当前位置:文档之家› 2019年微波技术应用

2019年微波技术应用

2019年微波技术应用
2019年微波技术应用

微波技术应用

微波技术

一概述

微波是指波长范围为1,,,1,,频率范围为30×102 , 30×105,,,,具有穿透特性的电磁波。常用的微波频率为 91 5,,,和 2 450,,,。微波作为一种电磁波,通常应用于广播、电视及通信技术中,近年来,随着科学技术的发展,微波作为一种能源,已逐渐应用于食品杀菌、干燥、烘烤、膨化、解冻等方面。

微波技术在食品工业中的应用可追溯到四十年代末期,1947年由美国雷声公司马文?贝克根据微波的加热效应制成了世界上第一台用于食品加热的微波炉。鉴于微波具有在食品内部生热并迅速产生均匀温度的观点,人们开始研究将它用于工业加热技术上以其开辟新的热能源,提高热能利用率和缩短加工时间,大约经历了十余年的探索,终于在1965年由美国Cryodry Comporation 公司研制成功了世界上第一台915MHz/50kW隧道式微波干燥设备,并在Seyfert Foods食品公司首次投入实际应用,用来干燥油炸马铃薯片。此后微波能技术在美国、日本、加拿大和欧洲等发达国家在用来解决食品工业中的多种加热干燥、烹制、杀虫灭菌和回温解冻等方面相继获得成功并表现出强大的技术优势。到七十年代,世界各国普遍推广应用。例如在气候温和潮湿的日本,微波在食品工业中的应用占整个工业应用的60%。我国自1973年由南京电子管厂率先研制成功了工业微波干燥设备以来,经过了20年的努力,也积累了比较丰富的经验。目前我国已成功地应用微波能烧烤食品、干果焙烤、牛肉干燥、蔬菜脱水、快餐面干燥、食品杀菌、饮料杀菌、白酒陈化催熟等许多领域,并取得显著进展。

二微波技术的原理及特点

综合微波技术在食品工业中的各种应用可归结为如下原理。

(一) 微波加热干燥原理

微波加热技术是一种新的加热方式。它是依靠以每秒 245000万次速度进行周期变化的微波透入物料内,与物料的极性分子相互作用,物料中的极性 (如水分子 )吸收了微波能以后,改变其原有的分子结构,亦以同样的速度作电场极性运动,致使彼此间频繁碰撞而产生了大量的摩擦热,从而使物料内各部分在同一瞬间获得热能而升温。由于微波辐射下介质的热效应是内部整体加热的,即理论上所谓的“无温度梯度加热”,基本上介质内部不存在热传导现象,因此,微波可相当均匀地加热介质。微波加热技术与传统加热方法相比,有如下特性:?穿透力强。?热惯性小。?呈现选择加热特性。?具有反射性和透射性。

微波干燥是在微波理论,微波技术和微波电子管成就的基础上发展起来的一门新技术,微波干燥已在许多领域内获得广泛的应用。它是应用微波加热的原理,

使品温度上升,达到干燥的目的。微波干燥具有如下的特点:

1 .干燥速度快、干燥时间短

由于常规加热需要加热传热介质和环境,再进入食品,故需较长时间才能达到所需加热温度。而微波加热则是加热物体直接吸收微波能,加热速度大大高于常规加热方法,此时只需一般方法的十分之一到百分之一的时间就能完成整个加热和干燥的过程。

2. 产品质量高

由于加热时间短,又非热效应配合,因此,可以保存加工原料的色、香、味 ,并且维生素的破坏也较少。

3. 加热均匀

常规加热是食品表面先热,然后通过热传导把热量传到内部,而微波加热是使食品表面和内部同时受热,因此加热均匀,可以避免一般加热干燥过程中容易引起的里生外焦及不均匀等现象,提高了产品的质量。

4. 加热过程具有自动热平衡性能

当频率和电场的强度一定时,物料在干燥过程中对微波功率的吸收,主要决定于介质损耗因素之值。不同干燥物质的介质损耗因素不同,如水比干物质为大 ,故吸收能量多,水分蒸发快。因此,微波不会集中在已干的物质部分,避免了物质的过热现象,具有自动平衡性能,从而保证了物质原有的各种特性。 5. 反应灵敏便于控制

用常规加热法不论是电热、蒸汽、热空气等,要达到一定的温度需要预热一段时间,当发生故障或停止加热时,温度的下降又需要较长的时间,而利用微波加热时,开机几分钟即可正常运行。调整微波输出功率,物料加热情况立即无惰性地随着改变,因此,便于自动化控制,节省人力。 6. 热效率高、设备占地面积小

因为微波加热干燥是内部加热法,所以加热设备本身基本上可以说是不辐射热量的,故热损失较小,热效率较高,约可达到80 %左右,与常规方法相比,可节电 3 0 %, 50 %。同时微波加热设备体积也比较小,与普通加热干燥方法相比,所需厂房面积小。

7. 改善劳动条件

微波设备无余热、无污染、不辐射热量,所以大大改善了劳动条件。

(二)食品微波杀菌的作用机理

食品微波杀菌机理包括热效应和非热效应两方面。

1(微波能的热效应

微波作用于食品时,食品表层和内部同时吸收微波能,温度升高。食品中污染的微生物细胞在微波场作用下,其分子也被极化产生高频振荡,产生热效应。温度的快速升高使菌体内蛋白质结构发生变化,从而失去生物活性,使菌体死亡或受到严重干扰而无法繁殖。

2(微波能的非热生化效应

已有不少实验证明微波对微生物的致死确实存在非热效应。微波的作用可使微生物生命代谢活动中的大量电子、离子和其它带电粒子的生物性排列组合状态和运动规律发生改变,造成微生物的生理活性物质发生变化。同时,电场也会使细胞膜附近的电荷分布改变,导致膜功能障碍,使微生物细胞的正常代谢功能受到干扰和破坏,使微生物的生长受到抑制,甚至停止生长或死亡。微波能还能使微生物生存所必须的水分活度降低,破坏微生物的生存环境。微生物

细胞内的DNA和RNA吸收微波能后,会造成分子结构中的氢键松驰、断裂和重新组合,诱发基因突变,染色体畸变,从而中断微生物细胞的正常繁殖。

这样,在微波辐照使食品温度升高的热效应和蛋白质分子变性后失去生物活性的非热效应双重因素共同作用下,细菌、酵母菌等微生物将在短时间内被杀死,而且食品的色、香、味和营养成分并未因此受到损失。

(三)微波萃取的原理

由于微波的频率与分子转动的频率相关连,所以微波能是一种由离子迁移和偶极子转动引起分子运动的非离子化辐射能。当它作用于分子上时,促进了分子的转动运动,分子若此时具有一定的极性,便在微波电磁场作用下产生瞬时极化,并以 2 4. 5亿次 / s的速度做极性变换运动,从而产生键的振动、撕裂和粒子之间的相互摩擦、碰撞,促进分子活性部分 (极性部分 )更好地接触和反应,同时迅速生成大量的热能,促使细胞破裂,使细胞液溢出来并扩散到溶剂中。

传统热萃取是以热传导、热辐射等方式由外向里进行,而微波萃取是通过偶极子旋转和离子传导两种方式里外同时加热,微波热萃取和传统热萃取相比,微波萃取具有以下特点:

a. 质量高,可有效地保护食品中的功能成分;

b. 产量大;

c. 对萃取物具有高选择性;

d. 省时 (30 s,1 0 min);

e. 溶剂用量少 (可较常规方法少 50 %,90 % );

f. 低耗能。

三微波技术在食品工业中的应用

(一)微波加热技术在食品工业中的应用

1 微波加热用于烹调食品

利用微波烹调食品有利于保持食品中的营养成分和风味。无论用哪种烹调方法,只要烹调时间短而所用水量又少,则其维生素,的保存率就高。

在美国、日本的食品市场上微波食品的种类十分繁多。其中美国是世界上家用微波炉普及率最高的国家,其微波食品的生产和销售量极大。但以冷冻类预制食品中的冷冻蔬菜,包括多种煮熟并配有调料的混合蔬菜和冷冻调理食品的产量最大,发展速度最快。主要品种有蔬菜、馅饼,各种面包及点心用的生面团。目前,美国有 2 0 0多家企业共生产 3 0 0多种在包装上标明“微波”标签的微波预制食品。产品涉及耐贮存的精制菜肴、预制汤类、冷藏小包装速食小菜、蔬菜、配菜 ,各种餐后甜食、冷冻快餐、薄烤饼、炸土豆食品、脆花生等。

我国台湾省市场上销售的微波加热和烹调食品也有3 0多种,包括主食类炒饭、烩饭、炒面、水饺、春卷、烧卖、馒头、胡椒牛肉、扣肉、鸡丁、牛肉汤面、海鲜煲、牛肉煲、沙拉和葱油派等。 2 微波加热用于焙烤食品

微波用于焙烤食品,如面包、甜面包圈的烤制时,不仅使产品质量大为改善,而且可缩短生产时间,延长产品的货架期。微波一方面快速杀灭面粉中α-淀粉酶活性,用该面粉烤制面包,其内芯不粘牙;另一方面,微波加热促进生面团中酵母繁殖而醒发面团,利用醒发的面团制成的食品结构均匀,有咬劲。 3 微波加热用于解冻食品

深度冻结的物料需解冻后才能进一步加工,尤其是大块冷冻食品原料。在传统的加工方法中,冷冻食品物料的解冻过程是个费时费力的过程。微波解冻使温度回至 0?左右,具有解冻时间短,风味、鲜度、营养成分保持率高,无污水排放,工作环境整洁等优点。适用于分割肉冻块、鱼、蛋粉冻块的解冻以及快速熔化的巧克力、油脂等。另外,为了解决低于零度的物料水分测量难题,可将微波解冻与水分测量装置组合用来测量低于零度的粮食等的含水率。

(二)、微波干燥技术在食品加工业中的应用

微波干燥技术对固体饮料、糕点、粮食、药材等进行快速干燥的应用范围很广,目前应用成果层出不穷。日本采用 2450 MHz/ 16×5Kw微波干燥设备生产出膨化干燥蛋黄粉。美国研制出 915MHz/ 60 Kw的通心面微波干燥机。法国国际微波公司的 2 450 MHz/48Kw的微波真空干燥设备用于速溶桔粉生产,产品不仅保持了桔汁原有的色、香、味,而且由于干燥温度低,保留的 Vc是其它方法不可能达到的。日本在进行紫菜干燥时,以微波作为最终干燥手段,缩短了加热周期,同时提高了产品质量。美国加州州立大学与某公司合作将微波真空干燥技术应用于生产能保持原有形状不变的脱水葡萄,这种葡萄具有新鲜葡萄原有的风味、色泽,而维生素B2 和 C的含量为新葡萄的3, 4倍。国外把微波干燥与热风干燥相结合对粮食进行干燥处理,结果表明,干燥温度大大降低,且干燥时间明显减少,仅为热风干燥法的十分之一,对小麦蛋白质量、出粉率均无影响。

国内在微波干燥技术应用方面的研究成果也很多。目前,国内科研人员已经把微波干燥技术应用于蘑菇类、蔬菜类的干燥加工;应用于药材如天麻、当归、党参、人参、鹿茸等的深加工;应用于营养保健食品如人参精、花粉、蜂王浆等制造业;应用于肉类加工如牛肉干、鸡肉丝等的干制以及其它食品的干制加工中。

目前,很多农产品如茶叶、谷物、蔬菜、水果、大豆等都已成功应用了微波干燥,并取得了显著的经济效益;与此同时,农产品微波干燥机理的研究也比较活跃,如谷物干燥方面,国内外研究较多的有玉米、水稻、小麦、油菜籽和大豆等,这势必会促进农产品微波干燥的发展。

(三)微波杀菌工艺在食品加工业中的应用

由于食品防腐剂的使用要求相当严格,在食品中不添加防腐剂就可大大延长保鲜期的微波杀菌技术的应用越来越广泛。瑞典、德国、丹麦和意大利等国使用微波对切片面包杀菌、防霉、保鲜,已达到工业化生产程度,我国的一些食品生产企业也开始将微波杀菌技术应用到部分食品的加工、运输、贮藏及销售中。

微波杀菌可以在食品包装前进行也可以在包装后进行。采用包装后对食品进行微波杀菌时,由于食品接受微波能后升温并产生蒸汽,压力过高时会胀破包装容器(袋),因此,包装后

的食品微波能杀菌过程应在加压下进行,或将包装好的食品置于加压的玻璃容器内进行微波杀菌处理。

许多国内外学者对微波能杀菌在食品上的应用进行了大量研究。研究的微波杀菌食品主要有:肉及肉制品、禽制品、水产品、水果和蔬菜、罐头、乳及乳制品、农作物、布丁、面包、月饼、糕点、豆制品、调味品、春卷等。

微波设备对槟榔膨化的特点与作用

微波设备对槟榔膨化的特点与作用 地点:微朗科技微波实验室 单位:株洲市微朗科技有限公司 时间:2009-05-19 声明:本研究成果归株洲市微朗科技有限公司所有,仿冒必究. 微波膨化焙烤的特点:能量转换效率高,加热速度快。微波炉本身不发热,而是微波能量穿透物料,使物料内极性分子相互摩擦而产生内部热量。使被加工物料内部的液体瞬间升温汽化、增压膨胀;并依靠气体的膨胀力使组分中高分子物质结构变性,而成为具有网状组织结构特征、定型的多微孔状物质。 微波里外同时加热的原理,在短时间内讯速产生膨化效果,使槟榔壳膨帐,内部钎维发生变化,使其软化,膨松,明显增加口感,香味。粒膨化饱满、色泽自然、外形美观、且具有杀虫灭菌作用。 1、低温杀菌、营养成分损失少。微波杀菌是在微波的热效应和非热效应的双重作用下进行的,相比常规的温度杀菌能在较低的温度和很短的时间内获得满意的杀菌作用。一般的杀菌温度在80℃左右,处理时间在3~5分钟,且能最大限度的保持其营养成分。对维生素C的保留常规热处理果蔬是46%~50%,微波则能达到60~90;对维生素A的保持常规热处理是58%,而微波处理则到84%,并且不影响原有风味,是果蔬食品深加工,获得绿色食品的良好手段。

2、膨化效果明显。微波的快速加热效果,使物料内部水分子快速汽化,达到膨化的目的。 3、微波膨化焙烤的同时,伴随微波热效应原理。微波杀菌是在微波的热效应和非热效应的双重作用下进行的,相比常规的温度杀菌能在较低的温度和很短的时间内获得满意的杀菌作用。一般的杀菌温度在80℃左右,处理时间在3~5分钟,且能最大限度的保持其营养成分。 4、使用操作方便。微波功率和传送带速度均可无级调节,不存在热惯性,可即开即停,简单易控。改善生产环境。微波设备无余热辐射、无粉尘、无噪音、无污染,易于实现食品卫生的检测标准。

电磁场与微波技术专业(080904)研究生培养

电磁场与微波技术专业(080904)研究生培养方案 一、培养目标 1、硕士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 具备电磁场与微波技术方面扎实的理论基础和宽厚的知识面。掌握与本专业相关的实验技能,对与本学科相邻及相关学科的知识有一定的了解。具备灵活应用所学知识分析和解决实际问题的能力。有独立从事科学研究的能力。 掌握一到二门外国语,能用英语阅读专业书籍、文献并撰写科学论文。 2、博士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 在硕士研究生培养目标所达到的要求基础之上,不仅要掌握本专业理论和实验的专业知识,还要掌握与本学科相邻及相关学科的知识,在独立从事科研工作中,具备综合、分析能力,在开展所从事研究方面的前沿研究工作中,具备创新和发展的能力。熟悉所从事研究方向的科学技术发展新动向。 掌握一至二门外语,能用英语熟练阅读专业书籍、文献,并能撰写并在国际会议上宣读科学论文。 二、学科介绍 1、电磁场与微波技术学科的主要研究方向 (1) 极高频段电磁资源的开发与利用; (2) 人工电磁材料及在无线电技术中的应用; (3) 射频、微波及光电子器件与应用。 2、师资力量和科研水平 本学科师资力量较雄厚,有中国科学院院士、“长江学者奖励计划”特聘教授和讲座教授以及教育部“新世纪优秀人才”等一批优秀学者,成为本学科的学术带头人和学术骨干。目前有教授9人、博士生导师9人、副教授和高工4人。 在科学研究方面,以电子学、物理学的基本理论方法和现代实验技术作为手段,探索新型电子材料,研究其中有关物理过程和电磁现象的基本规律,据以开发新型的微波和太赫兹电子器件和系统,并在实际中推广应用。目前,本学科不仅开展了大量国际前沿性的研究工作,取得了突出的成果,享有很高的国际声誉,同时也开展应用和工程化研究,为我国国民经济和国防现代化做出了重要贡献。 3、近期承担科研项目和重大课题 本学科承担了大量国家973计划、国家863计划、国家自然科学基金等重大科技计划项目,以及省、部级科研项目和横向合作的研发项目,产生了较大的社会效益和经济效益。 近期主要科研项目和重大课题有: 科技部973项目子课题:太赫兹辐射的高灵敏检测技术基础研究; 科技部973项目子课题:超导结型器件的物理、工艺及应用基础研究; 科技部973项目子课题:磁性复合材料以及光子共振介质中负折射特性研究; 国家重大科学研究计划:超导单光子探测器原理及制备研究; 国家重大科学研究计划:固体微结构的量子效应、调控及其应用研究; 科技部863课题:新型遥感器技术/THz频段高灵敏度超导探测/接收系统;

微波技术与天线复习提纲终极整理

“微波技术与天线”课程复习提纲 一、微波基本概念..............................................错误!未定义书签。 1.了解微波的基本概念:频率、波长等..................错误!未定义书签。 2.了解微波的主要特性................................错误!未定义书签。 二、传输线基本理论............................................错误!未定义书签。 1.了解传输线的特性参量(反射系数、驻波比、驻波相位、输入阻抗、输入导纳等),传输线任一截面特性参量的计算,周期性与倒置性在解题中的应用。错误!未定义书签。 2.掌握传输线的工作状态与终端负载的关系,了解传输线的三种工作状态及相关特性参量的特点。........................................错误!未定义书签。 3.熟悉圆图的基本特点(特殊点、线、半圆、圆)........错误!未定义书签。 4.掌握用圆图确定均匀无耗传输线任意截面的特性参量以及解决传输线的阻抗/导纳调配的问题。.........................................错误!未定义书签。 三、微波传输线................................................错误!未定义书签。 1.熟练掌握三种主要微波传输线(矩形,圆柱形,同轴)的模式的场分布及其特点,能作出或判断传输线横截面的模式图。..................错误!未定义书签。 2.掌握各种传输线特性参量及其运用。..................错误!未定义书签。 3.了解波导传输线的截止波长分布图及其应用。..........错误!未定义书签。 四、微波网络参量..............................................错误!未定义书签。 1.了解散射参量S参量和转移参量A参量的基本概念......错误!未定义书签。 2.了解S散射矩阵和A转移矩阵各参量的意义............错误!未定义书签。 3.了解S参量和A参量的基本特性及应用................错误!未定义书签。

微波技术应用

微波技术 一概述 微波是指波长范围为1mm~1m,频率范围为30×102 ~30×105MHz,具有穿透特性的电磁波。常用的微波频率为91 5MHz和 2 450MHz。微波作为一种电磁波,通常应用于广播、电视及通信技术中,近年来,随着科学技术的发展,微波作为一种能源,已逐渐应用于食品杀菌、干燥、烘烤、膨化、解冻等方面。 微波技术在食品工业中的应用可追溯到四十年代末期,1947年由美国雷声公司马文·贝克根据微波的加热效应制成了世界上第一台用于食品加热的微波炉。鉴于微波具有在食品内部生热并迅速产生均匀温度的观点,人们开始研究将它用于工业加热技术上以其开辟新的热能源,提高热能利用率和缩短加工时间,大约经历了十余年的探索,终于在1965年由美国Cryodry Comporation 公司研制成功了世界上第一台 915MHz/50kW隧道式微波干燥设备,并在Seyfert Foods食品公司首次投入实际应用,用来干燥油炸马铃薯片。此后微波能技术在美国、日本、加拿大和欧洲等发达国家在用来解决食品工业中的多种加热干燥、烹制、杀虫灭菌和回温解冻等方面相继获得成功并表现出强大的技术优势。到七十年代,世界各国普遍推广应用。例如在气候温和潮湿的日本,微波在食品工业中的应用占整个工业应用的60%。我国自1973年由南京电子管厂率先研制成功了工业微波干燥设备以来,经过了20年的努力,也积累了比较丰富的经验。目前我国已成功地应用微波能烧烤食品、干果焙烤、牛肉干燥、蔬菜脱水、快餐面干燥、食品杀菌、饮料杀菌、白酒陈化催熟等许多领域,并取得显著进展。 二微波技术的原理及特点 综合微波技术在食品工业中的各种应用可归结为如下原理。 (一)微波加热干燥原理 微波加热技术是一种新的加热方式。它是依靠以每秒245000万次速度进行周期变化的微波透入物料内,与物料的极性分子相互作用,物料中的极性(如水分子)吸收了微波能以后,改变其原有的分子结构,亦以同样的速度作电场极性运动,致使彼此间频繁碰撞而产生了大量的摩擦热,从而使物料内各部分在同一瞬间获得热能而升温。由于微波辐射下介质的热效应是内部整体加热的,即理论上所谓的“无温度梯度加热”,基本上介质内部不存在热传导现象,因此,微波可相当均匀地加热介质。微波加热技术与传统加热方法相比,有如下特性:①穿透力强。②热惯性小。③呈现选择加热特性。④具有反射性和透射性。 微波干燥是在微波理论,微波技术和微波电子管成就的基础上发展起来的一门新技术,微波干燥已在许多领域内获得广泛的应用。它是应用微波加热的原理, 使品温度上升,达到干燥的目的。微波干燥具有如下的特点: 1 .干燥速度快、干燥时间短 由于常规加热需要加热传热介质和环境,再进入食品,故需较长时间才能达到所需加热温度。而微波加热则是加热物体直接吸收微波能,加热速度大大高于常规加热方法,此时只需一般方法的十分之一到百分之一的时间就能完成整个加热和干燥的过程。 2. 产品质量高 由于加热时间短,又非热效应配合,因此,可以保存加工原料的色、香、味,并且维生素的破坏也较少。 3. 加热均匀

食品膨化技术综述

食品膨化技术 摘要:目前市场上膨化食品越来越多,其生产工艺也是多种多样。食品的膨化方法包括了直接挤压膨化、气流膨化、微波膨化等。本文介绍了这三种膨化技术的原理、特点以及应用,并阐述了食品膨化技术的发展前景。 关键词:挤压膨化;气流膨化;微波膨化 Expanded Food Technology CHEN Bing-bing (University of Shang Hai for Science and Technology, ShangHai 200093) Abstract:Currently on the market, puffed food, more and more of its production process is also varied. Methods puffed foods include direct extrusion, air puffing, puffing like. This article describes these three principles puffing technology, characteristics and applications, and describes the development prospects of food puffing technology. Key words: Extruded;Airflow puffing;Microwave puffing 1膨化技术的发展 食品膨化技术[2]在我国有着悠久的历史,古代就把油炸作为使食品膨化的重要方法之一。由于种种原因,我国现代膨化技术发展缓慢。直到20世纪70年代末,国内才开始现代膨化技术与膨化食品的研究。20世纪80年代初期,以太阳牌锅巴为代表的膨化休闲食品开始出现,丰富了中国传统的以瓜子、花生、饼干及糖果为代表的休闲类食品,同时带动了一批新兴企业的建立和成长。 进入90年代,随着消费市场的进一步扩大,国内膨化技术的逐渐成熟,以及国际膨化食品企业入驻国内,带来了先进的技术、设备和经验,膨化食品企业走上产业化发展的道路。进入21世纪,更多的休闲食品不断涌现,多种原料制成的膨化食品令人眼花缭乱,丰富着食品市场和人们的生活。 国内外谷物膨化食品和膨化技术的发展 膨化技术作为一种新型食品加工技术[9]在国外发展很快。早在1856年美国的沃德就申请了关于食品膨化技术的专利;1936年挤压法生产膨化玉米果首次成功;日本在20世纪30年代至40年代进行侵略战争期间曾采用膨化技术加工玉米、麦类再经过压制成军粮;20世纪60年代日本膨化技术发展起来用膨化大米制成面包、点心、蒸制品和炸制品等;20世纪70年代以来各食品厂家积极研制膨化食品并申请了各种膨化食品专利食品其中有以小麦粉、荞麦、小麦胚芽等为主要原料制成的谷物膨化食品。 在膨化类食品领域中膨化小食品的发展最为迅速的美国,年产值已达十几亿美元。目前一些国家生产膨化小食品已有成熟的工艺和先进的设备,并形成了生产线由于设备先进能够生产出外形精巧、多样化的膨化小食品。如今国外食品膨化技术及其理论的研究已处于兴旺时期。 近年来我国食品工业呈现持续快速健康发展,膨化食品正在逐渐成为百姓日常生活的必需消费品。我国每年休闲食品的销售额达几十亿元人民币,其中谷物膨化食品的年产量约20万吨。薯类、谷类等膨化食品占据休闲食品市场的大半江山。由此可见作为休闲食品的一大类,谷类膨化食品具有巨大的发展空间。但由于种种原因,我国的膨化技术发展缓慢,应用现代膨化技术生产膨化食品的时间并不长。由于生产厂家对膨化食品的研究开发工作不够重视,膨化食品风味单调、品种少,远不能满足人们的需求。近年来,美国、日本、欧洲各国和东南亚国家和地区很多著名的膨化食品生产企业纷纷在中国投资建厂,生产各种膨化食品。特别是随着很多国际食品公司投资中国,各类膨化休闲食品在工艺技术设备等方面也有了长足进步。因此,大力发展并加快膨化技术在食品生产中的应用步伐,促进我国食品工业的发展,是目前食品科学工作者需着重考虑的一个课题。 目前我国应用膨化技术生产膨化食品还处于初级阶段,因此应积极开展膨化理论和膨化技术研究,不断开发新产品。相信,随着以上各项工作的开展,以及人民生活水平的提高,满足大众生活需要的膨化食品必将迅速发展。

电磁场与微波技术

电磁场与微波技术 080904 (一级学科:电子科学与技术) 本学科是电子科学与技术一级学科下属的二级学科,是1990年由国务院学位办批准的博士学位授予点,同时承担接收博士后研究人员的任务,2003年被批准为国防科工委委级重点学科点。本学科专业内容涉及电磁场理论、微波毫米波技术及其应用,主要领域包括电磁波的产生、传播、辐射、散射的理论和技术,微波和毫米波电路系统的理论、分析、仿真、设计及应用,以及环境电磁学、光电子学、电磁兼容等交叉学科内容。多年来在多种军事和国民经济应用的推动下,本学科在天线理论与技术、电磁散射与逆散射、电磁隐身技术、微波毫米波理论与技术、光电子技术、电磁兼容、计算电磁学与电磁仿真技术、微波毫米波系统工程与集成应用等方面的研究形成了鲜明的特色,取得了显著成果。其主要研究方向有: 1.计算电磁学及其应用:设计、研究、开发高精度、高效率电磁计算算法;研究高效精确电磁计算算法在目标特性、微波成像及遥感、电磁环境预测、天线分析和设计等方面的应用。 2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(MEMS)的微波/毫米波开关、移相器和滤波器设计。 3.电磁波与物质的相互作用:研究电磁散射和逆散射算法,军事装备目标特性测试技术,隐身目标测试技术,目标散射中心三维成像技术;研究轻质、宽频、自适应智能隐身材料。 4.微波/毫米波系统理论与集成应用技术:设计、研究、开发特殊环境下的微波/毫米波系统;研究微波/毫米波测试技术;研究天线设计理论与技术。 一、培养目标 掌握坚实的电磁场与微波技术以及相应学科的基础理论,具有系统的专门知识,熟练应用计算机,掌握相应的实验技术,掌握一门外国语,学风端正,具备独立从事科学研究工作和独立担负专门技术工作的能力,能胜任科研、生产单位和高等院校的研究、开发、教学或管理等工作。 二、课程设置

微波技术应用行业

山东康来机械设备有限公司Shandong Kang Lai mechanical equipment Co., Ltd. 加上设计人思想

企业介绍: 山东康来机械设备有限公司是集科、工、贸为一体,从事研发、生产微波设备的高新技术企业,创始于2009年。其前身是济南康来微波设备有限公司,2016年企业发展壮大,公司体制改革变更为股份制企业。 公司致力于微波技术在食品、制药、化工、冶金、纺织、木材、石油、橡胶、陶瓷、造纸、粮食、干果、饮料、海鲜、新能源、环保等领域的开发应用及成套设备的生产制造。所有产品按GMP、FDA标准设计制造,其各项主要技术指标居于国际先进水平。公司产品有2450MHz、915MHz两大系列50多种型号、规格,得到国内外许多食品、制药、保健品、化工等企业的支持及应用。其主导产品有:微波食品干燥灭菌设备、微波药品干燥灭菌设备、微波化工产品干燥处理设备、微波木材烘干杀虫设备、微波调味品烘干杀菌设备、微波辣椒制品干燥杀菌设备、微波五谷烘烤设备、微波陶瓷固化设备、微波茶叶杀青机、微波口服液等中成药品灭菌设备、微波橡胶硫化设备、微波纸张干燥设备、微波昆虫(黄粉虫、蝇蛆)干燥设备、微波废物消毒设备、微波烧结设备、微波真空萃取、微波真空干燥设备、微波试验炉等多种系列和品种。 公司凭借多年设计、制造微波设备的经验,可以按用户的不同要求提供最佳的设备设计方案,供用户选择。公司所供产品免费负责安装、调试、操作培训;实行“三包”,保修一年和终身技术服务。 企业宗旨:同顾客以双赢,与员工共发展,给股东以回报,对社会以贡献。 企业愿景:创行业顶级品牌,供专业实用设备。 企业精神:真诚信赖,执着追求,稳健务实,拓新致远。 经营理念:以技术为龙头,以管理打基础,以人才为根本,以品牌闯天下。 服务理念:客户满意是检验我们工作的唯一标准。 (名片夹) 联系人: 联系方式:

电磁场与微波技术

论文题目:无形科学-电磁场与微波 技术 姓名:陈超 专业:电子科学与技术 指导教师:葛幸 申报日期:2012.10.23

摘要 电子和信息领域内所有重大技术进展几乎都离不开电磁场与微波技术的突破。在通信、雷达、激光和光纤、遥感、卫星、微电子、高能技术、生物和医疗等高新技术领域中,电磁场与微波技术都起着关键的作用,它的应用领域蕴含在国民经济、国防建设和人民生活的各个方面。同时,电磁场和微波技术也随着当代物理、数学、技术学科的不断进步而得到日新月异的发展。 关键字:电磁场,微波技术,应用

无形的科学—— 电磁场与微波技术 目录 1.前言 (2) 2.研究方向 (2) 3.基本理论与分析方法 (3) 3.1 电磁场理论 (3) 3.1.1矢量分析 (3) 3.1.2静电场 (3) 3.1.3恒定电场 (4) 3.1.4静磁场 (4) 3.1.5时变电磁场 (5) 3.2 微波技术理论 (7) 3.2.1传输线理论 (7) 3.2.2集成传输系统 (9) 3.2.3微波谐凯腔 (9) 3.2.4微波网络基础 (9) 3.2.5微波无源元件 (11) 4.发展前景 (12)

1. 前言 电子和信息领域内所有重大技术进展几乎都离不开电磁场与微波技术的突破。在通信、雷达、激光和光纤、遥感、卫星、微电子、高能技术、生物和医疗等高新技术领域中,电磁场与微波技术都起着关键的作用,它的应用领域蕴含在国民经济、国防建设和人民生活的各个方面。同时,电磁场和微波技术也随着当代物理、数学、技术学科的不断进步而得到日新月异的发展。 2. 研究方向 1.计算电磁学及其应用:设计、研究、开发高精度、高效率电磁计算算法;研究高效精确电磁计算算法在目标特性、微波成像及遥感、电磁环境预测、天线分析和设计等方面的应用。 2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(MEMS)的微波/毫米波开关、移相器和滤波器设计。 3.电磁波与物质的相互作用:研究电磁散射和逆散射算法,军事装备目标特性测试技术,隐身目标测试技术,目标散射中心三维成像技术;研究轻质、宽频、自适应智能隐身材料。 4.微波/毫米波系统理论与集成应用技术:设计、研究、开发特殊环境下的微波/毫米波系统;研究微波/毫米波测试技术;研究天线设计理论与技术。

微波技术原理及其在化学化工领域的应用

HUNAN UNIVERSITY 题目:微波技术原理及其在化学化工领域的应用

微波技术原理及其在化学化工领域的应用 摘要:本文介绍了微波技术原理以及其发展背景,并针对微波技术在化学化工领域的应用概况进行了总结和介绍,也提出了应用中的问题以及展望。 关键词:微波技术,化学,化工 1.引言 微波是一种波长很短的电磁波,其频率介于300 MHz-300 GHz,波长介于1 mm-1 m之间。因其波长介于远红外线和短波之间,故称之为微波。微波具有的特点为高频性、波动性、热特性和非热特性[1]。随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、微波散射通信、模拟微波通信和数字微波通信等。近年来,微波以其高效、均匀、节能、环保等诸多优点受到广泛关注,并逐渐成为一种新型能源得到越来越广泛的应用[2]。 2.微波技术的发展 微波技术兴起于20世纪30年代,在电视、广播、通讯等相关技术领域中得到了广泛的应用。经过长期发展后,美国于 1945 年率先发现了微波的又一特性,即热效应,并创新性的将其作为一种非通讯能源开始应用于工业、农业以及相关科学研究中。 微波技术的发展主要取决于微波器件的应用和发展。早在20世纪初,就有研究人员开始了对微波理论的探索,并进行了相关的实验研究。但由于当时信号发生器功率较小,加之信号接收器灵敏度较差,实验未能取得实质性的进展[3]。1936年,波导技术的进一步发展为微波技术的研究提供了可靠的理论及实验条件。美国电话电报公司的George C. Southworth.将波导用作宽带传输线并申请了专利,同时,美国麻省理工学院的M.L Barrow 完成了空管传输电磁波的实验,这些工作为规则波导奠定了理论基础,推动了微波技术进一步向前发展[4]。20世纪40年代,第二次世界大战期间,雷达的出现和使用引起了人们对微波理论和技术的高度重视,并研制了很多微波器件,在此期间,微波技术迅速发展并在

电磁场理论与微波技术复习提纲

电磁场理论与微波技术复习提纲 一、总体要求 通过本课程的学习,建立起电磁场与电磁波的基本思想,掌握电磁场与微波技术的基本概念、基本原理、基本分析方法,对波导理论有比较完整的理解,了解电磁场与微波技术的最新发展和应用。 “电磁场理论与微波技术”由“电磁场与电磁波基本理论”和“微波技术基础”两部分构成。第一部分“电磁场理论”所占比例约为:55% 第二部分“微波技术基础”所占比例约为:45% “电磁场与电磁波基本理论”部分重点考查内容为: 基本概念和理论 静电场 恒定电场 麦克斯韦方程组 平面电磁波 “微波技术基础”部分考查内容为: 基本概念和理论 传输线理论 波导理论 微波网络基础 二、考试形式与试卷结构 1、试题分为选择题(20%)、填空题(20%)、名词解释题(8%)、简答题(10%)、计算题(42%)。试卷总分100分。 2、考试形式为闭卷考试 3、考试时间:120分钟 名词解释: 1、坡印廷矢量和平均坡印廷矢量 2、电位移矢量 3、主模 4、色散

5、体电荷分布、面电荷分布、线电荷分布、体电流分布、面电流分布、线电流分布 6、电偶极子 7、直线极化、左右旋圆极化、椭圆极化 8、趋肤效应 9、均匀平面波、TEM模、TE模、TM模 10、全反射和全透射 11、波导 12、基本振子和对称振子 13、简并现象 14、微波 简答题: 1、如何判断长线和短线? 2、何谓分布参数电路?何谓集总参数电路? 3、何谓色散传输线?对色散传输线和非色散传输线各举一个例子。 4、均匀无耗长线有几种工作状态?特点?条件是什么? 5、说明二端口网络几种参量的物理意义? 6、发生全反射和全透射的条件 7、分析微波网络的方法 8、写出常见的微波元件9、分析天线的方法10、写出常见的天线 11、用哪些参数可以描述天线的性能指标,并解释其中的一到两个参数。 12、通量和散度的区别 13、旋度和环流的区别14、负载匹配和电源匹配 计算题: 1、矢量分析 1.1、1. 2、1.4、1.15、1.20 2、无界空间均匀平面波2.45、2.46、3.2、3.14 3、理想介质和良导体为边界的均匀平面波垂直入射3.17、3.22 4、分离变量法2.23,平行导体板(ppt例题) 5、阻抗圆图 6、波导模式和波长等计算5.11、5.12 7、高斯定理和安培环路定理(ppt例题)

微波技术与天线考试重点复习归纳

第一章 1.均匀传输线(规则导波系统):截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统。 2.均匀传输线方程, 也称电报方程。 3.无色散波:对均匀无耗传输线, 由于β与ω成线性关系, 所以导行波的相速v p 与频率无关, 称为无色散波。色散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为色散特性。 1101 0010110 cos()sin()tan() ()tan()cos()sin() in U z jI Z z Z jZ z Z z Z U Z jZ z I z j z Z ββββββ++==++ 2p v f πλβ===任意相距λ/2处的阻抗相同, 称为λ/2重复性z1 终端负载 221021101()j z j z j z j z Z Z A e z e e Z Z A e ββββ----Γ===Γ+ 1 10 1110 j Z Z e Z Z φ-Γ= =Γ+ 终端反射系数 均匀无耗传输 线上, 任意点反射系数Γ(z)大小均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性 4. 00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ 111ρρ-Γ= + 1 111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波比 其倒数称为行波系数, 用K 表示 5.行波状态就是无反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。综上所述, 对无耗传输线的行波状态有以下结论: ① 沿线电压和电流振幅不变, 驻波比ρ=1; ② 电压和电流在任意点上都同相; ③ 传输线上各点阻抗均等于传输线特性阻抗 6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e -j2β z 此时传输线上任意一点z 处的输入阻抗为 0()tan in Z Z jZ z β= ① 沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为无功功率, 即无能量传输; ② 在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最大且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最大且等于2|A 1|, 而电流为零, 称这些位置为电压波腹点。 ③ 传输线上各点阻抗为纯电抗, 在电压波节点处Z in =0, 相当于串联谐振, 在电压波腹点处|Z in |→∞, 相当于并联谐振, 在0<z <λ/4内, Z in =jX 相当于一个纯电感, 在λ/4<z <λ/2内, Z in =-jX 相当于一个纯电容,从终端起每隔λ/4阻抗性质就变换一次, 这种特性称为λ/4阻抗变换性。 短路线ls l 110arctan()2s X l Z λπ= 开路线loc 0cot() 2c oc X l arc Z λ π= 9.无耗传输线上距离为λ/4的任意两点处阻抗的乘积均等于传输线特性阻抗的平方, 这种特 性称之为λ/4阻抗变换性。 10.负载阻抗匹配的方法 基本方法:在负载与传输线之间接入一个匹配装置(或称匹配网络),使其输入阻抗等于传输线的特性阻抗Z 0. 对匹配网络的基本要求:简单易行、附加损耗小、频带宽、可调节以匹配可变的负载阻抗。 实现手段分类:串联λ/4阻抗变换器法、支节调配器法 (1)因此当传输线的特性阻抗 01 Z = 时, 输入端的输入阻抗Z in =Z 0, 从而实现了负载和传输 线间的阻抗匹配(2)串联

微波技术的当前应用浅析

2012—2013学年上学期微波工程 期中论文 微波技术的当前应用浅析 学生姓名:邓兴盛 学号: 10908030101 课程名称: 微波工程 指导教师:何俊 专业班级:电子信息工程 完成时间: 2012年5月20日

微波技术的当前应用浅析 【摘要】微波技术早在二战结束不久就已经在工业上得到应用,但真正得到重视确实在上世纪七八十年代,经过了多年的发展已逐步形成了一系列的交叉技术,在不同的领域都发挥着其独有的优势和特殊作用,本文就目前世界上微波技术在不同领域的应用及其前景做一简单的分析,并就微波技术在应用中的一些需要我们共同关注的问题试图做一些思考。 【关键词】微波技术,应用价值,影响思考 【正文】1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,1898年,马可尼又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。至此,随着人们对电磁波概念的认知,开始不断地认识到了电磁波在实际生活中的应用价值。 一个典型的例子,1936年4月美国科学家South Worth用直径为12.5cm 青铜管将9cm的电磁波传输了260m远,从而它证实了麦克斯韦的另一个预言──电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,又提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。在1943年终于制造出了第一台微波雷达,工作波长在10cm。在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行探测定位的高分辨率雷达,大大促进了微波技术的发展。 一、微波的存在 微波是指波长在1mm~1000mm、频率在300MHz~300GHz范围之间的电磁波,因为它的波长与长波、中波与短波相比来说,要“微小”得多,所以它也就得名为“微波”了。 微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断地得到发展和应用。19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究。但赫兹本人并没有想到将这种电磁波用于通信,他的实验仅证实了麦克斯韦的一个预言──电磁波的存在。

微波加热原理及特点

微波加热原理及特点 微波原理及特点 微波是一种能量(不是热量)形式,电磁波的一种,在介质中可以转化为热量。材料对微波的反应可以分为四种情况:(1)穿透微波 (2)反射微波 (3)吸收微波 (4)部分吸收微波 介质从电结构上分为无极和有极分子电介质。通常它们无规则排列,如把它们置于交变的电场中,这些介质的极性分子取向会随电场极性的变化而变化,叫极化。外电场越强,极化作用越强,外电场极性变化越快,极化越快,分子的热运动和相邻分子间的摩擦作用也越剧烈。从而可实现电磁能向热能的转换。 由极性分子所组成的物质,能较好地吸收微波,水是吸收微波最好的介质,所以凡含水的物质必定吸收微波。另一类由非极性分子组成,它们基本上不吸收或很少吸收微波,这类物质有聚氟乙烯、聚丙烯等塑料制品和玻璃、陶瓷等,它们能透过微波,而不吸收微波,这类材料可作为微波加热用的容器或支承物,或做微波密封材料。对于导电的金属材料,电波不能透入内部而被反射,金属材料不能吸收微波。微波加热原理: 通常,能加工领域中所处理的材料大多是介质材料,而介质材料由极性分子和非极性分子组成,都能不同程度地吸收微波。介质材料与微波电磁场相互耦合,会形成各种功率耗散从而达到能量转化的目的。能量转化的方式有许多种,如离子传导、偶极子转动、界面极化、磁滞、压电现象、电致伸缩、核磁共振、铁磁共振等,其中离子传导和偶极子转动是微波加热的主要原理。 微波加热是依靠物料吸收微波能并将其转换成热能,从而使物料本身整体同时升温的加热方式。常用的微波频率有915MHz和2450MHz。由于具有高频特性,微波电磁场以数十亿次/秒的惊人速度进行周期性变化,物料中的极性分子(典型的如

电磁场理论与微波技术 试卷A

特别提示:请诚信应考,考试违纪或作弊将带来严重后果! 成都理工大学工程技术学院 2009 - 2010学年第2学期 《电磁场理论与微波技术》通信工程专业期末试卷A 注意事项:1. 考前请将密封线内的各项内容填写清楚; 2. 所有答案请直接答在答题纸上; 3.考试形式:闭卷; 4. 本试卷共二大题,满分100分,考试时间120分钟。 一.简答题(第1题20分,第2--7题各5分,第8题各10分共60分)1,分别写出麦克斯韦方程组的微分和积分形式,并解释每个积分方程的含义。2,静电场的电力线是不闭合的,为什么?在什么情况下电力线可以构成闭合回路,它的激励源是什么? 3,试从产生的原因、存在的区域以及引起的效应等方面比较传导电流和位移电流。 4,“如果空间中某一点的电场强度为零,则该点的电位为零”,这种说法正确吗? 为什么?。 5,安培环路定理应用到时变场时会出现什么矛盾?这一矛盾又是如何解决的? 6,什么是坡印廷定理?它的物理意义是什么? 7,沿均匀波导传播的波有哪三种基本模式? 8,由电磁场理论知,当微波通过传输现时,会产生分布参数效应。那么什么是分布参数效应?

二.计算及证明题 (第1,2题各15分,第3题各10分, 共40分) 1,电荷Q 均匀分布于半径为a 的球体内,求空间各点的电场强度,并由此计算电场强度的散度。(计算中所用公式:30r r ??= ,3r ??= ) 2,在自由空间传播的均匀平面波的电场强度复矢量为: (20)42042??1010j z j z x y V E e e e e m πππ-----=+ 试求:(1)平面波的传播方向和频率; (2)波的极化方式; (3)磁场强度H 3,利用无源空间(电流密度0J =,电荷密度0ρ=)的麦克斯韦方程推到电场强度E 和磁场强度H 的的波动方程。 (计算中所用公式:2()()E E E ????=???-? )

2019年西门子杯中国智能制造挑战赛

2019年“西门子杯”中国智能制造挑战赛 智能制造创新研发类赛项:企业命题方向 企业A命题1:自行车车架研磨、抛光设备研发 企业A命题2:整箱自动检重、记录设备研发 一、题目背景 企业A为浙江德清久胜车业有限公司,是国内著名的大型自行车生产企业,年产自行车200万辆,主要经营范围包括自行车、童车及相关配件的生产等。 题目来源于该企业的生产线,为了提高产品的质量、生产效率、降低人工成本,需要对该生产线进行升级改造。参赛队员需根据生产工艺与企业具体要求,设计一套完整的解决方案并进行样机研发、验证。 该题目要求参赛团队具备扎实的理论功底和娴熟的开发能力,遵循实际生产设备改造、研发规律,严格按照相关工业标准和流程,设计、开发出满足企业要求的设备、产品,在此基础上鼓励在性能、效率、功能等方面的创新。 二、比赛要求 1、企业面临/急需解决的问题 目前年产200万台自行车,人工成本越来越多,希望进行自动化产线升级。目前是600-700人实现200万台产量,他们希望能达到100-200人实现200万台的产量。 2、比赛要求 针对企业实际问题与需求,参赛队选取以下2个任务中的一个,完成比赛。 (1)自行车车架自动研磨、抛光设备研发。目前的研磨、抛光是由人工进行,效率较低且质量难以保证(具体研磨、抛光过程参见视频:《车架研磨抛光》)。要求设计一台可自动对毛坯车架进行表面研磨、抛光的设备,实现自动或者辅助人进行研磨、抛光的操作。针对车架整体抛光,主要抛光面为A/B 面,抛光精度达到涂装工艺要求,抛光设备必须简易灵活,适用不同产品的规格和构造,适用材料便宜易购买。(对毛坯车架表面的毛刺、磕碰伤、焊渣、划痕等做研磨、抛光处理)。 具体要求: ?该设备类似自动汽车洗车机的设备。类似于视频中自行车车架,从头管处进入设备抛光入口,从设备出口处自动流出来,即抛光、研磨完成,可以试用于自行车多种型号。 ?需要考虑研磨效果(钢丝毛刷刷产品的距离、力度、抛光效果(目数/粗细)需满足喷涂要求)。 ?使用的抛光钢丝刷市场上易购得、价格低等特点。毛刷重复使用性较好,重复研磨品质能保证。 ?因产品结构、种类和大小较多,需综合考虑设备工作面大小尺寸,设备快速换模易实现(例:1-2分钟完成换模)。设备设计控制PLC为集成统一控制单元,配有人机交互界面,适用于多品种、多尺寸规格,快速换线、快速调节,系统存储1000种以上尺寸、重量规格,换线时采取程序调

微波技术在环境保护领域中的应用

微波技术在环境保护领域中的应用 王剑虹1,严莲荷1,周申范1,刘德宝2 (11南京理工大学水处理所,江苏南京 210094;21唐山钢铁股份有限公司热轧薄板厂,河北唐山 063020) [摘要]对当前微波辐射技术在环保领域的应用和研究状况进行了综述,着重介绍了微波加热机理及其特点,在废水、废气、固体废弃物的处理,环保材料的研制,环境监测等方面的应用,讨论了应用中存在的一些问题,并展望了微波技术在环保领域的应用前景。 [关键词]微波;辐射加热机理;废水;固体废弃物;环境监测 [中图分类号]X509 [文献标识码]A [文章编号]1005-829X (2003)04-0018-05 Application of the microwave technology to the environmental protection Wang Jianhong 1,Yan Lianhe 1,Zhou Shenfan 1,Liu Debao 2 (11W ater T reat ment Instit ution ,N anji ng U niversity of Science &Technology ,N anji ng 210094,Chi na ; 21Tangshan I ron and S teel Co.,L t d.,Tangshan 063020,Chi na ) Abstract :The microwave irradiation technologies applied to environmental protection is surveyed.The mecha 2nism and features of microwave irradiation and the microwave technologies applied to wastewater are emphasized especially.Waste gas and waste solid treatment ,environmental protection materials production and environmen 2tal monitor and the problems of the technologies are discussed the applicable prospect of the microwave technolo 2gy in the environmental protection. Key words :microwave ;irradiation mechanism ;wastewater ;waste solid ;environmental monitor 自1970年使用微波炉装置成功的处理核废料以来,微波技术迅速扩展到了化学领域。而近十几年来人们已经注意到微波在环境保护领域的应用潜力。对微波加热机理及其特点,在废水、废气、固体废弃物的处理,环保材料的研制,环境监测等方面都进行了广泛的研究,我们对微波辐射技术的发展方向进行了展望,相信微波技术将会有广泛的应用前景,一旦工业化可以带来巨大的经济和社会效益。1 微波加热的机理和特点 微波是一种电磁能。可改变离子迁移和偶极子转动情况,但不引起分子结构改变,是非离子化的辐射能。微波通常是指波长为1mm 到1m 之间(频率300~300000MHz )的电磁波,介于红外与无线电波之间,而最常用的加热频率是2450MHz 。一般来说,介质在微波场中的加热有两种机理,即离子传导和偶极子转动。在微波加热的实际应用中,两种机理的微波能耗散同时存在。1.1 离子传导机理 离子传导是电磁场中可离解离子的导电移动,离子移动形成电流,由于介质对离子的阻碍而产生热效应〔1~3〕。溶液中所有的离子起导电作用,但作用大小与介质中离子的浓度和迁移率有关。因此,离子迁移产生的微波能量损失依赖于离子的大小、电荷量和导电性,并受离子与溶液分子之间的相互作用的影响。1.2 偶极子转动机理 介质是由许多一端带正电,一端带负电的分子(或偶极子)组成。如果将介质放在两块金属板之间,介质内的偶极子作杂乱运动,当直流电压加到金属板上,两极之间存在一直流电场,介质内部的偶极子重排,形成有一定取向的有规则排列的极化分子。若将直流电换成一定频率的交流电,两极之间的电场会以同样频率交替改变,介质中的偶极子也相应快速摆动,在2450MHz 的电场中,偶极子以4.9×109次/s 的速度快速摆动。由于分子的热运动和相邻分子的相互作用,使偶极子随外加电场方向的改变而作规则摆动时受到干扰和阻碍,产生了类似摩擦的作用,使杂乱无章运动的分子获得能量,以热的形式表现出来,介质的温度也随之升高。 偶极子加热的效率与介质的弛豫时间、温度和粘度有关。而温度和介质离子的迁移率、浓度及介质的弛豫时间决定两种能量转换机理对加热的贡 — 8 1—2003年4月第23卷第4期 工业水处理Industrial Water Treatment Apr.,2003 Vol.23No.4

微波加热原理及特点

微波原理及特点 微波是一种能量(不是热量)形式,电磁波的一种,在介质中可以转化为热量。材料对微波的反应可以分为四种情况:(1)穿透微波(2)反射微波(3)吸收微波(4)部分吸收微波 介质从电结构上分为无极和有极分子电介质。通常它们无规则排列,如把它们置于交变的电场中,这些介质的极性分子取向会随电场极性的变化而变化,叫极化。外电场越强,极化作用越强,外电场极性变化越快,极化越快,分子的热运动和相邻分子间的摩擦作用也越剧烈。从而可实现电磁能向热能的转换。 由极性分子所组成的物质,能较好地吸收微波,水是吸收微波最好的介质,所以凡含水的物质必定吸收微波。另一类由非极性分子组成,它们基本上不吸收或很少吸收微波,这类物质有聚氟乙烯、聚丙烯等塑料制品和玻璃、陶瓷等,它们能透过微波,而不吸收微波,这类材料可作为微波加热用的容器或支承物,或做微波密封材料。对于导电的金属材料,电波不能透入内部而被反射,金属材料不能吸收微波。 微波加热原理: 通常,能加工领域中所处理的材料大多是介质材料,而介质材料由极性分子和非极性分子组成,都能不同程度地吸收微波。介质材料与微波电磁场相互耦合,会形成各种功率耗散从而达到能量转化的目的。能量转化的方式有许多种,如离子传导、偶极子转动、界面极化、磁滞、压电现象、电致伸缩、核磁共振、铁磁共振等,其中离子传导和偶极子转动是微波加热的主要原理。 微波加热是依靠物料吸收微波能并将其转换成热能,从而使物料本身整体同时升温的加热方式。常用的微波频率有915MHz和2450MHz。由于具有高频特性,微波电磁场以数十亿次/秒的惊人速度进行周期性变化,物料中的极性分子(典型的如水分子、蛋白质、核酸、脂肪、碳水化合物等)吸收了微波能以后,它们在微波电磁场的作用下呈有序性排列,改变了其原有的随机分布的取向。在高频电磁场的作用下,这些极性分子亦以同样的速度随交变电磁场的变化而做电场极性运动,就会引起分子的运动和转动,致使分子间频繁碰撞而产生了大量的摩擦热,并以热的形式在物料内表现出来,从而导致物料在短时间内温度迅速升高、加热或熟化。 微波加热是介质材料自身损耗电场能量而发热,它完全区别于其他的常规加热方式。传统加热方式是根据热传导、对流和辐射原理使热量从外部传至物料,热量总是由表及里传递进行加热物料,物料中不可避免地存在温度梯度,故加热的物料不均匀,致使物料出现局部过热。微波加热是通过被加热体内部偶极分子高频往复运动,产生“内摩擦热”而使被加热物料温度升高,不须任何热传导过程,就能使物料内外部同时加热、同时升温,加热速度快且均匀,仅需传统加热方式的能耗的几分之一或几十份之一就可达到加热目的。从理论分析,物质在微波场中所产生的热量大小与物质种类及其介电特性有很大关系,即微波对物质具有选择性加热的特性。 微波杀菌原理: 1)热效应:在微波的作用下,物料中的有害菌、虫害等微生物受到无极性热运动和极性转动两方 面的作用而改变其排列组合状态及运动规律,使得微生物蛋白质结构发生变化,从而失去生物 活性,使菌体死亡或受到严重干扰而无法繁殖。

相关主题
文本预览
相关文档 最新文档