PC的交联过程。不同于一般聚酯(如PET、PBT)PC的结构使它具有一种特定的降解过程,即受热后会发生分子结构的重排,使得PC交联。此外磺酸盐受热分解生成的二氧化硫对这种重排具有促进作用,从而促进PC 的交联。在材料表面上成炭。阻止可燃气体释放以及热的传播。PC的少量交联所减少的热

水滑石概述

1.1 水滑石类层状化合物概述 层状化合物因其在化学和结构上表现出的特殊性质,在吸附、离子交换和催化等方面具有巨大的应用潜力,己成为国内外研究的热点。研究较多的层状化合物按层间离子种类可分为三类: (1) 阳离子型:如天然蒙脱土、绿土和人工合成的四价金属不溶盐类,如Ti、Zr、Hf 的砷酸盐。 (2) 阴离子型:主要是水滑石类层状材料。 (3) 非离子型:云母、石墨等。 层状化合物的主要性质表现在以下几个方面: (1) 主体层状化合物已有的酸碱催化特性可通过柱撑剂加以改进; (2) 柱撑剂可改变其层间距、孔径和比表面积,充分发挥其择型功能; (3) 可将一些催化活性物种作为柱撑剂引入主体层间; (4) 插入适当柱撑剂,可使层状化合物发展成双功能或多功能催化剂; (5) 通过改性或插入适当柱撑剂,可使层状化合物具有阻燃、耐热、红外吸收、紫外阻隔及杀菌防霉等性能。 水滑石类层状化合物是一类近年来发展迅速的阴离子型粘土,自然界含量很少,是一类由带正电荷的水镁石层结构和层间填充带负电荷的阴离子所构成的层柱状化合物,具有广阔应用范围。它具有与蒙脱土类阳离子粘土类似的层状结构,不同的是骨架为阳离子,层间为阴离子,显碱性,层间距可通过填充离子半径不同的阴离子来调变。由于它们的主体成分一般是由两种金属的氢氧化物构成,因此又称其为层状双金属氢氧化物(Layered Double Hydroxides,简称LDHs)。 比较常见的Mg/Al 组分的LDHs,称为水滑石(Hydrotalcite,简称HT);其它组分的LDHs 也可称为类水滑石(Hydrotalcite like compound,简称HTlc);它们的层插化学产物称为柱撑水滑石(Pillared Hydrotalcite)。水滑石、类水滑石和柱撑水滑石统称为水滑石类材料。可以通过调变金属离子和阴离子种类、大小等,改变水滑石类层状化合物的化学和物理性质,从而制得不同性能的材料。 水滑石于1842年在瑞典首次被发现,它是一种碳酸型镁铝双氢氧化物,在自然状态下以叶状和旋转板状或纤维团状形式存在。在发现水滑石的同时,另一种由镁铁组成的碳酸型双氢氧化物也被发现,这种物质和其它含有不同物质组成的矿物质一样与水滑石具有基本相同的结构和相似的特征。 佛罗伦萨大学的矿物学教授E.Manasse首先提出水滑石及其它同类型矿物质的化学式,他提出水滑石的精确简式Mg6A12(OH)16CO3·4H2O,并且认为碳酸根离子是必不可少的。这种观点在那时比较流行,并且持续了很多年。直到1941年,弗罗德的一篇题为“Constitution

低烟无卤阻燃护套

低烟无卤阻燃护套、绝缘料——用于电力、通讯、控制电缆AFR/12是一种含阻燃剂的聚烯烃热塑性复合材料,不释放卤酸,具有自熄特点, 可大量减少有毒腐蚀 性气体的排放和烟雾的产生。由这种材料制成的电缆特别适合在要求具有高度安全性的公共场合下使用。 AFR/12具有良好的机械性能、加工性能和阻燃性能,并具有最优的性价比。 AFR/12的性能测试符合CEI 20.11M1、VDE 0207-24HM2、BS 6724、BS 7655 LTS1与LTS3、OVE K- cm cm M km M km 1 / 1

S/mm 以上典型值取自样片或电缆试样测试平均值。 挤出 AFR/12可用长径比L/D=18~25的挤出机挤出,建议采用低压缩比(类似挤橡胶或无卤材料)的螺杆, 也可以采用挤PVC 的螺杆低速挤出。慎用挤聚乙烯的螺杆。料筒要有良好的温控装置。 挤出机各段温度建议如下: 100 110120130140150160170180190200 1区 2区 3区 4区 法兰盘 机头 口模 以上温度仅供参考,具体温度控制应根据具体设备适当调整,但熔融温度不能超过170℃。筛网须用 宽眼网(<100孔/cm 2 )。但必须使用分流板,特别在使用低压缩比的螺杆时。 AFR/12既可采用压缩式挤出,也可采用挤管式挤出。 本料用户可自加各种色母粒,建议重量比为1.5%。 贮存 本料必须在下列条件下贮存: 1. 包装完好无破损; 2. 环境温度不超过30℃; 3. 不直接暴露在阳光下或风雨中。 包装 AFR/12每25kg 一袋防潮包装, 1250kg 托盘包装; 或1000kg 托盘防潮箱装。 (注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

马亚强镁铝水滑石的合成

镁铝水滑石的合成、组成分析及其晶体结构表征 班级:应化1008 姓名:马亚强 学号:2010016218(1号) 一. 实验目的: 1.本实验采用共沉淀法制备镁铝水滑石; 2.利用EDTA 络合滴定法测定镁铝水滑石样品中Mg2+和Al3+的含量; 3.热分析法确定镁铝水滑石样品中的结构水含量; 4.通过红外、X 粉末衍射表征晶体结构。 二.实验原理: (一)合成材料 1.层状双金属氢氧化物(Layered double hydroxides,简称LDHs )是一类阴离子型粘土,又称类水滑石。组成通式为:[M(II)1-x M(III)x (OH)2 ] x+ A x/n n-mH 2 O M (II ):二价金属离子 M(III):三价金属离子 A n-:阴离子 x=M(III)/[M(II)+ M(III)],0.2≤x ≤0.33。 2.典型的类水滑石化合物为镁铝水滑石:Mg 6Al 2(OH)16CO 3?4H 2 O , 图1 水滑石的层状结构 结构特征: (1) 层板组成可调 ; (2)层间阴离子可调。 3.目前制备水滑石类化合物通常采用共沉淀法,其合成路线为: (1)MgCl 2+AlCl 3+NaOH+Na 2CO 3 → Mg 6Al 2(OH)16CO 3·4H 2O+NaCl (2)Mg(NO 3)2+Al(NO)3+NaOH+Na 2CO 3 → Mg 6Al 2(OH)16CO 3·4H 2O+NaNO 3 (3)MgSO 4+Al 2SO 4+NaOH+Na 2CO 3 → Mg 6Al 2(OH)16CO 3·4H 2O+Na 2SO 4 Guest Host Host

水滑石

水滑石的制备及应用研究 摘要:水滑石及类水滑石化合物具有特殊的层状结构及物理化学性质,具有孔径可调变的择形吸附的催化性能,在吸附、催化领域中占有重要位置。综述了水滑石的结构、合成方法和应用。 自然界存在的水滑石是镁、铝的羟基碳酸化物,后来人们合成了各种类型的类水滑石化合物(hydrotalcite-like compounds,简称HTLcs),是水滑石中的Mg2+,Al3+,被其他同价离子同晶取代后的化合物,它在结构上与水滑石相同。由于HTLcs具有离子交换性,又具有孔径可调变的择形吸附的催化性能,近年来越来越受人们重视。 近年来,对于层状双金属氢氧化物(Layerdouble hydroxides简称LDHs)的研究已成为材料科学领域的热点,水滑石及类水滑石化合物因具有特殊的层状结构及物理化学性质,在吸附、催化领域中占有重要位置,对它研究也越来越多。 1 结构 水滑石分子组成是Mg6Al2(OH)16CO3·4H2O,它是一种阴离子型层状化合物。水滑石中的Mg2+、A13+被M2+、M3+同晶取代得到结构相似的一类化合物,称为类水滑石,分子通式:M2+1-XM3+X(OH)2(An-)X/n·yH2O,其中M2+=Mg2+、Ni2+、Co2+、Zn2+、Cu2+等;M3+=Al3+、Cr3+、Fe3+、Sc3+等;An-为在碱性溶液中可稳定存在的阴离子,如:C032—、NO3—、Cl—、 OH—、S042—等;x=0.2~0.33,y=0~6。不同的M2+和M3+,不同的填隙阴离子A—,便可形成不同的类水滑石。其结构非常类似于水镁石Mg(OH)2,由MgO6八面体共用棱形成单元层,位于层上Mg2+、Al3+、OH—层带有正电荷。层间有的Mg2+可在一定范围内被A13+同晶取代,使交换的阴离子CO32-与层板上的正电荷平衡,使得这一结构呈电中性。此外,在氢氧化物层中同时存在着一些水分子,这些水分子可以在不破坏层状结构的条件下去除。下图描述了水滑石的典型结构。 水滑石之所以能在催化领域被广泛应用,是因其特殊的结构赋予其许多特性: (1)特殊的层状结构。晶体场严重不对称,阳离子在层板上的晶格中,阴离子不在晶格中,而在晶格外的层间。 (2)碱性。HTLcs的碱性与层板上阳离子M的性质、MO键的性质都有关系。 (3)酸性。HTLcs的酸性不仅与层板上金属离子的酸性有关,而且还与层间阴离子有关。 (4)稳定性。HTLcs经焙烧所得的复合金属氧化物仍是一类重要的催化剂和载体。以水滑石为例,其热分解过程包括脱结晶水、层板羟基缩水并脱除 CO2和新相生成等步骤。在低于220℃时,仅失去结晶水,而其层状结构没有被破坏;当加热到250~450℃时,层板羟基缩水并脱除CO2;在450—550℃区间,可形成比较稳定的双金属氧化物,组成是Mg3A1O4(OH),简写为LDO。LDO在一定的湿度(或水)和CO2(或碳酸盐)条件下,可以,恢复形成LDH,即所谓的“记忆功能”。LDO一般具有较高的比表面积(约200~300m2/g)、三

低烟无卤阻燃耐火电缆原理及生产过程

低烟无卤阻燃耐火电缆原理及生产过程 低烟无卤阻燃耐火电缆原理及生产过程 1.耐火和阻燃机理 1.1耐火机理 在电线电缆的绝缘和护套材料中加入某种添加剂,降低聚合物产生的热量,防止聚合物分解或促进绝缘和护套材料炭化形成保护层;在导体外绕包云母带等无机绝缘材料,在绝缘和护套层被火燃蚀后,绕包在导体上的云母带遇火后生成不溶不熔的白色坚硬绝缘壳体二氧化硅,有良好的电绝缘性能,确保电缆继续通电,从而在着火时保持一定时间的正常运行。 1.2阻燃机理 高分子聚合物中加入大量的添加型阻燃剂-水合金属化合物(AL(OH)3、Mg(OH)2等),其阻燃反应为吸热分解反应,即: 电缆在火灾中水合金属化合物受热分解,释放出结晶水并吸收大量的热量,从而 降低了电缆的表面温度,同时分解生成的三氧化二铝(Al 2O 3 )、氧化镁(MgO)是惰 性吸热载体,其既可阻止与氧气等可燃物的接触,又可挡住热量向电缆内传输,从而达到阻燃的目的。 低烟无卤阻燃耐火电缆原理及生产过程 2.生产工艺 2.1电缆的导体 耐火电缆的导体采用铜导体,导体几何形状为圆形,且多根绞合导体应紧压。圆形紧压铜导体与扇形导体相比有许多优点:绕包云母带时使云母带与导体结合紧密,有利于电场均匀分布,增强电缆的电气绝缘性能,同时可以节约云母带的用量,降低成本。 2.2电缆的耐火层 导体外采用两层或多层云母带重叠绕包,一般重叠率不小于30%,有时重叠率达50%才能达到耐火试验要求,以达到耐火试验为基准。绕包角控制在40-50度。 2.3电缆的绝缘和护套 电缆绝缘根据阻燃等级的不同允许选用交联聚乙烯或无卤低烟阻燃聚烯烃绝缘材料,由于导体外重叠绕包两层或多层耐火云母带,对于导体截面25mm2及以上

水滑石概述

1.1 水滑石概述 水滑石类层状化合物是一类近年来发展迅速的阴离子型粘土,自然界含量很少,是一类由带正电荷的水镁石层结构和层间填充带负电荷的阴离子所构成的层柱状化合物,具有广阔应用范围。它具有与蒙脱土类阳离子粘土类似的层状结构,不同的是骨架为阳离子,层间为阴离子,显碱性,层间距可通过填充离子半径不同的阴离子来调变。由于它们的主体成分一般是由两种金属的氢氧化物构成,因此又称其为层状双金属氢氧化物(Layered Double Hydroxides,简称LDHs)。 比较常见的Mg/Al 组分的LDHs,称为水滑石(Hydrotalcite,简称HT);其它组分的LDHs 也可称为类水滑石(Hydrotalcite like compound,简称HTlc);它们的层插化学产物称为柱撑水滑石(Pillared Hydrotalcite)。水滑石、类水滑石和柱撑水滑石统称为水滑石类材料。可以通过调变金属离子和阴离子种类、大小等,改变水滑石类层状化合物的化学和物理性质,从而制得不同性能的材料。 水滑石于1842年在瑞典首次被发现,它是一种碳酸型镁铝双氢氧化物,在自然状态下以叶状和旋转板状或纤维团状形式存在。在发现水滑石的同时,另一种由镁铁组成的碳酸型双氢氧化物也被发现,这种物质和其它含有不同物质组成的矿物质一样与水滑石具有基本相同的结构和相似的特征。 佛罗伦萨大学的矿物学教授E.Manasse首先提出水滑石及其它同类型矿物质的化学式,他提出水滑石的精确简式Mg6A12(OH)16CO3·4H2O,并且认为碳酸根离子是必不可少的。这种观点在那时比较流行,并且持续了很多年。直到1941年,弗罗德的一篇题为“Constitution and polymorphism of the Pyroarite and Sjogrenite Groups”的发表,这些矿物质的组成及它们之间的关系才真正被认清。1970年,当第一个关于水滑石类化合物作为加氢催化剂的最佳引体的专利产生时,人们开始兴起对水滑石类化合物的研究。 1.2 基本结构 典型的水滑石类化合物是水滑石,其分子式为Mg6A12(OH)16CO3·4H2O,其主体层板结构非常类似于水镁石Mg(OH)2,结构中心为Mg2+,六个顶点为OH-,由相邻的MgO6八面体共用棱形成单元层(层板厚度约0.47nm),层与层间对顶地叠在一起,层间通过氢键缔合。位于层上的Mg2+可在一定范围内被半径相似的Al3+同晶取代,使得主体层板带永久正电荷;中层间具有可交换的阴离子CO32-,它所带的负电荷与层上正电荷平衡,使得这一结构呈电中性。此外在层间其余空间,存在一些结晶水,这些水分子可以在不破坏层状结构的条件下去除。 LDHs中的Mg2+、A13+被其它M2+、M3+同晶取代得到结构相似的水滑石类化合物,它

低烟无卤

低烟无卤电线特性: (1) 抗张强度比一般PVC电线大:一般PVC电线抗张强度大于1.05Kgf/mm2,而低烟无卤电线抗张强度大于1.2Kgf/mm2; (2) 具有良好的耐候性(-30℃~105℃); (3) 具备良好的柔软度(硬度为80—90); (4) 具有非移性(因为此产品配方中不用添加可塑剂,故不会有移形性); (5) 燃烧时不会产生有毒黑烟(会产生少量白色烟雾); (6) 具有较高的体积电阻率:PVC电线一般为1012~1015Ω/cm3,低烟无卤电线大于1016Ω/cm3; (7) 具有良好的耐高压特性:PVC电线一般耐10KV以上,而低烟无卤电线高达15KV以上; (8) 具有良好的弹性和粘性。 3. 低烟无卤线材配方添加材料: (1) 选用线型PE及弹性PE为主要树脂,阻燃材料选用三种含结晶水的金属氧化物:分别为在200℃、300℃、300℃以上失去结晶水。 硅酮母粒和硅酮粉! 外观白色颗粒白色粉末 有效成份(%)50 100 用量(%) 1 - 5 0.5 - 2.0 使塑料制品功能得到增强,帮助塑料制品功能完美化,使制品具有抑烟、不产生可见烟尘、发烟量减少;有阻燃效果可达V-0级的良好阻燃功能;增加色母粒滑动性,润滑作用强,使制品表面光滑;可提高挤出性能,使挤出机任何部件在任何操作过程均不产生粘滞,不粘钻头;能助进色料分散、混合,使制品内部结构致密、均匀;提高制成品的的强度,耐冲击,好成型;能改进塑料薄膜的润滑性、防止粉连;耐高温、耐磨、导电等功能。 硅酮塑料改性添加剂是由超高分子量固态硅氧烷制成,在现今生产比较多的几中低烟无卤等高填充体系(PP、EV A、PE)的加工上,它不仅可提高熔体加工流动性,降低螺杆的扭力,提高脱模性,提高色粉或无机物的分散性,提高树脂与填料的相容性,提高制品的表面光洁度和表面手感,改善产品拉伸和冲击强度,提高制品的耐磨、抗划伤性能,超高分子量助剂不象低分子量助剂那样牺牲产品的力学性能,同时超高分子量固态硅氧烷还是高效的阻燃协效剂,与氢氧化镁、氢氧化铝等体系相协效降低烟指数、发烟量、发热量和一氧化碳的产生量。 目前ABS阻燃正趋向于无卤化,对无卤阻燃剂的研究成为世界各国的热点之一,无卤化已成为阻燃剂开发、应用的主要趋势。近年来对新型阻燃、消烟剂的研究正悄然兴起,其中有机硅粉和纳米粘土(n-MMT)就属于这类物质。有机硅粉自身的热释放速率很低,且受外部热流的影响很小,它们以极低的含量(一般2%以下)填充在聚合物中就可以显著降低聚合物的热释放速率,并且燃烧时不产生烟雾。纳米粘土(n-MMT)具有优良的阻燃效果,是因为一方面纳米粘土的片层结构本身具有优异的阻燃和阻隔性能,另一方面由于聚合物分子链通过插层的方法进入到粘土的片层间,分子链的运动受到粘土片层的限制,起到保护的作用,因此可以提高材料的阻燃和耐热性能。

无卤阻燃剂发展现状及趋势

无卤阻燃剂发展现状及趋势* 王虎 刘吉平 (北京理工大学材料学院) 摘要介绍了近年来国内外磷系阻燃剂、氮系阻燃剂、硅系阻燃剂等无卤阻燃剂的发展状况和最新研究进展,指出无卤和绿色环保型阻燃剂是未来发展的主流。为了改善无卤阻燃剂的阻燃效果,粒度超细化、表面改性处理和协同复合是目前主要发展方向。 关键词无卤阻燃阻燃剂分类发展趋势 近年来,由于城市建筑更为密集、人口密度增大,各种建筑材料、装饰材料应用量急剧增大,火灾引起的人员伤亡和财产损失呈上升趋势。火灾已成为最经常、最普遍地威胁公众安全和社会发展的主要灾害之一。此外,根据数据统计,火灾中的伤亡事故,有80%左右是由于火灾前期材料热解时产生的有毒气体和烟雾使人窒息无法逃生所造所造成的。因此,在提高材料阻燃性的同时,应尽量减少热裂解或燃烧生成的有毒气体和烟量。研究清洁、高效、与材料相容性好的无卤阻燃剂成为阻燃材料发展的重中之重。 1 无卤阻燃剂的分类及阻燃机理 1.1 磷系阻燃剂 在无卤阻燃体系的研究开发中磷系阻燃剂历史较长,该阻燃剂不仅克服了含卤阻燃剂燃烧烟雾大、放出有毒及腐蚀性气体的缺陷,同时又改善了无机阻燃剂高添加量严重影响材料的物理机械性能的缺点,做到了高阻燃性,低烟、低毒、无腐蚀性气体产生。 含有磷系阻燃剂的高聚物被引燃时,在其受热时阻燃剂热解磷的含氧酸,开始起到阻燃作用,其阻燃机制有气相机制和凝固相机制。在凝固相中,当磷系阻燃剂生成磷的含氧酸时,其促使树脂脱水、炭化,使可燃裂解产物减少。同时,磷的含氧酸多系粘稠状的半固态物质,可在材料表面形成一层覆盖于焦炭层的玻璃状熔融物,降低炭层的透气性和保护炭层不被继续氧化,从而抑制了燃烧的蔓延。根据磷系阻燃剂的组成和结构,可以分为无机磷系阻燃剂和有机磷系阻燃剂两类[1]。无机磷系阻燃剂包括红磷和磷酸盐类,有机磷系阻燃剂包括磷酸酯、亚磷酸酯、磷酸酯和磷盐等。 1.2 氮系阻燃剂 氮系阻燃剂低毒、不腐蚀,对热和紫外线稳定,阻燃效率好且价廉。目前应用的含氮阻燃剂主要包括三大类:三聚氰胺、双氰胺、胍盐及其衍生物。其中三聚氰胺、三聚氰胺氰尿酸和三聚氰胺磷酸酯是阻燃剂市场中最具有发展潜力的品种。关于氮系阻燃剂的阻燃机理,通常认为氮系阻燃剂受热分解后,易放出氨气、氮气、深度氮氧化物、水蒸汽等不燃性气体;不燃性气体的生成以及阻燃剂分解吸热(包括一部分阻燃剂的升华吸热)带走大部分热量,极大地降低聚合物的表

镁铝水滑石阻燃剂表面改性及其机理

樊慧庆等:掺杂三氧化二锑的钛酸铋钠钾陶瓷的显微结构和电学性能· 103 ·第41卷第4期 DOI:10.7521/j.issn.0454–5648.2013.04.00 镁铝水滑石阻燃剂表面改性及其机理 徐圣,曾虹燕,赵策,廖梦尘,杨永杰,张伟,陶静,肖华淼 (湘潭大学化工学院,湖南湘潭 411105) 摘要:采用三聚磷酸钠(STPP)对镁铝水滑石(MAH)进行表面改性。X射线衍射、扫描电子显微镜、能谱、热重–差热、红外光谱比表积测试和粒度 分析对改性前后的镁铝水滑石进行表征,考察了改性前后镁铝水滑石的吸油性能和润湿性能。结果表明:三聚磷酸根(5 310 P O?)包覆于镁铝水滑石粒子表面,改性后的镁铝水滑石粒子表面疏水性增强,分散性明显提高。将改性前后镁铝水滑石样品与聚丙烯(PP)混合固化,测试其复合材料(MAH/PP、SMAH/PP)阻燃性和力学性能,发现相对于MAH/PP,SMAH/PP复合材料力学性能有所提高,阻燃性能也得以改善。 关键词:镁铝水滑石;阻燃剂;改性;三聚磷酸钠;聚丙烯 中图分类号:TQ132.2,TQ326.9 文献标志号:A 文章编号:0454–5648(2013)04– 网络出版时间:网络出版地址: Surface Modification of the Mg–Al Hydrotalcite Flame-retardant XU Sheng,ZENG Hongyan,ZHAO Ce,LIAO Mengchen,YANG Yongjie,ZHANG Wei,TAO Jing,XIAO Huamiao (School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China) Abstract: The surface modification of Mg–Al hydrytalcite particle (MAH) by sodium tripolyphosphate (STPP) was carried out. The unmodified and modified MAHs(MAH and SMAH, respectively) were characterized by X-ray diffraction, scanning electron micros-copy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric-derivative thermogravimetric analysis, specific surface area measurement and particle size analysis, respectively. The oil absorption and wettability of the particles were investigated. The results show that the surface of the MAH is coated by5 310 P O?in the modification process. The hydrophobic property of the SMAH particles was strengthened, and the congeries dispersibility was improved. The composites (MAH/PP, SMAH/PP) were obtained by mixing MAH and SMAH into Polypropylene (PP), respectively. The flame retardancy and mechanical properties of the composites were analyzed. Compared to the MAH/PP sample, the mechanical properties of the SMAH/PP composite was in-creased, and the flame retardancy was enhanced. Key words: Mg–Al hydrotalcite; flame retardant; modification; sodium tripolyphosphate; polypropylene 低烟无卤阻燃材料可以避免含卤阻燃材料燃烧时所带来的二次污染,是阻燃材料的发展趋势。当今,开发低烟无卤阻燃剂在世界范围内仍是一个技术难题。作为无机无卤阻燃材料,镁铝水滑石(MAH)兼具Al(OH)3和Mg(OH)2之阻燃优点,并避免它们各自的缺陷,具阻燃、消烟、填充和热稳定性等多种功能,是一种高效、环保、消烟型无毒无卤的新型阻燃剂[1–2]。但MAH粒子表面存在的大量非架桥羟基,使其表面结构不稳定,相互之间极易形成氢键而团聚形成二次粒子,使粒子粒径变大,分散性差,与高分子材料相容性差,严重地影响塑料制品的拉伸强度、伸长率等力学性能[3–5]。 为了改善MAH阻燃剂的性能,提高其阻燃效率,必须对其表面进行改性,以改进MAH粒子的分散性和相容性,增强高分子材料的机械力学等性能。三聚磷酸钠(STPP)是一种链状的缩合磷酸盐,易溶于水,对金属离子有显著的螯合能力,为工业中常用助剂或食品添加剂,是高岭土、氧化镁和碳 收稿日期:2012–09–11。修订日期:2012–10–30。 基金项目:湖南省自科基金重点项目(12JJ2008);2012年湖南省大学生创新性实验计划资助项目。 第一作者:徐圣(1987—),男,硕士研究生。 通信作者:曾虹燕(1963—),博士,教授。Received date:2012–09–11. Revised date: 2012–10–30. First author: XU Sheng (1987–), male, Master candidate. E-mail: xutiandasheng@https://www.doczj.com/doc/941376733.html, Correspondent author: ZENG Hongyan (1963–), female, Ph.D., Professor. E-mail: hyzeng@https://www.doczj.com/doc/941376733.html, 第41卷第4期2013年4月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 4 April,2013 2013-03-02 09:39https://www.doczj.com/doc/941376733.html,/kcms/detail/11.2310.TQ.20130302.0939.016.html

镁铝类水滑石的合成及其在纸张阻燃中的应用

镁铝类水滑石的合成及其在纸张阻燃中的应用 王松林,陈夫山 (青岛科技大学化工学院,青岛市,266042) 摘要:随着现在阻燃技术的发展,无机阻燃剂的应用也得到了快速的发展。镁铝类水滑石是兼具了传统氢氧化铝和氢氧化镁阻燃剂优点的新品种。通过研究探讨共沉淀法合成的镁铝类水滑石方法,并通过纤维填充的方法应用到纸张阻燃中,讨论了镁铝类水滑石的晶体性质以及纸张阻燃性能。结果表明,镁铝类水滑石胶体颗粒的体积平均粒径为112 nm;晶体结晶度较高,热稳定性好;颗粒带有较高的正电荷和高的比表面积,可与纤维通过电荷中和作用吸附在纤维上,起到加填、增白和阻燃作用的同时,还起到了微粒助留的作用。水滑石用量在15%时,阻燃纸的氧指数为25%,纸张可以起到很好的阻燃效果。 关键词:镁铝类水滑石;阻燃纸;阻燃剂;共沉淀法 阻燃剂的种类繁多,按是否参与高分子材料化学反应分类,有反应型阻燃剂和添加型阻燃剂。其中添加型阻燃剂又有无机阻燃剂和有机阻燃剂两大类[1~4]。无机阻燃剂主要类型有金属氢氧化物、金属氧化物和碱金属盐、氨盐、钼化物等。有机阻燃剂主要有卤系阻燃剂、磷系阻燃剂和氮系阻燃剂等。研究开发高效、无毒、低烟、高性能价格比、适于工业化生产的无机无卤阻燃剂,是当前该领域的前沿研究课题之一。 纸在人民生活和社会发展中起着十分重要的作用,其应用范围很广。但是,纸及纸制品是极易燃烧的物质,不少火灾是纸及纸制品被引燃所造成的,对纸张的阻燃处理是十分必要的[5]。美国、日本等国家在20 世纪60 年代就开始纸张阻燃技术的研究,迄今已取得了很多成果。我国对纸张阻燃技术的研究起步较晚,但也已研制出绝缘性阻燃纸、阻燃塑料壁纸基材用难燃纸等纸种[6~9]。阻燃纸主要有两大类:一类是以石棉、矿棉、玻璃纤维、海泡石纤维等无机矿物纤维为主要成分与天然纤维抄造的纸张,另一类是在纸浆中添加各种阻燃剂或浸渍涂布制成的具有阻燃效果的纸张。 镁铝类水滑石兼具了氢氧化铝和氢氧化镁阻燃剂的优点,又克服了它们各自的不足,具有阻燃、消烟、填充功能,是一种高效、无卤、无毒、低烟的新型阻燃剂[10~13]。镁铝类水滑石阻燃剂的工业化生产和应用已引起国内外的关注。本文通过共沉淀法合成的镁铝类水滑石,并通过纸浆纤维填充的方法应用到纸张阻燃中,研究了镁铝类水滑石的晶体性质以及纸张阻燃性能。 1实验 1.1 实验原料 浆料:取自山东某造纸厂,阔叶浆。水分含量:79.95%;打浆度:33.8 oSR。

类水滑石制备及应用

类水滑石材料制备及其应用 目录 目录 (1) 1 水滑石的结构及性质 (2) 2 水滑石的制备方法[2] (3) 2.1水热法 (3) 2.2沉淀法 (3) 2.3诱导水解法 (3) 2.4热处理的重新水合法 (4) 2.5离子交换法 (4) 2.6焙烧还原法 (4) 2.7溶胶-凝胶法 (4) 3 水滑石的研究进展及其应用 (5) 3.1HTLc的制备、结构解析及合成机理方面 (5) 3.2LDHs 及HTLc 的吸附性能及吸附机理的研究 (5) 3.3利用LDHs 及HTLc 制备功能复合材料方面 (5) 3.4LDHs 及HTLc 在催化研究领域方面 (6) 3.5LDHs 及HTLc 的片层剥离研究方面 (6) 3.6LDHs 及HTLc 的生物制剂研究方面 (7) 3.7LDHs 及HTLc 的紫外阻隔研究方面 (7) 4 水滑石研究存在的问题 (7) 参考文献 (9)

1 水滑石的结构及性质 水滑石类化合物又称层状的双金属氢氧化物(Layered Double Hydrotalcides, 简称LDHs或HTLc),天然存在的水滑石只有镁铝水滑石,其他均为类水滑石,是一类阴离子插层的层状无机功能材料。层状双金属氢氧化物(LDHs)具有二维层板状结构。水滑石类化合物的化学组成通式为[M2+(1-x)M3+x(OH)2]x-[A n-]x/n?2H2O,其中M2+为二价金属阳离子(如Mg2+, Zn2+,Cu2+, Ni2+等), M3+为三价金属阳离子(如Al3+, Fe3+, Cr3+,Ga3+等),且占据了水镁石(Mg(OH)2)层板的八面体孔,其中,x=M3+/(M2++M3+),A n-为层间的阴离子或阴离子基团。层间组成:阴离子;保证了LDHs 的电荷守恒。由于LDHs 层板阳离子排列的均匀有序性,通过煅烧后的LDHs 经过还原,可以得到高分散的负载型金属催化剂[1]。 水滑石类化合物的特殊结构使其具有特殊的性能: 1)层板化学组成的可调控性:层状化合物的片层能够应用于纳米复合材料或者成为无机或有机纳米材料的构件,可以通过重新排列或组装,形成新的纳米复合材料、多分子纳米膜等结构。 2)层间离子种类及数量的可调控性:层间阴离子CO32-可被NO3-和Cl-等简单的无机阴离子取代,也可被体积较大的同多和杂多金属含氧酸盐取代,还可以被不同体积的有机阴离子替代。 3)晶粒尺寸及其分布的可调控性:其结构为六边形的层状结构,金属离子位于层板上,层板的厚度与层间插入的阴离子大小有关。 4)记忆效应:在某一特定的温度下,将合成的镁铝水滑石焙烧一定时间,使镁铝水滑石层间和板层上的—OH或结晶水蒸发、层间的CO32-分解为CO2,形成稳定的具有较高比表面积的双金属复合氧化物,并将此时焙烧的产物投入到含有预期阴离子的溶液或蒸汽中,利用“记忆效应”,新的阴离子会插入到板层之间,水滑石的结构得到重组,形成含有新的阴离子的插层柱撑水滑石。 5)热稳定性:水滑石具有特殊的结构和组成,受热分解时易吸收大量热,可降低材料表面的温度,使塑料的热分解能力和燃烧率大大降低;分解释放出的二氧化碳a和水能稀释、阻隔可燃性气体;分解产物是碱性多孔物质,比表面大,能吸附酸性气体,同时其与塑料燃烧时表面的炭化产物结合生成保护膜,因而具有阻燃和抑烟的双重功能[2]。 HTLc具有表面微孔性、离子交换性、层板正电性、记忆恢复性等特征,可以将其他组分( 例如某些特定的无机或有机材料)与其层板进行组装获得。由于其具有特殊的层状结构和表

无卤阻燃聚碳酸酯新进展

无卤阻燃聚碳酸酯新进展* 欧育湘 赵 毅 (北京理工大学阻燃材料研究国家专业实验室,北京 100081) 韩廷解 钟 柳 (武警后勤装备研究所,北京 102613) (成都西华大学理化学院,成都 610039) 摘要 介绍阻燃聚碳酸酯(PC)用无卤阻燃剂的结构及性能,分析和讨论了笔者合成的两种新型固态磷酸酯类阻燃剂阻燃PC的性能、特点和阻燃模式,由此制得的阻燃PC材料在性能、价格和环保上均具优势。此外,综述了氧化膦、聚硅氧烷及磺酸盐阻燃PC的最新进展。 关键词 聚碳酸酯 无卤阻燃剂 磷酸酯 聚硅氧烷 磺酸盐 传统的阻燃聚碳酸酯(PC)材料常采用溴系阻燃剂 (BFR)阻燃,如加入质量分数6%~9%的含溴环氧低聚物 (一般不添加Sb 2O 3 ,以免引起PC降解和恶化PC的透明性) 即可使PC的阻燃等级达到UL94V-0级,且对其热变形温 度(HDT)影响甚小,甚至可增加PC的冲击强度。在此类阻 燃PC材料中加入一定量的热致液晶聚酯,可改善其流动 性,因而可用于注塑薄壁型制品[1]。又如加入质量分数约 10%的含溴碳酸酯低聚物也可使PC达到U L94V-0级,且 阻燃PC的物理性能较佳[2]。另外,溴代三甲基苯基氢化茚 也是很适于PC的溴系阻燃剂,但为了使PC达到UL94V-0 级,添加的质量分数需15%以上[3]。含溴磷酸酯[三(二溴 苯基)磷酸酯]具有分子内磷-溴协同效应,质量分数为8% ~10%时即可赋予PC UL94V-0级[4]。但随着对阻燃高分 子材料环保方面的要求越来越高,BFR的应用受到越来越多 的限制,因此无卤阻燃剂开始在阻燃PC中得到越来越广泛 的应用。可用于PC的无卤阻燃剂有新型固态磷酸酯阻燃 剂,反应型磷系阻燃剂,磺酸盐、磺酰胺盐、有机硅系阻燃剂 及红磷等[5-12],与BFR相比,它们均有利于保护生态环境及 人类健康。 1 阻燃PC用无卤阻燃剂的结构及性能 (1)三苯基磷酸酯(TPP),淡黄色固体,熔点不高于 50 ,质量损失5%时的热失重温度(T 5% )为260 ,其结构 式如下: (7)双(羟苯基)苯基氧化膦(B HPPO),白色固体,熔点 *国家863计划资助项目(2007AA03Z500) 收稿日期:2008 11 03

PC阻燃

PC用无卤阻燃剂研究进展综述 姓名:王文超 摘要:聚碳酸酯(PC)具有突出的冲击性能、透明性、尺寸稳定性,优良的力学性能和电性能,较高的玻璃化转变温度(140-150℃)、热变形温度(132-138℃),以及较宽的使用温度范围(-60-120℃),广泛应用于电子电气、建筑、包装、医疗器械、光学仪器、交通运输等领域,并迅速向航空、航天、计算机等领域发展。据业内人士估计,全球市场对PC的需求量以年均8%-10%的速度增长,DVD用光学级PC将成为PC的主要增长领域。2002-2008年我国市场对PC的需求年均增长率为10.4%。PC的阻燃性(氧指数为21%-24%,阻燃性能达到UL94V-2级)虽然优于普通的热塑性聚合物(如聚乙烯、聚丙烯等),但仍难以满足某些应用领域对阻燃性能的要求,因此须对PC进行阻燃改性。 1. 磷系阻燃剂 1.1 磷系阻燃剂是一类除对聚苯乙烯和聚烯烃等以外的聚合物都非常有效的阻燃剂,具 有低毒、持久、价廉、热稳定性好等特点,目前已经得到广泛应用,美国磷系阻燃剂的消费量已经超过溴系阻燃剂。近10年磷系阻燃剂也已成为国内阻燃剂研究与开发的热点,目前已开发出30多个品种。磷系阻燃剂与卤系阻燃剂并用,其协同阻燃效果更佳。磷系阻燃剂分为磷酸酯类、氧化磷类、盐类、杂环类等系列。但磷系阻燃剂易腐蚀模具,降低聚合物的加工性能,并且有毒性物质易从塑料中渗出,造成二次污染。 1.2 Wang C.S.等以双苯基碳酸酯(DBP)、双酚A(BAP)和含磷杂菲结构磷酸酯类(ODOPB) 阻燃剂为原料,通过酯交换反应合成了含磷共聚PC。研究表明,当磷的质量分数仅为0.75%时,材料的氧指数达31%,且随磷含量的增加而增大。其阻燃机理为:当材料燃烧时ODOPB 吸热脱水,放出水蒸气并形成玻璃层覆盖在材料表面,阻止氧气和热量向材料内部传递,提高了聚合物的热分解温度。 1.3 B.M.Alexander等合成了含炔、磷的阻燃剂,研究了其对PC阻燃性能的影响。当阻 燃剂质量分数为10%时,材料的阻燃性能达UL94V-0级。V.L.Sergei等研究了DBP、磷酸三苯酯(TPP)及间苯二酚双(二苯基)磷酸酯(RDP)对ABS/PC合金阻燃性能的影响。结果表明,这3种阻燃剂主要是固相阻燃,并且DBP的热稳定性、阻燃性、耐水解性优于RDP和TPP,添加DBP至磷质量分数为1%时,ABS/PC(3/1)合金的阻燃性能达UL94V-0级。一般情况下,添加0.5%的聚四氟乙烯可以防止材料的熔滴滴落,降低阻燃剂用量。

镁铝类水滑石的介绍

类水滑石 摘要 根据近十几年的文献,对类水滑石的性质,制备及应用进行了综述。介绍了类水滑石材料的合成方法以及作为催化剂,添加剂,吸附剂在有机合成反应,石油化学,塑料工业,水处理等方面的应用。 目录 1类水滑石 2性质 3制备 4应用 目录 1类水滑石 2性质 3制备 4应用 类水滑石 类水滑石化合物(Hydrotalcite-like compounds,HTlc)是由带正电荷的金属氢氧化物层和层间电荷平衡阴离子构成的层状双金属氢氧化物。

可用通式表示为 [M2+1-xM3+x(OH)2]x+[An-x/n] ·mH2O,其中M2+ 是二价金属阳离子,可以有Fe2+,Co2+,Cu2+,Zn2+,Mn2+ 等;M3+ 是三价金属阳离子,可以有Fe3+,Cr3+等,由这些二价和三价金属离子的有效组合,可形成二、三元甚至四元的HTlcs。An- 为层间阴离子,可为无机阴离子如Cl-、CO32-等;也可以是有机阴离子,如对苯二甲酸根以及配合物阴离子如Zn(BPS)34 -等;还可以为同多或杂多阴离子如V10O286 -及层状化合物如[ Mg2Al(OH)] -等。A是价数为-n的阴离子,X是M3+ 与{M3++M2+}的摩尔比。HTlc单元晶层相互平行重叠形成层状结构,层状结构中的每一层的结构和水镁石Mg(OH)2类似(水镁石为正八面体结 构,结构中心为Mg2+,六个顶点为OH-,相邻的正八面体通过羟基共用边相互连接形成片层),是由金属(氢)氧八面体靠共用边相互连接而成,但化学组成与水镁石不同,其中部分二价金属离子被三价金属离子代替(称为同晶置换),称为类水镁石层。类水镁石层相互平行重叠形成HTlc层状结构.层和层之间有孔隙,通常称为通道 (Gallery)。水镁石层是电中性的,而类水镁石层中由于三价金属离子同晶置换部分二价金属离子而带有剩余正电荷。这种由晶体结构本身产生的电荷与外界条件(如分散介质的pH,电解质等)无关,所以称为永久电荷。为维持电中性,在通道中存在阴离子以平衡片层所带的剩余正电荷。通道中的阴离子是可以交换的,所以HTlc具有阴离子交换性,因而也常称为阴离子黏土。 性质 1 HTlc片层化学组成的可调节性 HTlc片层中的二价或三价金属阳离子均可被其它离子半径与之相近的同价金属离子所代替,形成新的HTlc。同价金属离子对类水滑石结构形成影响不同,有的同价金属离子间具有离子浓度叠加效应。二价和二价金属离子也可分别被一价和四价金属离子取代形成HTlc。 2 HTlc交换和吸附性能 类水滑石具有阴离子交换特性,可使HTlc与许多无机和有机阴离子进行交换,形成具有不同层间阴离子的新HTlc。不同层间阴离子的引入可能使HTLc表面得以改性而改善使用功能,如大分子阴离子的插入可使HTlc 层间距变大,使柱撑HTlc的择形催化能力更加显著,得到更多的反应面和暴露更多的活性中心。其阴离子交换能力与其层间阴离子种类有关,已经验证了许多阴离子交换能力的大小,得出了“高价阴离子易于通过交换进入层间,低价的阴离子易于被交换出来”的结论。 HTlc是带有结构正电荷且有较大比表面的一类物质,因此有较好的吸附性能。未修饰过的HTlc可通过静电引力吸附水中的物质,如腐殖质、农药、三氯苯酚和三硝基苯酚等有机物质,起到净化水源的目的。经表面修饰的HTlc(如用直链酸进行表面改性),则可作为疏水性有机化合物的吸附剂。 研究认为,HTlc在溶液中优先吸附C032-和P043-,但离子交换吸附能力远低于理论最大值。HTlc经锻烧后得到混合金属氧化物,吸附能力会大大提高。对一些无机离子如Cr042-, Si032- , S042-, CI-,Mn04-吸附研究表明,HTlc锻烧后得到的金属混合氧化物是良好的废水处理剂,核反

相关主题
文本预览
相关文档 最新文档