当前位置:文档之家› 哈工大电路答案第13章

哈工大电路答案第13章

哈工大电路答案第13章
哈工大电路答案第13章

答案13.1

解:

(1)、(4)是割集,符合割集定义。

(2)、(3)不是割集,去掉该支路集合,将电路分成了孤立的三部分。

(5)不是割集,去掉该支路集合,所剩线图仍连通。

(6)不是割集,不是将图分割成两孤立部分的最少支路集合。因为加上支路7,该图仍为孤立的两部分。

答案13.2

解:选1、2、3为树支,基本回路的支路集合为

{1,3,4},{2,3,5},{1,2,6};

基本割集的支路集合为

{1,4,6},{2,5,6},{3,4,5}。

答案13.3

解:

(1) 由公式l t I B I T t =,已知连支电流,可求得树支电流

(2) 由公式t t U B U -=l ,已知树支电压,可求得连支电压

(3) 由矩阵B 画出各基本回路,如图(a)~(c)所示。将各基本回路综合在一起得题中所求线图,如图13.3(d)所示。

答案13.4

解:连支电流是一组独立变量,若已知连支电流,便可求出全部支路电流。因此除将图中已知电流支路作为连支外,还需将支路3或4作为连支。 即补充支路3或4的电流。若补充3i ,则得A 11=i ,A 22-=i ,34A 3-i i -=;若补充4i ,则得A 11=i ,A 22-=i ,43A 3-i i -=

答案13.5

解:树支电压是一组独立变量,若已知树支电压,便可求出全部支路电压。除将图中已知支路电压作为树支外,还需在支路1、2、3、4、5中任选一条支路作为树支。即在1u 、2u 、3u 、4u 、5u 中任意给定一个电压便可求出全部未

知支路电压。

答案13.6

解:由关联矩阵A 画出网络图,如图题13.6所示,由图写出基本割集矩阵如下:

答案13.7

解:由T t l C B -=得

????????????----=00

11011011101101t B , ?????

???????----==10000011010001100010111000011101]|[t l B B B 由B 矩阵画出各基本回路,如图(a )~(d)所示。将各基本回路综合在一起得题中所求线图,如图13.7(e )所示。

答案13.8

解:由T t l B C -=得

????????????------=1010011111011100l C , ????????????------==10001010010001110010110100011100]|[t l C C C 答案13.9

解:由基本回路矩阵可知:支路1、2、3为连支,4、5、6为树支,已知树支电压,可以求出全部连支电压。

连支电流等于连支电压除以相应支路的电阻。

答案13.10

解:根据所选的树,基本回路矩阵B 和基本割集矩阵C 如下:

?????

?

??????----------=10

000110010011000010001100011111B , KCL 方程和KVL 方程矩阵形式为:

=CI 0,0=BU 。

答案13.11

解:按照广义支路的定义,作出网络线图,如图(b)所示。

根据线图写出关联矩阵

支路电导矩阵

支路源电压向量

支路源电流向量

节点导纳矩阵

节点注入电流向量

得节点电压方程

答案13.12

解:按照广义支路的定义,作出网络线图,如图(b)所示。

根据线图写出关联矩阵A

根据线图并对照电路图写出

支路导纳矩阵

支路源电压向量

支路源电流向量

节点导纳矩阵

节点注入电流向量

由Sn n n I U Y =得节点电压方程

答案13.13

解:选择专用树如图(b)所示。

分别对含有电容的基本割集1c 和2c 列写KCL 方程

321i i u

--= (1) 1325.0i i u

-= (2) 分别对含有电感的基本回路1l 和2l 列写KVL 方程

231u u i

-= (3) 3125.0u u i

-= (4) 为消去非状态变量,对含3u 支路的基本割集列KCL 方程

01

2313=--+i i i u (5) 对含3i 支路的基本回路列KVL 方程

13232u u u i =++ (6)

由式(5)、(6)解得: 将3i 和3u 代入式(1)~(4)整理得:

哈工大电路答案-1

答案1.1 解:图示电路电流的参考方向是从a 指向b 。当时间t <2s 时电流从a 流向b,与参考方向相同,电流为正值;当t >2s 时电流从b 流向a ,与参考方向相反,电流为负值。所以电流i 的数学表达式为 2A 2s -3A 2s t i t ? 答案1.2 解:当0=t 时 0(0)(59e )V 4V u =-=-<0 其真实极性与参考方向相反,即b 为高电位端,a 为低电位端; 当∞→t 时 ()(59e )V 5V u -∞∞=-=>0 其真实极性与参考方向相同, 即a 为高电位端,b 为低电位端。 答案1.3 解:(a)元件A 电压和电流为关联参考方向。元件A 消耗的功率为 A A A p u i = 则 A A A 10W 5V 2A p u i === 真实方向与参考方向相同。 (b) 元件B 电压和电流为关联参考方向。元件B 消耗的功率为 B B B p u i = 则 B B B 10W 1A 10V p i u -===- 真实方向与参考方向相反。 (c) 元件C 电压和电流为非关联参考方向。元件C 发出的功率为 C C C p u i = 则 C C C 10W 10V 1A p u i -===-

真实方向与参考方向相反。 答案1.4 解:对节点列KCL 方程 节点③: 42A 3A 0i --=,得42A 3A=5A i =+ 节点④: 348A 0i i --+=,得348A 3A i i =-+= 节点①: 231A 0i i -++=,得231A 4A i i =+= 节点⑤: 123A 8A 0i i -++-=,得123A 8A 1A i i =+-=- 若只求2i ,可做闭合面如图(b)所示,对其列KCL 方程,得 28A-3A+1A-2A 0i -+= 解得 28A 3A 1A 2A 4A i =-+-= (b) 答案1.5 解:如下图所示 (1)由KCL 方程得 节点①: 12A 1A 3A i =--=- 节点②: 411A 2A i i =+=- 节点③: 341A 1A i i =+=- 节点④: 231A 0i i =--= 若已知电流减少一个,不能求出全部未知电流。 (2)由KVL 方程得

哈工大电子技术实验四人无弃权表决电路(高分版)

姓名XXX 班级1108301 学号xx 实验日期节次 9-11 教师签字成绩 四人无弃权表决电路 1.实验目的 1)掌握74LS20的逻辑功能和使用方法; 2)通过实验,进一步熟悉组合逻辑电路的分析与设计方法。 2.总体设计方案或技术路线 设计一个四人无弃权表决电路(多数赞成则提议通过,即三人以上包括三人),用74LS20来实现。 1)根据任务的要求,设计电路; 2)用代数化简法求出最简的逻辑表达式; 3)根据表达式,画出逻辑电路图,用标准器件(与、或、非)构成电路; 4)最后,用实验来验证设计的正确性。 3.实验电路图 1)ABCD输入端,接数据开关;Z输出端接电平指示器; 2)改变ABCD的组态,记录Z的变化,验证逻辑函数的功能及设计的正确性。 4. 仪器设备名称、型号

1)实验箱 1台2)双踪示波器 1台3)双路直流稳压电源 1台4)数字万用表 1只5)74LS20 3片5.理论分析或仿真分析结果 74LS20管脚图: 逻辑关系式: C AB D Z=ABC+BCD+ACD+ABD=AB BCDACD 逻辑图:

6.详细实验步骤及实验结果数据记录(包括各仪器、仪表量程及内阻的记录)真值表: A B C D F 00000 00010 00100 00110

7.实验结论 由真值表可知,四人无弃权表决电路设计成功,实现了预期功能。

8.实验中出现的问题及解决对策 实验过程中由于有五个与门,而每个74LS20可实现两个与门,故线路连起来相当复杂,容易混淆,故在连接电路时安排好位置,标记好引脚和接头。 9.本次实验的收获和体会、对电路实验室的意见或建议 此次设计是对经典四人表决电路的一次创新,利用书本上的知识和以前类似实验的设计思路进行了此次实验,锻炼了实践能力,熟悉了组合逻辑电路的设计方法。 这次的实验绝对原创的,是对以前做过的实验的一次创新,复杂了不少,锻炼了能力。 10.参考文献 [1]电工学实验教程/王宇红主编.——北京:机械工业出版社,(重印)

电路理论基础课后答案解析(哈工大陈希有)第11章

题11.1 根据定义求 和的象函数。 解: (1) (2) 题11.2 设 求的象函数。 解: 由拉氏变换的微分、线性和积分性质得: 题11.3 设 (t 为纯数)。分别求对应象函数、、,验证卷积定理。 解: 设 , 则 与的卷积为 )()(t t t f ε=)(e )(t t t f at ε-=2020 001e 1e 1e e )()(- s s dt s s t dt t t s F st st st st =-=+-==∞-∞-∞-∞ -- - - ??ε 20)(20 )(00) (1e )(1e 1e e )(e )(-ααααεααα+=+-=+++-==∞ +-∞+-∞-∞-----??s s dt s s t dt t t s F t s t s st st t ξ ξετd f c t bf t t f a t f f t A t f t t )()(d )(d )(,0)0(),()e 1()(01 11 21/1?-++==-=--)(2t f )(2s F ) /1(//1)(1 τττ+=+-=s s A s A s A s F ) /1(/ )()()/(]/)([)()]0()([)(2 2 111112τ τ+++=++=++-=-s s A c bs as s F s c b as s s F c s bF f s sF a s F )()()(,e 2)(,e 5)(2 15221t f t f t f t f t f t t *===--)(1s F )(2s F )(s F 25)}({)(1 1+==s t f s F L 5 2 )}({)(2 2+==s t f L s F ) 5)(2(10 )()(2 1++=s s s F s F )(1t f )(2t f

哈工大电路原理基础课后习题

第一章习题 1.1 图示元件当时间t<2s时电流为2A,从a流向b;当t>2s时为3A,从b流向a。根据图示参考方向,写出电流的数学表达式。 1.2图示元件电压u=(5-9e-t/τ)V,τ>0。分别求出t=0 和t→∞时电压u的代数值及其真实方向。 图题1.1图题1.2 1.3 图示电路。设元件A消耗功率为10W,求;设元件B消耗功率为-10W,求;设元件C发出功率为-10W,求。 图题1.3 1.4求图示电路电流。若只求,能否一步求得? 1.5图示电路,已知部分电流值和部分电压值。 (1) 试求其余未知电流。若少已知一个电流,能否求出全部未知电流? (2) 试求其余未知电压u14、u15、u52、u53。若少已知一个电压,能否求出全部未知电压? 1.6 图示电路,已知,,,。求各元件消耗的功率。 1.7 图示电路,已知,。求(a)、(b)两电路各电源发出的功率和电阻吸收的功率。 1.8求图示电路电压。 1.9 求图示电路两个独立电源各自发出的功率。 1.10求网络N吸收的功率和电流源发出的功率。 1.11 求图示电路两个独立电源各自发出的功率。

1.12 求图示电路两个受控源各自发出的功率。 1.13 图示电路,已知电流源发出的功率是12W,求r的值。 1.14求图示电路受控源和独立源各自发出的功率。 1.15图示电路为独立源、受控源和电阻组成的一端口。试求出其端口特性,即关系。 1.16 讨论图示电路中开关S开闭对电路中各元件的电压、电流和功率的影响,加深对独立源特性的理解。 第二章习题 2.1 图(a)电路,若使电流A,,求电阻;图(b)电路,若使电压U=(2/3)V,求电阻R。 2.2 求图示电路的电压及电流。 2.3图示电路中要求,等效电阻。求和的值。 2.4求图示电路的电流I。

哈工大电路自主设计实验二端口网络参数的测定

二端口网络参数的测定 一、实验目的 1.加深理解双口网络的基本理论。 2.学习双口网络Y 参数、Z 参数及传输参数的测试方法。 3.验证二端口网络级联后的传输参数与原二端口网络传输参数的关系。 二、原理说明 1.如图2-12-1所示的无源线性双口网络,其两端口的电压、电流四个变量之间关系,可用多种形式的参数方程来描述。 图2-12-1 (1)若用Y 参数方程来描述,则为 ()()()(),即输入端口短路时令,即输入端口短路时令,即输出端口短路时令,即输出端口短路时令其中0I 0I 0I 0I 12 2 2212 1 1221 2 2121 1 1122212122121111== ======+=+=U U Y U U Y U U Y U U Y U Y U Y I U Y U Y I 由上可知,只要在双口网络的输入端口加上电压,令输出端口短路,根据上面的前两个公式即可求得输入端口处的输入导纳Y 11和输出端口与输入端口之间的转移导纳Y 21。 同理,只要在双口网络的输出端口加上电压,令输入端口短路,根据上面的后两个公式即可求得输出端口处的输入导纳Y 22和输入端口与输出端口之间的转移导纳Y 12。 (2)若用Z 参数方程来描述,则为

()()()(),即输入端口开路时令,即输入端口开路时令,即输出端口开路时令,即输出端口开路时 令其中 0U Z 0U Z 0U Z 0U 12 2 2212 1 1221 2 212111122212122121111== ======+=+=I I I I I I I I Z I Z I Z U I Z I Z U 由上可知,只要在双口网络的输入端口加上电流源,令输出端口开路,根据上面的前两个公式即可求得输出端口开路时输入端口处的输入阻抗Z 11和输出端口与输入端口之间的开路转移阻抗Z 21。 同理,只要在双口网络的输出端口加上电流源,令输入端口开路,根据上面的后两个公式即可求得输入端口开路时输出端口处的输入阻抗Z 22和输入端口与输出端口之间的开路转移阻抗Z 12。 (3)若用传输参数(A 、T )方程来描述,则为 ()()()(),即输出端口短路时令,即输出端口开路时令,即输出端口短路时令,即输出端口开路时令其中0I D 0I C 0U B 0U A 221s 220 10 221s 220 10 221221=-= ===-===-=-=U I I U U I I U DI CU I BI AU U s s 由上可知,只要在双口网络的输入端口加上电压,令输出端口开路或短路,在两个端口同时测量电压和电流,即可求出传输参数A 、B 、C 、D ,这种方法称为同时测量法。 2.测量一条远距离传输线构成的双口网络,采用同时测量法就很不方便,这时可采用分别测量法,即先在输入端口加电压,而将输出端口开路或短路,在输入端口测量其电压和电流,由传输方程得 () () ,即输出端口短路时令,即输出端口开路时令00111101010======2s s s 2U D B I U R I C A I U R 然后在输出端口加电压,而将输入端口开路或短路,在输出端口测量其电压和电流,由

哈工大电路答案第11章

答案 解: (1) 2 02000 1 e 1e 1e e )()(- s s dt s s t dt t t s F st st st st = -=+-==∞-∞-∞-∞ -- - - ??ε (2) 2 0)(20)(00)(1e )(1e 1e e )(e )(-ααα αεααα+= +-=++ +-==∞ +-∞ +-∞ -∞ --- - -? ?s s dt s s t dt t t s F t s t s st st t 答案 解: ) /1(//1)(1τττ+=+-= s s A s A s A s F 由拉氏变换的微分、线性和积分性质得: ) /1(/)()()/(]/)([)()]0()([)(22111112ττ +++= ++=++-=-s s A c bs as s F s c b as s s F c s bF f s sF a s F 答案 解: 设2 5)}({)(11+==s t f s F L ,52)}({)(22+==s t f L s F 则 ) 5)(2(10 )()(21++= s s s F s F )(1t f 与)(2t f 的卷积为 )e e (3 10]e 31[e 10e e 10e 2e 5)(*)(520350 350)(5221t t t t t t t t d d t f t f --------=?==?=??ξξ ξξξξ 对上式取拉氏变换得:

) 5)(2(10)5121(310)}(*)({21++=+-+= s s s s t f t f L 由此验证 )()()}(*)({2121s F s F t f t f =L 。 答案 解:(a) 651 2)(2 +++=s s s s F 3 221+++=s A s A 3|31 221-=++=-=s s s A , 3|3 1221-=++=-=s s s A 所以 t t s s t f 321e 5e 3}3 5 23{ )(---+-=+++-=L (b) )2)(1(795)(23+++++=s s s s s s F 2 12)2)(1(3 221+++++=+++++=s A s A s s s s s 2|2 3 11=++= -=s s s A 1|1 3 21-=++= -=s s s A 所以 t t t t s s s L t f 21e e 2)(2)(}2 1122{)(----++'=+-++++=δδ (c) 623 )(2++= s s s F 2 2) 5()1(5)5/3(++?=s 查表得 )5sin(e 5 3)(t t f t -= 答案 解:(a) 由运算电路(略)求得端口等效运算阻抗为: 11262241)3/(142)]3/(14[21)(22i ++++=++++=s s s s s s s s s Z , 1 12611430)(2 2++++=s s s s s Z i

电路理论基础课后答案(哈工大陈希有)第9章

答案9.1 解:由分压公式得: U U H R /)(j =ωRC RC C R R ωωωj 1j )j /(1+=+= )j (ωH 具有高通特性,令2 1 )j (c =ωH 得 截止频率RC 1 c =ω,通带范围为∞~c ω 答案9.2 解:由阻抗并联等效公式得: Ω+=+=---3 3 636310 j 110)10j /(110)10j /(10)j (ωωωωZ 阻抗模及幅角分别为: 2 33 )10(110)j (ωω-+= Z , )10arctan()(3ωωθ--= 令 2/1)j (c =ωZ 求得截止角频率rad/s 103c =ω,故通带及阻带分别为: 通带=ω0~rad/s 103,阻带=ωrad/s 103~∞。幅频特性和相频特性如图(b)和(c)所示。 (b) -- 答案9.3 解:等效输入阻抗 )1() j j ()j 1j ()(j j j j )j (1221212122 11C R LR C L R R C L R R C L R R C R C R L R L R Z ωωωωωωωωω++++++=-++?= 取极端情况,令0=ω,得20)j (R Z ==ωω; 令∞→ω,得1)j (R Z =∞→ωω。由)j (ωZ 不随频率变化得R R R ==21,式(1)简化为

)j 1j () j 1j (2 )j 1j ()j 1j (2)j (22 C L R C L R C L R C L R C L R C L R C L R C L R Z ωωωωωωωωω+++++=+++++= 由)j (ωZ 为实数得: C L R R C L R R C L =+=2,2 故当C L R R ==21时端口电流与端口电压的波形相似,此时C L Z =)j (ω。 答案9.4 解: RC 并联的等效阻抗 RC R C R C R Z RC ωωωj 1j /1j /+=+= RC RC Z L Z U U H +==ωωj /)j (1 2 R L LC RC L R R /j 11 )j 1(j 2 ωωωω+-=++= 幅频特性 2 22) /()1(1 )j (R L LC H ωωω+-= 当0→ω时,1)j (=ωH ;当∞→ω时,0)j (=ωH 所以它具有低通特性。 答案9.5 解:由KVL 及分压公式得 1 db cb 2)j 1j 1j 1(U C R R C R C U U U ωωω+-+=-= 整理得 RC RC U U H ωωωj 1j 1)j (1 2+-= = 其幅频特性 1) (1)(1)j (2 2 22=++= RC RC H ωωω 相频特性 )arctg(2)(RC ωω?-= 当ω从0变到∞时,)(ω?从0变化到π-。 注释:图中电路幅频特性为常量,与频率无关,具有全通特性,常用作移相。 答案9.6 解:设

哈工大电路自主设计实验

姓名 班级 学号 实验日期 节次 教师签字 成绩 影响RLC 带阻滤波器性能参数的因素的研究与验证 1.实验目的 (1)学习带阻滤波器的设计方法 (2)测量RLC 带阻滤波器幅频特性曲线 (3)研究电阻、电容和品质因素Q 对滤波器性能的影响 (4)加深对滤波器滤波概念的理解 2.总体设计方案或技术路线 (1)理论推导,了解滤波器的主要性能参数及与滤波器性能有关的因素 (2)设计RLC 带阻滤波器电路图 (3)研究电阻R 对于滤波器参数的影响 (4)研究电容C 对于滤波器参数的影响 (5)研究电感L 对于滤波器参数的影响 (6)合理设计实验测量,结合电容C 和电感L 对滤波器参数的影响 (7)将实际测量结果与理论推导作对比,并分析实验结果 3.实验电路图 R1V- V+

4.仪器设备名称、型号 函数信号发生器 1台 FLUKE190-104数字便携式示波表 1台 十进制电阻箱 1只 十进制电容箱 1只 十进制电感箱 1只 5.理论分析或仿真分析结果 带阻滤波器是指能通过大多数频率分量、但将某些范围的频率分量衰减到极低水平的滤波器,与带通滤波器的概念相对。 理想带阻滤波器在阻带内的增益为零。带阻滤波器的中心频率f o,品质因素Q和抑制带宽BW之间的关系为 仿真结果: R=2000Ω C=0.01uf L=0.2H

R=500Ω C=0.01uf L=0.2H

R=2000Ω C=0.05uf L=0.2H

R=2000Ω C=0.01uf L=0.1H R=2000Ω C=0.01uf L=0.5H

改变R时对比图 改变C时对比图 改变L时对比图 6.详细实验步骤及实验结果数据记录(包括各仪器、仪表量程及内阻的记录) (1)电阻R对于滤波器参数的影响 任务1:电路如图所示,其中信号源输出Us=5V,电容C=0.01uF,电感L=0.2H,根据下表所示,选择不同电阻值测量输出幅频特性

哈工大电子技术实验四人无弃权表决电路(高分版)

姓名XXX 班级1108301 学号11108301xx 实验日期 6.5 节次9-11 教师签字成绩 四人无弃权表决电路 1.实验目的 1)掌握74LS20的逻辑功能和使用方法; 2)通过实验,进一步熟悉组合逻辑电路的分析与设计方法。 2.总体设计方案或技术路线 设计一个四人无弃权表决电路(多数赞成则提议通过,即三人以上包括三人),用74LS20来实现。 1)根据任务的要求,设计电路; 2)用代数化简法求出最简的逻辑表达式; 3)根据表达式,画出逻辑电路图,用标准器件(与、或、非)构成电路; 4)最后,用实验来验证设计的正确性。 3.实验电路图 1)ABCD输入端,接数据开关;Z输出端接电平指示器; 2)改变ABCD的组态,记录Z的变化,验证逻辑函数的功能及设计的正确性。 4. 仪器设备名称、型号 1)实验箱 1台 2)双踪示波器 1台 3)双路直流稳压电源 1台 4)数字万用表 1只 5)74LS20 3片

5.理论分析或仿真分析结果 74LS20管脚图: 逻辑关系式: C AB D Z=ABC+BCD+ACD+ABD=AB BCDACD 逻辑图:

6.详细实验步骤及实验结果数据记录(包括各仪器、仪表量程及内阻的记录)真值表:

7.实验结论 由真值表可知,四人无弃权表决电路设计成功,实现了预期功能。 8.实验中出现的问题及解决对策 实验过程中由于有五个与门,而每个74LS20可实现两个与门,故线路连起来相当复杂,容易混淆,故在连接电路时安排好位置,标记好引脚和接头。 9.本次实验的收获和体会、对电路实验室的意见或建议 此次设计是对经典四人表决电路的一次创新,利用书本上的知识和以前类似实验的设计思路进行了此次实验,锻炼了实践能力,熟悉了组合逻辑电路的设计方法。 这次的实验绝对原创的,是对以前做过的实验的一次创新,复杂了不少,锻炼了能力。 10.参考文献 [1]电工学实验教程/王宇红主编.——北京:机械工业出版社,2009.8(2012.1重印)

电路基本理论课后答案(哈工大版)第10章

答案10.1 解:0t 时,求等效电阻的电路如图(b)所示。 等效电阻 Ω=++-==5)36(4i i i i i u R 时间常数 s 1.0i ==C R τ 0>t 后电路为零输入响应,故电容电压为: V e 6.0e )0()(10/t t C C u t u --+==τ

Ω6电阻电压为: V e 72.0)d d (66)(101t C t u C i t u -=-?Ω-=?Ω-=)0(>t 答案10.4 解:0t 后电路为零输入响应,故电感电流为 A e 3e )0()(2/t t L L i t i --+==τ)0(≥t 电感电压 V e 24d d )(21t L t i L t u --==)0(>t Ω3电阻电流为 A e 236321 33t L u i u i --=Ω +?Ω=Ω= Ω3电阻消耗的能量为: W 3]e 25.0[12123040 40 2 3 3=-==Ω=∞-∞ -∞Ω??t t dt e dt i W 答案10.5 解:由换路定律得0)0()0(==-+L L i i ,达到稳态时电感处于短路,故 A 54/20)(==∞L i 求等效电阻的电路如图(b)所示。 (b) 等效电阻 Ω==6.18//)4//4(i R 时间常数 s )16/1(/i ==R L τ 0>t 后电路为零状态响应,故电感电流为:

哈工大数字电路实验报告实验一

数字逻辑电路与系统上机实验报告 实验一组合逻辑电路的设计与仿真 学校:哈尔滨工业大学 院系:电信学院通信工程系 班级:1205102 学号:11205102 姓名: 哈尔滨工业大学

实验一组合逻辑电路的设计与仿真 2.1 实验要求 本实验练习在Maxplus II环境下组合逻辑电路的设计与仿真,共包括5个子实验,要求如下:

2.2三人表决电路实验 2.2.1 实验目的 1. 熟悉MAXPLUS II原理图设计、波形仿真流程 2. 练习用门电路实现给定的组合逻辑函数 2.2.2 实验预习要求 1. 预习教材《第四章组合逻辑电路》 2. 了解本次实验的目的、电路设计要求 2.2.3 实验原理 设计三人表决电路,其原理为:三个人对某个提案进行表决,当多数人同意时,则提案通过,否则提案不通过。 输入:A、B、C,为’1’时表示同意,为’0’时表示不同意; 输出:F,为’0’时表示提案通过,为’1’时表示提案不通过; 波形仿真。 2.2.4 实验步骤 1. 打开MAXPLUS II, 新建一个原理图文件,命名为EXP2_ 2.gdf。 2. 按照实验要求设计电路,将电路原理图填入下表。

制输入信号A、B、C的波形(真值表中的每种输入情况均需出现)。 4. 运行仿真器得到输出信号F的波形,将完整的仿真波形图(包括全部输入输

2.3 译码器实验 2.3.1实验目的 熟悉用译码器设计组合逻辑电路,并练习将多个低位数译码器扩展为一个高位数译码器。 2.3.2实验预习要求 1. 预习教材《4-2-2 译码器》一节 2. 了解本次实验的目的、电路设计要求 2.3.3实验原理 译码器是数字电路中的一种多输入多输出的组合逻辑电路,负责将二进制码或BCD码变换成按十进制数排序的输出信息,以驱动对应装置产生合理的逻辑动作。商品的译码器品种较多,有2-4线、3-8线、4-10线及4-16线等。本实验练习对双2-4线译码器74LS139的扩展,并用其实现特定的组合逻辑。74LS139包含两个2-4线译码器,其输入输出如下: 74LS139中译码器1真值表如下: 74LS139中译码器2真值表如下:

哈工大电路答案第12章

答案12.1 解:分别对节点①和右边回路列KCL 与KVL 方程: C q u u i i q i C L L R C C /===--==ψ 将各元件方程代入上式得非线性状态方程: C q C q f f q /)/()(21=--=ψ ψ 方程中不明显含有时间变量t ,因此是自治的。 答案12.2 解:分别对节点①、②列KCL 方程: 节点①: =1i 321S 1/)(R u u i q --= 节点②: =2i 423212//)(R u R u u q --= 将 )(),(222111q f u q f u == 代入上述方程,整理得状态方程: ?? ?+-=++-=)/())((/)(/)(/)(4343223112 S 3223111R R R R q f R q f q i R q f R q f q 答案12.3 解:分别对节点①列KCL 方程和图示回路列KVL 方程得: ?? ?-=-=(2) (1) /323321u u R u i q S ψ 3u 为非状态变量,须消去。由节点①的KCL 方程得: 04 1 3332432=-++ -=++-R u u R u i i i i 解得 )/()]()([)/()(433224114332413R R R f R q f R R R i R u u ++=++=ψ 将 )(111q f u =、)(222ψf i = 及3u 代入式(1)、(2)整理得: ?? ?++-+-=+++-=S u R R R R f R R R q f R R R f R R q f q )/()()/()()/()()/()(4343224331124332243111ψψψ 答案12.4 解:由KVL 列出电路的微分方程:

哈工大电路习题答案第08章

答案8.1 解: )/1()(T t A t f -= T t <<0 ??-== T T dt T t A T dt t f T A 000)/1(1)(1A T t t T A T 5.0]2[02=-= ?-=T k dt t k T t A T a 0 )cos()/1(2ω 0)sin(2)]sin()/1(2[0 20=+?-=?T T dt t k T k A t k Tk T t A ωωωω ?-=T k dt t k T t A T b 0 )sin()/1(2ω π ωωωωωk A kT A dt t k T k A t k Tk T t A T T ==-?--=?2)cos(2)]cos()/1(2[020 所以 ∑ ∞ =+=1 sin 5.0)(k t k k A A t f ωπ 频谱图如图(b)所示。 .0 答案8.2 解:电流i 的有效值 57.1)2/13.0()2/67.0()2/57.1(12222≈+++=I A 只有基波电流与正弦电压形成平均功率,故二端电路输入的平均功率为: 95.73)]90(90cos[2 57 .122.94=?--?-?= P W 注释:非正弦周期量分解成傅里叶级数后,其有效值等于直流分量和不同频 率交流分量有效值平方和的平方根。 答案8.3 解:对基波 ?∠=0100m(1)U V , A 010m(1) ?∠=I 由

Ω==-+=10)1(j ) 1(m ) 1(m ) 1(I U C L R Z ωω 求得 Ω=10R , 01 =-C L ωω (1) 对三次谐波 ?-∠=3050m(3)U V , A 755.1i m(3)ψ-∠=I 又由 Ω+?-∠==-+=)30(5.28)313(j m(3) m(3)) 3(i I U C L R Z ψωω (2) 所以 22 25.28)313(=- +C L R ωω (3) 将式(1)代入式(3), 解得 mH 9.31=L 将mH 9.31=L 代入式( 1 ),求得 F 3.318μ=C 再将C L R 、、 值代入式(2),有 Ω?-∠=Ω+=3028.5j26.7)10(i )3(ψZ 解得 ?=45.99i ψ 答案8.4 解: (1) 电压有效值: V 01.80)225()250()2100(222=++=U 电流有效值 58.74mA )2 10 ()220()280( 222=++=I (2) 平均功率 kW 42.345cos 2 10250cos 22050)45cos(280100=??+??+?-?=P

电路理论基础A第五章(哈工大)答案

答案5.1 设负载线电流分别为A B C i i i 、、,由KCL 可得A B C 0I I I = ++。又A B C 10A I I I ===, 则A B C i i i 、、的相位彼此相差120?,符合电流对称条件,即线电流是对称的。 但相电流不一定对称。例如,若在三角形负载回路内存在环流0I (例如,按三角形联接的三相变压器),则负载相电流不再对称,因为 0CA CA 0BC BC 0AB AB ',','I I I I I I I I I +=+=+= 不满足对称条件。而该环流对线电流却无影响,因为每个线电流都是两个相电流之差(如图题7.3),即 BC CA BC CA C AB BC AB BC B CA AB CA AB A '','',''I I I I I I I I I I I I I I I -=-=-=-=-=-= A B C 图 题7.3 如已知负载对称,则相电流也是对称的,每相电流为77.53/10≈A 。 答案5.2 负载各相阻抗化为星形联接为 (8j6)'33Z Z -==Ω 设A 相电源相电压为2200∠ ,A 相负载线电流与电源相电流相等 AN A 220082.50A (8j6)Z 'j2 3l U I Z ∠? ===∠-Ω +Ω+ 由三角形联接得相电流与线电流关系得 A'B'47.6A I === 即负载相电流为47.6A 。 答案5.3 解:电路联接关系如图(a)所示。负载断开时电源的输出线电压等于图中相电压 倍。下面计算相电压A U 。

A I (b) I C (a)U 设负载A 相电压为AN 2200V U =∠? ,对于感性负载,由cos 0.8?=,得36.87?=-?,则 A 236.87A I =∠-? 采用单相分析法,如图(b)所示。 电源相电压为 A AN A i [2200236.87(2j4)]V U U I Z =+ =∠?+∠-??+ 2281V =∠? 当负载断开时,电源输出电压为 A 395V l U == 答案5.7 解:设电源为星形联接,电源A 相电压相量为 AN 2200V U ==∠? 则电源线电压分别为 AB 38030V U =∠? ,BC 38090V U =∠-? ,CA 380150V U =∠? 。 (1)设电路联接如图(a)所示,化为单相计算,如图(b)所示。 N ' N N ' U U (b) AN ' U BN BN I 因为负载为星形联接,所以负载相电压 AN'2200V U =∠? ,BN'220120V U =∠-? ,CN'220240V U =∠-? 又因为

哈工大电路原理基础课后习题

第一章习题 1.1 图示元件当时间t<2s时电流为2A,从a流向b;当t>2s时为3A,从b流向a。根据图示参考方向,写出电流的数学表达式。 1.2图示元件电压u=(5-9e-t/τ)V,τ>0。分别求出t=0 和t→∞时电压u的代数值及其真实方向。 图题1.1 图题1.2 1.3 图示电路。设元件A消耗功率为10W,求;设元件B消耗功率为-10W,求;设元件C发出功率为-10W,求。 图题1.3 1.4求图示电路电流。若只求,能否一步求得? 1.5 图示电路,已知部分电流值和部分电压值。 (1) 试求其余未知电流。若少已知一个电流,能否求出全部未知电流? (2) 试求其余未知电压u14、u15、u52、u53。若少已知一个电压,能否求出全部未知电压? 1.6 图示电路,已知,,,。求各元件消耗的功率。 1.7 图示电路,已知,。求(a)、(b)两电路各电源发出的功率和电阻吸收的功率。 1.8 求图示电路电压。 1.9 求图示电路两个独立电源各自发出的功率。 1.10 求网络N吸收的功率和电流源发出的功率。 1.11 求图示电路两个独立电源各自发出的功率。

1.12 求图示电路两个受控源各自发出的功率。 1.13 图示电路,已知电流源发出的功率是12W,求r的值。 1.14 求图示电路受控源和独立源各自发出的功率。 1.15图示电路为独立源、受控源和电阻组成的一端口。试求出其端口特性,即关系。 1.16 讨论图示电路中开关S开闭对电路中各元件的电压、电流和功率的影响,加深对独立源特性的理解。 第二章习题 2.1 图(a)电路,若使电流A,,求电阻;图(b)电路,若使电压U=(2/3)V,求电阻R。 2.2 求图示电路的电压及电流。 2.3 图示电路中要求,等效电阻。求和的值。 2.4求图示电路的电流I。

哈工大电工实验自主设计实验最终报告555组成定时器和计时器

姓名班级学号 实验日期节次教师签字成绩 定时器和计时器 1.实验目的 (1)用555定时器构成1s,10s和60s的定时器。 (2)用两个161芯片构成一个1分钟以内的计时器。 2.总体设计方案或技术路线 (1)通过调节RC的大小来调节555输出脉冲的周期,在低电平触发端2连高电平A,当按下按钮再松开时,就输入了高电平。输出端3连接指示灯。 (2)两个161芯片组成60进制计数器,将两个161芯片的输出连接数码显示管。输入连接到1赫兹的脉冲上。 3.实验电路图 定时1s

定时10s 定时60s

计时器电路4.仪器设备名称、型号和技术指标 555定时器一个 74LS161芯片两个 电阻:240kΩ一个 910kΩ一个 3MΩ一个 3.9MΩ一个 4.7MΩ两个 电容: 1μF一个 2.2μF两个 四引脚LED数码显示管两个 直流稳压电源 1Hz时钟脉冲输入源 实验箱 5.理论分析或仿真分析结果 理论分析:

(1)定时器电路:开关在未动作时是闭合的,连在高电平上,按下开关,开关断开, 接入低电平,然后迅速恢复到闭合状态,输入了一个脉冲,555定时器开始定时,根据555单稳态触发器输出脉冲的宽度公式RC t p 1.1=,通过调节电阻R 和电容C 的值使脉冲的周期为1s,10s 和60s. 当R=910k Ω,C=1μF 时,s t p 001.110101.91.165=???=- 当R=3.9M Ω+240k Ω=4.14M Ω,C=2.2μF 时,s t p 02.10102.21014.41.166=????=- 当R=4.7M Ω×2+3M Ω=12.4M Ω,C=4.4μF 时, s t p 016.60104.41024.11.167=????=- 6. 详细实验步骤及实验测量数据记录(包括各仪器、仪表量程及内阻的记录) 安装555芯片、74LS00和两个74LS161芯片,调节直流稳压电源输出5V 电压,接到实验箱上。 (1)将555芯片的8引脚和4引脚相连,再连接到+5V 电源上,将1引脚接地,将8引脚连接910k Ω电阻上,将电阻另一侧连接到6引脚,将6引脚连接到7引脚,将7引脚连接到1μF 电容上,再将电容另一侧接地。将2引脚接逻辑开关A ,将5引脚连接到0.01μF 电容上,再将电容另一侧接地。将引脚3连接到电平指示灯上。 开通直流稳压电源,按下逻辑开关A ,记录电平指灯点亮的时间,为1.0s 。 关闭直流电源。 将3.9M Ω和240k Ω的电阻串联,将连在910k Ω两端的导线连接到两个串联电阻上,将连接在1μF 电容两端的导线连接到2.2μF 电容两端,并将电容接地。 开通直流稳压电源,按下逻辑开关,记录时间9.7s 。 关闭直流电源。 将两个4.7M Ω和一个3M Ω电阻串联,用它代替3.9M Ω240k Ω串联电阻连入到电路中,将两个2.2μF 电容并联。 开通直流稳压电源,按下逻辑开关,记录时间为58.8s 。 关闭直流电源。 (2)将两个161芯片的16引脚连到+5V 电源上,将8引脚接地。将74LS00芯片的14引脚接到+5V 电源,7引脚接地。将第一个161芯片的2引脚接到1Hz 的时钟脉冲上,11、12、13、14引脚分别连到第二个数码显示管的D 、C 、B 、A 上,并11和13引脚连接到00芯片的1和2引脚,将00芯片的3引脚连接到第一个161的1引脚和第二个161的2引脚;将第二个161芯片的11、12、13、14引脚连接到第一个数码显示管的D 、C 、B 、A 上将12

哈工大电路答案第11章

答案11.1 解: (1) 2020 00 1 e 1e 1e e )()(- s s dt s s t dt t t s F st st st st = -=+ -==∞-∞-∞-∞-- - - ??ε (2) 2 0)(2 0)(00)(1e )(1e 1e e )(e )(-ααα αεααα+= +-=++ +- ==∞+-∞ +-∞-∞ --- - - ? ?s s dt s s t dt t t s F t s t s st st t 答案11.2 解: ) /1(//1)(1τττ+=+-= s s A s A s A s F 由拉氏变换的微分、线性和积分性质得: ) /1(/)()()/(]/)([)()]0()([)(22111112ττ +++= ++=++-=-s s A c bs as s F s c b as s s F c s bF f s sF a s F 答案11.3 解: 设25)}({)(11+==s t f s F L ,5 2)}({)(22+==s t f L s F 则 ) 5)(2(10 )()(21++= s s s F s F )(1t f 与)(2t f 的卷积为 ) e e (3 10 ]e 31[e 10e e 10e 2e 5)(*)(520350350)(5221t t t t t t t t d d t f t f --------=?==?=??ξξ ξξξξ 对上式取拉氏变换得: ) 5)(2(10)5121(310)}(*)({21++=+-+= s s s s t f t f L 由此验证 )()()}(*)({2121s F s F t f t f =L 。 答案11.4

哈工大数字电路实验报告实验二

数字逻辑电路与系统上机实验讲义 实验二时序逻辑电路的设计与仿真 课程名称:数字逻辑电路与系统 院系:电子与信息工程学院 班级:1205102 姓名: 学号:1120510 教师:吴芝路 哈尔滨工业大学 2014年12月

实验二时序逻辑电路的设计与仿真3.1实验要求 本实验练习在Maxplus II环境下时序逻辑电路的设计与仿真,共包括6个子实验,要求如下: 节序实验内容要求 3.2同步计数器实验必做 3.3时序电路分析实验必做 3.4移位寄存器实验必做 3.5三人抢答器实验必做 3.6串并转换电路实验选做 3.7奇数分频电路实验选做

3.2同步计数器实验 3.2.1实验目的 1.练习使用计数器设计简单的时序电路 2.熟悉用MAXPLUS II仿真时序电路的方法 3.2.2实验预习要求 1.预习教材《6-3计数器》 2.了解本次实验的目的、电路设计要求 3.2.3实验原理 计数器是最基本、最常用的时序逻辑电路之一,有很多品种。按计数后的输出数码来分,有二进制及BCD码等区别;按计数操作是否有公共外时钟控制来分,可分为异步及同步两类;此外,还有计数器的初始状态可否预置,计数长度(模)可否改变,以及可否双向等区别。 本实验用集成同步4位二进制加法计数器74LS161设计N分频电路,使输出信号CPO的频率为输入时钟信号CP频率的1/N,其中N=(学号后两位mod 8)+8。下表为74LS161的功能表。 CLR N LDN ENP ENT CLK D C B A QD QC QB QA CO 0----------------00000 10----↑D C B A D C B A0 1111↑--------加法计数0 1111↑--------11111 110------------QD n QC n QB n QA n 11--0---------- 3.2.4实验步骤 1.打开MAXPLUS II,新建一个原理图文件,命名为EXP3_ 2.gdf。 2.按照实验要求设计电路,将电路原理图填入下表。

相关主题
文本预览
相关文档 最新文档