当前位置:文档之家› 生活垃圾焚烧厂烟气处理技术

生活垃圾焚烧厂烟气处理技术

生活垃圾焚烧厂烟气处理技术
生活垃圾焚烧厂烟气处理技术

生活垃圾焚烧厂烟气处理技术

焚烧作为无害化最彻底、减容化最显著、可资源化利用程度最高的一种处理技术已经成为当今国际社会生活垃圾处理的重要技术。然而,每吨垃圾焚烧后会产生5000~7000m的废气,如何控制烟气中污染物的排放浓度也日益受到人们的广泛关注,笔者主要从烟气中污染物组分及相应的处理技术方面进行综述,总结在生活垃圾焚烧发电厂中烟气处理技术研究应用进展,从而提出了今后垃圾焚烧烟气处理的研究方向。

1、烟气中污染物组分

垃圾焚烧烟气组成极其复杂,主要污染物有烟尘(飞灰)、酸性气体、重金属和二恶英类等。烟尘颗粒物主要是垃圾焚烧过程中烟气夹带的不可燃物质或燃烧过程产生的微小惰性无机颗粒状物质,如灰分、无机盐类、可凝结的气体污染物及有害的重金属氧化物。酸性气体及氮氧化物主要来源于垃圾中特定组分的燃烧过程。研究表明,HC1的浓度受垃圾中含氯有机物的影响高于无机氯化物。

重金属类污染物主要来源于生活垃圾中含有的废旧电池,主要包括铅、汞、铬、镉、砷及其化合物以及其他重金属及其化合物,当垃圾中有机氯化物含量高时,烟气中的重金属以铬为主要成分,当垃圾中无机氯化物高时,烟气中的重金属以铅为主要成分。有机污染物主要为二恶英类物质,有研究表明250~350℃的温度范围最易

产生二恶英,李晓东等提出垃圾中氯含量超过2.1%时二恶英的增加量更为明显,

R.Takeshita等提出控制高温烟气中HC1气体的含量有利于控制二恶英的生成量。

我国2010年发布了《生活垃圾焚烧污染控制标准》征求意见稿,对垃圾焚烧烟气的排放标准作出了更为严格的限制,部分指标达到欧洲EU2000/76/EC标准,由此可见,合理有效的烟气处理技术是保障垃圾焚烧发电厂推广实施的必要条件。

2、烟尘、重金属及二恶英的脱除工艺

2.1烟尘的脱除

烟尘脱除主要采用除尘器,根据CJJ90_-2009生活垃圾焚烧处理工程技术规范要求,生活垃圾焚烧厂烟气净化系统必须设置袋式除尘器。目前,采用机械炉排炉的垃圾焚烧厂除尘装置多采用袋式除尘器;采用循环流化床的垃圾焚烧厂由于含尘量高,多采用“旋风除尘器+袋式除尘器”组合工艺。

袋式除尘器主要利用预涂粉尘、滤袋表面积附尘等技术,对有害有毒气体进行处理和过滤,除尘效率可达99.50%~99.99%,能长期稳定运行,适应工艺负荷变化引起的风量波动,有效捕集10tzm以下的微尘,粉尘排放浓度可稳定达到<50mg/m甚至5mg/m3以下。FE是目前国内外垃圾焚烧发电厂应用较为普遍的滤料,其水解稳定性、耐酸,碱性、耐磨性及氧化稳定性均为优,使用年限为3-4a,但其价格较高。其他滤料难以抵御垃圾焚烧炉烟气的腐蚀,使用寿命较短。

2.2重金属及二恶英的脱除

传统的垃圾焚烧厂烟气中重金属和二恶英的常用脱除工艺为“活性炭喷射+袋式除尘器”。此工艺能有效吸附烟气中的重金属及二恶英,活性炭的添加量为100mg/m左右,脱除效率可达95%以上。

GORE公司研制出的Remedia催化滤料,能有效分解脱除二恶英,脱除效率高达90%以上,烟气中二恶英浓度将小于0.1ng—TEQ/m3。Y.Ide等采用TiO2/V205/WO3催化剂在选择性催化还原(SCR)装置中研究了垃圾焚烧烟气中二恶英和相关化合物的分解,分解率高达90%。

陈彤等对150t/d焚烧流化床锅炉不同工况下湿法除尘器前后烟气中二恶英的含量进行

研究,得出不同工况下湿法除尘器对二恶英的脱除效率均达到85%以上。因而,在烟气净化处理装置的基础上进行低温催化技术研发是烟气处理的研究方向之一。

3、酸性污染物的脱除工艺

国内外常用的垃圾焚烧烟气中酸性污染物的脱除工艺主要有干法、湿法和半干法3种。国外垃圾焚烧发电厂常采用湿法和机械旋转喷雾半干法烟气净化工艺,国内已建成的垃圾焚烧发电厂大多采用机械旋转喷雾半干法工艺或循环流化法和干法净化工艺。

3.1干法工艺

干法脱酸工艺是将碱性脱酸物质直接喷射在烟道内,流程简单,设备投资约为半干法的80%,工艺过程不产生废水,设备故障率低,维护方便,但钙硫比偏高,脱酸剂耗量大,致使飞灰产生量大。

E.Jannelli等在RDF(垃圾衍生燃料)焚烧模拟实验中,采用Ca(OH)2作为吸收剂处理HCI,脱除率可达到99%。姚宇平指出在用石灰或消石灰作为吸收剂进行干法脱酸时,更应该注重其Blaine比表面积。郭一鑫采用干法烟气净化系统进行烟气处理,HC1的脱除率可达到97%,SO2的脱除率>90%。吴立等研究表明,电石渣的脱酸效果与纯Ca(OH)相当,可替代纯Ca(OH):,降低处理成本。孙向军等提出碳酸氢钠的经济性较熟石灰差,但脱除效率更高。

垃圾焚烧厂烟气净化处理方案

垃圾焚烧厂烟气净化处理方案 垃圾焚烧处理方法是将垃圾在高温下燃烧,使可燃成分经氧化转变为稳定气体(烟气),不可燃成分转变为无机物(灰渣),焚烧处理过程中产生的热能可用于发电,进而达到无害化、减量化、资源化的目的,是目前处理城市垃圾最有前途的方法之一。随着垃圾焚烧处理越来越被国内大中城市所接受,焚烧烟气的处理问题也越来越受到广泛关注,因此必须对焚烧烟气进行净化处理确保达标排放。 1、烟气净化处理方案 某垃圾焚烧发电工程处理规模为1000t/d,配置2台500 t/d垃圾焚烧炉,与焚烧炉对应配置2套焚烧烟气净化系统。根据项目排放要求,结合本工程污染物排放浓度要求的特点,同时从技术成熟性、可靠性、稳定性及经济性等方面考虑,参考国内已建成的大中型现代化垃圾焚烧厂的实践,本工程采用的“半干法+ 辅助干法”烟气净化工艺,即“旋转喷雾半干法脱酸+ 辅助消石灰粉烟道喷射干法脱酸+ 活性炭吸附+袋式除尘器”进行处理,吸收剂采用石灰浆。另外,本工程采用SNCR脱NOx工艺,由于该脱氮工艺为焚烧炉内脱氮,因此烟气净化工艺设计暂不考虑脱氮系统的设计。 1.1 主要设计参数及排放指标

每台余热锅炉出口烟气主要参数如表1所示。本工程烟气排放指标要求如表2所示。 1.2 工艺方案简述 焚烧烟气经余热锅炉回收热量后(温度190 ~240℃)进入脱酸反应塔,烟气中的酸性物质(HCl、SO2等)与雾化的石灰浆液滴充分反应,调温水随石灰浆液雾化并蒸发,从而调节烟气温度。在反应塔出口烟道喷入Ca(OH)2和活性炭粉末,烟气中未去除完的酸性污染物与Ca(OH)2继续反应去除,二噁英和汞等重金属则被活性炭吸附。烟尘进入袋式除尘器后被滤袋分离出来,收集下来的粉尘经刮板输送机输

MHGT垃圾焚烧烟气处理系统

MHGT垃圾焚烧烟气处理系统 垃圾焚烧炉每天燃烧大量的城市垃圾和生活垃圾等,会产生有毒有害气体。产生的废气属于有机废气,它含有毒组分多,危害大,治理难度大,专业化程度高,与常规的脱硫有许多绝然不同之处。为了加强对环境的保护,垃圾焚烧必须配有烟气净化装置。目前,国内垃圾电厂的烟气处理主要采用半干法工艺。半干法又分为喷雾干燥法、循环流化床法和MHGT 处理法。 实验数据表明,三种方法均能达到相同的去除有害物质的效率。在系统投资方面,喷雾干燥法的关键设备、备品备件要求高,投资运行费用最高,循环流化床法和MHGT法次之。MHGT处理法具有很强的实用性、针对性和推广应用价值,是一种专门对垃圾电厂烟气进行脱酸处理的工艺,而且其系统简单,值得推广。 一、MHGT的技术说明: MHGT是在喷雾干燥法(Dryac)的基础上发展而来的,“Dryac”在80年代比较盛行,但其尚有缺点,如复杂的制浆系统,高速离心喷嘴能耗偏高,反应器内壁易粘结等,之后许多公司都致力于进行减小反应器体积及提高吸收剂利用率和多组分烟气有毒组分去除率的研究,“MHGT”技术就是在此基础上开发的能治理多种有毒废气的先进的循环半干法技术。MHGT工艺的基本原理: 利用干反应剂CaO或熟石灰粉Ca(OH)2吸收烟气中的SO2、HCl、SO3,利用高活性活性炭吸附烟气中的微量二恶英及重金属致癌物质。 MHGT技术的优点: 鉴于传统喷雾干燥工艺制浆系统的复杂性及应用中产生的一系列问题,MHGT工艺取消了制浆系统,无污水产生,实行CaO的消化及循环增湿一体化设计,这不仅克服了单独消化时出现的漏风、堵管等问题,而且消化时产生的蒸汽进入反应器,增加了反应环境的相对温度,对反应有利; MHGT工艺实行反应灰多次循环,使脱硫剂的利用率提高到95%以上; 整个装置结构紧凑、占用空间小,运行稳定可靠,对场地紧张的机组具有明显的优势; 整套装置设备少,所以投资少,维修费用低; 干法、无污水产生,终产物适用于气力输送; 对SO2吸收率高,对HCl、SO3等的吸收率更高; 对吸收剂石灰的品质要求不是很高,吸收剂就地都能买到,价格也便宜。 采用MHGT后的性能保证:

小型生活垃圾焚烧处理方案设计

垃圾焚烧处理方案设计 1总说明 1.1工程概况及基本特征 1)简要说明工程概况及其基本特征,工程建设背景中含社会政治、经济现状及发展规划。 2)工程位置简介中含地形、河流湖泊、水库、气象、水文、工程地质等自然条件。 3)业主介绍,含组织机构、业绩、资金、管理、人材、设备等技术实力、建设及运营经验的简介。 4)建设内容及规模、服务范围与使用年限;项目所在地垃圾清运现状、处理现状及近期或远期规划概况。 5)项目的定性设计,含全厂设计使用寿命、防洪、防风、防火、防震等的定性设计。 1.2设计指导思想与原则 结合项目特点,阐明设计遵循的指导思想和原则。 1.3设计依据及设计范围 (1)与项目业主签订的设计合同; (2)行政主管部门批准的项目可行性研究报告、环境影响评价报告、选址报告等,包括批准机关、文号、日期等; (3)工程测量及工程地质、水文地质初勘报告; (4)采用或参考的设计标准及规范; (5)其它有关文件、会议纪要等;项目业主提供的其它与工程相关、并经设计单位确认的资料。 1.4主要技术经济指标 简要汇总说明初步设计得出的主要技术经济指标,主要包括:工程(分期)建设规模,占地面积,绿化面积、道路面积,建构筑物占地面积;焚烧炉处理能力、发电装机容量,使用年限,劳动定员,单位能耗物耗指标、工程投资、财务指标等; 2 ?处理厂工艺总体设计 2.1垃圾产生量及理化特性分析 根据可行性研究报告批复规定的工程服务范围与期限,调查说明垃圾现状产量、成份及理化特性,并对服务年限内垃圾产生量、垃圾成份及其理化特性的变化趋势作出合理预测,计算确

定其设计点低位热值。 2.2工程规模及厂址选择 根据服务年限内垃圾产生量、垃圾成份及其理化特性的变化趋势,确定工程规模及其分期建设规模;论证确定垃圾焚烧生产线配置数量,进一步论证确定经可行性研究报告批准的机炉配置方案。 场址选择需说明城市总体规划和环境卫生专业规划对场址的原则性要求;项目环境影响评价报告对场址的要求;综合分析地形地貌、工程地质及水文地质,道路交通,占地面积,水源、电力供应情况,卫生防护距离与城镇布局关系、污水排放条件等因素的影响,说明拟建场址的合理性与不足之处,以及需采取的针对性技术方案等内容。 2.3垃圾的接收、贮存与输送 根据垃圾接收量及生产线布置状况: 1)合理确定并说明进厂垃圾检视设施、计量设施布置、数量及技术规格、参数。 2)进厂垃圾卸料门的数量、技术规格、参数。 3)垃圾贮坑的容量、垃圾贮坑构造应具有的防渗、防撞、防腐措施。防垃圾臭气 外泄的负压状态的保持措施。 4)垃圾贮坑设置的渗沥液收集设施。 5)根据垃圾的混合、倒堆、给料的时间分配,合理确定并说明垃圾起重抓斗的布 置、数量及技术规格、参数,重点描述抓斗防碰撞、及称量等功能。 2.4垃圾处理工艺系统 1)描述垃圾焚烧处理工艺系统。 2)根据服务年限内垃圾产生量、垃圾成份及其理化特性的变化趋势,确定配置的每台垃圾焚烧炉处理能力、焚烧炉炉型、技术规格及参数。 3)垃圾进料斗、给料溜槽的结构形式、技术规格及参数;说明在溜槽内垃圾检测装置的数量、技术规格及参数,防火、防堵塞、防搭桥的措施。 4)垃圾推料器的结构形式、技术规格及参数。 5)垃圾焚烧炉结构形式、技术规格及参数,垃圾焚烧工况图,同时说明料层调节 装置的结构形式、技术规格及参数。 6)焚烧炉调节控制油系统的工艺流程,主要设备的技术规格及参数。 7)燃烧空气系统构成及主要设备技术规格及参数。 8)辅助燃烧系统及主要设备技术规格及参数。

大连城市中心区生活垃圾焚烧处理项目

大连城市中心区生活垃圾焚烧处理项目 环境影响报告书简本 1项目概况 拟建项目位于大连市甘井子区拉树房村西侧,距大连市中心区33km,北临渤海,南临拉树房至土革路。项目总占地面积7.62万m2,建筑物占地面积21960m2,绿化系数30%。采用3台500t/d的机械炉排炉型垃圾焚烧炉,总焚烧量可适应在1050~1650t/d范围,工程内容参见表1。 表1 项目工程内容 全厂职工共64人,其中:焚烧发电生产技术人员54人,管理人员10人。焚烧发电为连续工作制,年有效工作日333天,每天3班,每班8小时。辅助生产岗位和管理人员根据工作性质采用间断或连续工作制,年工作250天。 工程拟于2010年3月开工建设,2011年10月1日竣工投产,2011年底投入商业运营。发电量预计可达17206.8×104kWh/a。 2项目区域环境质量现状 2.1环境空气质量现状 本项目环境空气质量现状调查采取引用历史数据和现场监测相结合的方式进行。因项目周边近三年内无新增污染源,故本次引用了周边区域6个监测点位的环境空气质量历史监测数据,该数据由大连市环境监测中心于2006年3月(采

暖期)监测;同时,本次环评又在上述6个点位中选取了位于项目评价区域内的4个典型点位进行了大气现状监测。 通过引用历史数据和本次大气现状监测数据可以看出: 采暖期,评价区域所有点位SO2、NO2小时浓度均未出现超标现象;PM10日均值除5#点位未超标外,其余各点位均出现不同程度的超标现象,分析其超标原因,由大连市区环境空气质量报告中PM10季(月)变化曲线可看出,春季可吸入颗粒物均值最高,尤以3月份(引用数据监测月份)月均值最高,主要受沙尘影响。故在本项目区域采暖期的历史监测数据中PM10日均值偏高,出现超标现象。 非采暖期,评价区域内所有点位的常规污染物任何一次值均无超标现象,达到了《环境空气质量标准》二级标准;特征污染物中,HCL的检出率为40.6%,NH3的检出率为18.75%,Hg的检出率为100%,Pb和H2S均未检出,所有点位除HCL日均值出现一次超标外,其余各污染物测值均未超标。 分析HCL超标原因:该超标值出现在1#点位(拉树房居民区),此点位邻近项目北侧海域,受大连地区三面环海的地理特征和海洋气候的影响,使得环境空气中存在一定浓度的氯离子,促使了该监测点位处空气本底中的HCL浓度偏高。 2.2声环境质量现状 根据评价区域的地理位置和周边情况,本次评价在项目东、南两个厂界和拉树房村分别设置1个监测点位,共3个噪声监测点。 从声环境监测结果看,各监测点位昼夜间噪声均超过1类标准要求,项目区域的声环境本底质量一般。分析原因,本项目南侧毗邻土革路,交通噪声对周边环境噪声有一定的贡献值,同时,因土羊高速施工作业,使得土革路来往的大型载重车辆较多,造成2#点位(南厂界)噪声显著超标。1#(东厂界)和3#点位(拉树房居民区)噪声略有超标,其影响因素主要为自然和社会噪声。 2.3地下水环境质量现状 本次地下水现状监测设置1个采样点,选取了项目附近拉树房村中的一口民用水井,坐标为N39o04′05.9″,E121o36′32.0″。 本次地下水水质现状的监测项目为:pH、挥发酚、高锰酸盐指数、阴离子表面

危废焚烧处理工艺及图片

资料整理 一、危废处理工艺流程 (1)系统工艺主流程框图 体积较大的废物经过破碎后与不需破碎的废物由抓斗混合后送至废物给料斗,经计量后从料斗经溜槽由推料机构送入回转窑内。液态危险废物根据热值的不同并经过过滤后分别喷入回转窑和二燃室内焚烧。固态废物和液态废物根据化验分析的成分和分析由技术部门制定配料单,进料量根据回转窑内温度等工况条件由控制室内的计算机进行调节和控制。整个焚烧系统配备了自动控制和监测系统,在线显示运行工况和尾气排放监测,并能自动反馈,对有关的主要工艺参数进行自动调节。焚烧系统还设有可靠的配风装置以保证回转窑、二燃室处于负压运行状态。 危险废物在回转窑内进行高温分解及燃烧反应,废物大幅减量,部分未燃尽的残渣从回转窑排出后直接掉落在二燃室下部的炉排上再次燃烧,燃尽后由出渣系统连续排出,回转窑

焚烧产生的烟气进入二燃室内进一步燃烧,二燃室的出口烟气温度保证维持在1100℃以上,烟气停留时间超过2秒,使烟气中的有机物和二恶英彻底分解,达到无害化的目的。 二燃室产生的高温烟气进入余热锅炉回收部分能量产生蒸汽。烟气经余热锅炉后温度降为500℃-600℃之间。再经过烟气急冷中和塔将温度降低到200℃-180℃之间,避免二恶英等有毒气体的再合成。经急冷后的烟气进入干式反应装置,在干式反应装置中喷入活性炭及Ca(OH)2对烟气进一步脱酸,并对重金属及可能再生产的二恶英等物质进行吸附,再进入布袋除尘器进行除尘。然后烟气进入SCR脱氮装置脱除氮氧化物。烟气净化的最后一道工序是湿式脱酸,在湿式脱酸塔中喷入碱液脱除SO2、HCl、HF等酸性气体,达到严格的烟气排放标准。最后经过净化的烟气被加热以消去白烟后通过引风机的作用送入烟囱排入大气中。 (2)危险废物储存与预处理系统

垃圾焚烧电厂烟气净化处理工程-旋转喷雾工艺简介DOC

垃圾焚烧电厂烟气净化处理工程 旋转喷雾烟气脱酸工艺简介 无锡市华星电力环保修造有限公司的旋转喷雾烟气净化系统,适用于垃圾焚烧发电厂及燃煤热电厂烟气处理工程。旋转喷雾主要包括六大部分:石灰浆制备及输送系统、活性炭喷射系统(适用于垃圾焚烧发电厂)、烟气系统、反应塔系统、除尘器系统及输灰系统组成。 一、烟气净化工艺原理、流程 2.1工艺原理 本烟气处理工艺为经高速离心雾化的吸收剂在半干式反应塔与烟气中的酸性气体充分接触、反应,来实现脱除酸性气体及其它有害物质。从而使焚烧炉尾气在半干式反应塔中得以净化。喷雾脱酸工艺分为5个步骤:(1)吸收剂制备;(2)吸收剂浆液雾化;(3)雾滴与烟气接触混合;(4)蒸发-酸性物质吸收;(5)废渣排除。其化学物理过程如下所述。 2.1.1.化学过程: 当消石灰浆液经过雾化喷嘴在半干式反应塔中雾化,并与烟气充分接触,烟 气被冷却并增湿,浆液中的Ca(OH) 2颗粒同HCL、SO 2 等反应生成副产物,并利用 烟气的热量将反应生成物干燥固体,整个反应分为气相、液相和固相三种状态反应,下述的反应式说明了在140-160℃下的温度范围烟气脱酸的本质(给出的公

式是累积的公式,并不反应出单独步骤的真实反应过程) Ca(OH) 2+ SO 2 = CaSO 3 *?H 2 O + ?H 2 O Ca(OH) 2+ SO 3 = CaSO 4 *?H 2 O + ?H 2 O Ca(OH) 2+ H2O + SO 2 + ?O 2 = CaSO 4 *2H 2 O CaSO 3*?H 2 O + ?O 2 = CaSO 4 *?H 2 O Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O Ca(OH) 2 + 2HF = CaF 2 + 2H 2 O 在烟气中含有HCl的情况下,最佳工作温度大概是比烟气饱和温度高15-25°C。 2.1.2 物理过程: 物理过程系指液滴的蒸发干燥及烟气冷却增湿过程,浆液从蒸发开始到干燥所需的时间,对反应塔的设计和脱酸效率都非常重要。影响液滴干燥时间的因素有液滴大小、液滴含水量以及趋近绝热饱和的温度值。液滴的干燥大致分为两个阶段:第一阶段由于浆料液滴中固体含量不大,基本上属于液滴表面水的自由蒸发,蒸发速度快而相对恒定。随着水分蒸发,液滴中固体含量增加,当液滴表面出现显著固态物质时,便进入第二阶段。由于蒸发表面积变小,水分必须穿过固体物质从颗粒内部向外扩散,干燥速率降低,液滴温度升高并接近烟气温度,最后由于其中水分蒸发殆尽形成固态颗粒而从烟气中分离。 2.2工艺流程描述 2.2.1从锅炉尾部排出的含尘及有害物质的烟气进入半干式反应塔顶部,经旋转导向板,形成螺旋状的烟气。石灰浆和水通过雾化器的高速转动, 石灰浆和水的混合液被雾化成微小液滴,该液滴与呈螺旋状向下运动的烟气形成逆流,并被巨大的烟气流裹带着向下运动,在此过程中,石灰浆与烟气中的酸性气体HCl、HF、SO2等发生反应。在反应过程的第一阶段,气-液接触发生中和反应,石灰浆液滴中的水份得到蒸发,同时烟气得到冷却;第二阶段,气-固接触进一步中和并获得干燥的固态反应生成物CaCl2、CaF2、CaSO3及CaSO4等。 2.2.2由于烟气温度过高,不利于化学反应及布袋的常用温度,因此必须向反应塔内进行喷水降温。由于烟气中吸收酸性成分的能力是随着温度的降低而增加

生活垃圾焚烧处理工程技术规范

生活垃圾焚烧处理工程技术规范

中华人民共和国行业标准 生活垃圾焚烧处理工程技术规范Technical code for Projects of Municipal Waste Incineration CJJ90— 批准部门:中华人民共和国建设部

前言 根据建设部建标[ ] 号文的要求,规范编制组在广泛调查研究,认真总结实践经验,参考有关国际标准和国内外先进标准,并在广泛征求意见的基础上,对《生活垃圾焚烧处理工程技术规范》CJJ90- 进行了修订。 本次修订主要在下列方面对上一版(CJJ90- , J184- )进行了较大修订: 1 对术语进行了充实和完善; 2 本着节约用地的原则,提出了对厂区道路设计和绿地率要求; 3 在垃圾焚烧系统章节中,修改了一些不确切条款,增加了一些适应节能减排新形势要求的条款; 4 对烟气净化系统工艺增加了干法和湿法的内容;5根据修订的《生活垃圾填埋场污染控制标准》,对飞灰的处理增加了可进入生活垃圾卫生填埋场处理的条件; 6 为适应新技术的发展和新形势的要求,对电气和仪表控制章节进行了一些修改; 7 为了节约用水,对给排水和消防章节进行了调整和部分修改; 8 与修改条文相适应,对相应的条文说明进行了修改和补充。 本规范由建设部负责管理和对强制性条文的解释,由主编单位负责具体技术内容的解释。 本规范主编单位:城市建设研究院(地址:北京市朝阳区惠新里3

号;邮政编码:100029)、五洲工程设计研究院(地址:北京市西便门内大街85号;邮政编码:100053)。 本规范参加单位:上海日技环境技术咨询有限公司、深圳市环卫综合处理厂、上海市环境工程设计科学研究院。 本规范主要起草人: 徐文龙孙振安郭祥信陈海英白良成梁立军杨宏毅云松陈恩富朱先年滕清张益 王敬民龙吉生金福青吕德彬陈峰蒋旭东卜亚明闫磊张小慧龚柏勋蔡辉张国辉翟力新李万修徐海云孙彦曹学义岳优敏姜宗顺程义军骞瑞欢康振同安淼 目录 1 总则

临海市生活垃圾焚烧处理工程环境影响报告书

临海市生活垃圾焚烧处理工程环境影响报告书 临海市生活垃圾焚烧处理工程 环境影响报告书 一、建设项目概况 1、项目名称:临海市生活垃圾焚烧处理工程; 2、建设性质:新建;

3、建设地址:临海市邵家渡街道钓鱼亭村松山; 4、建设规模:日焚烧生活垃圾700吨; 5、服务范围:临海市域范围内的5个街道、14个镇范围; 6、建设内容:建设2台350t/d炉排式垃圾焚烧锅炉,配1×12MW凝汽式汽轮机组和QF-12发电机组; 7、项目总投资及环保投资:项目总投资22388.55万元,其中环保投资4035万元。 8、立项文件:浙江省发展和改革委员会工业投资联系单。 二、工程分析 经工程分析,项目主要污染物排放见表1。 表1项目主要污染物排放情况一览表 污染物名称产生量t/a 削减量t/a 排放量t/a 废气SO2 485.36 364 121.36 烟尘31536 31488 47.28 NOX 178.88 0 178.88 HCl 249.6 212.16 37.44 二?英/ / 1.04×10-4 Hg / / 0.08 Pb / / 0.24 Cd / / 0.005 废水废水量 56960 0 56960 CODCr 28.48 25.06 3.42

NH3-N 1.99 1.53 0.46 固体 废弃物灰渣71928 71928 0 污泥360 360 0 生活垃圾273 273 0 三、项目拟建地周围主要保护目标 项目拟建地周围主要保护目标见表2。 表2项目拟建地周围主要保护目标 序号敏感点名称方位距厂界距离m 人口人 1 许安村 N 1600 417 2 石年村 NNW 1500 629 3 吕公岙村NNE 1900 400 4 钩鱼亭村西山NW 1300 300 5 钩鱼亭村松山新村W 700 828 6 钓鱼亭村WSW 480 7 岙蒋村项家W 2300 300 8 中台村 W 850 811 9 章后洋村SSW 1000 450 10 浦口村 S 1550 450 11 下洋峙村WSW 1150 1109 12 岙蒋村岙蒋WNW 1850 1039

垃圾焚烧尾气处理方案

3、烟气净化及排烟系统 根据《医疗废物集中焚烧处置工程建设技术要求》(HJ/T176-2005)的要求及参考国内医废焚烧装置已成功运行的经验,确定烟气净化采用药液脱酸+石灰粉脱酸+喷活性炭粉+袋式除尘器+填料吸收塔的组合工艺。 包括半干式中和反应塔、石灰粉脱酸及喷活性炭粉、袋式除尘器、填料吸收塔、引风机及其附属设备。 3.1半干式中和反应塔 包括:脱酸碱溶液的制备及供给装置。 半干式中和反应塔主要用于去除烟气中的酸性气态污染物,是半干法烟气净化系统的主要设备。入口烟气温度600℃,出口烟气温度<200℃。采用喷氢氧化钠溶液的方式,脱除烟气中的大部分酸性物质;吸收塔材质采用Q235-A钢+耐酸胶泥。 或NaOH碱液为净化吸收剂,烟气从下部进入吸收塔吸收塔以10%左右的Ca(OH) 2 内,在喷嘴下方区域与雾化的吸收剂浆液充分混合。 雾化喷头靠压缩空气完成浆液雾化,其结构为双层夹套管,吸收剂浆液走内管,压缩空气走外管,浆液与压缩空气在喷嘴处强烈混合后从雾化器喷嘴喷出,使浆液雾化为细小的颗粒,与烟气进行充分接触吸收。 酸性气体的去除分两个阶段,第一阶段:烟气在塔内与石灰浆液雾滴混合,烟气中的酸性气体与液态的石灰发生化学反应;第二阶段:烟气的热量使浆液雾滴中的水分蒸发,浆液中石灰和反应生成物成为固态的颗粒物,这些颗粒物在塔的下部和后续的袋式除尘器内,再次与气态污染物发生化学反应,使总的污染物净化反应效率提高。 本装置的烟气急冷时间为小于1S。为了保证喷入塔内的浆液完全蒸发、防止浆液粘壁及防止腐蚀,内部采用双层结构,与烟气接触面为防腐耐火砖材料,中间为隔热层。采用硅酸铝纤维板。 脱酸碱溶液的制备及供给装置包括脱酸碱溶液的中间贮槽及输送设备。外购件的熟石灰(纯度90%,粒度200目)由石灰贮槽经螺旋给料机送到石灰浆槽。在石灰浆槽内,加水搅拌配制成一定浓度的石灰浆。石灰浆经药液泵压送到吸收塔顶部的雾化器喷头,同时在压缩空气的作用下使石灰浆充分雾化。 吸收塔采用喷水直接冷却的方式,流经塔内的烟气直接与雾化后喷入的液体接触,传质速度和传热速度较快,喷入的液体迅速汽化带走大量的热量,烟气温度得以迅速降温,

危废焚烧处理工艺及图片

资料整理 、危废处理工艺流程 (1) 系统工艺主流程框图 体积较大的废物经过破碎后与不需破碎的废物由抓斗混合后送至废物给料斗,经计量后 从料斗经溜槽由推料机构送入回转窑内。液态危险废物根据热值的不同并经过过滤后分别喷 入回转窑和二燃室内焚烧。固态废物和液态废物根据化验分析的成分和分析由技术部门制定配料单,进料量根据回转窑内温度等工况条件由控制室内的计算机进行调节和控制。整个焚 烧系统配备了自动控制和监测系统,在线显示运行工况和尾气排放监测,并能自动反馈,对 有关的主要工艺参数进行自动调节。焚烧系统还设有可靠的配风装置以保证回转窑、二燃室 处于负压运行状态。 危险废物在回转窑内进行高温分解及燃烧反应,废物大幅减量,部分未燃尽的残渣从回 转窑排出后直接掉落在二燃室下部的炉排上再次燃烧,燃尽后由出渣系统连续排出,回转窑

焚烧产生的烟气进入二燃室内进一步燃烧,二燃室的出口烟气温度保证维持在1100 c以上, 烟气停留时间超过2秒,使烟气中的有机物和二恶英彻底分解,达到无害化的目的。 二燃室产生的高温烟气进入余热锅炉回收部分能量产生蒸汽。烟气经余热锅炉后温度降 为500 C -600 C之间。再经过烟气急冷中和塔将温度降低到200 C -180 C之间,避免二恶英 等有毒气体的再合成。经急冷后的烟气进入干式反应装置,在干式反应装置中喷入活性炭及 Ca(OH) 2对烟气进一步脱酸,并对重金属及可能再生产的二恶英等物质进行吸附,再进入布袋除尘器进行除尘。然后烟气进入SCR脱氮装置脱除氮氧化物。烟气净化的最后一道工序是湿式脱酸,在湿式脱酸塔中喷入碱液脱除SO2 HC、HF等酸性气体,达到严格的烟气 排放标准。最后经过净化的烟气被加热以消去白烟后通过引风机的作用送入烟囱排入大气中。 (2) 危险废物储存与预处理系统 危险废物 高混低固 热合热体 值池值废 固固物 体体破 废废碎 物物池 贮贮 池池 固体废物储存区废液卸载及储存区

垃圾焚烧发电烟气处理技术

垃圾焚烧发电烟气处理技术 垃圾焚烧发电是指在垃圾焚烧厂利用高科技的垃圾焚烧设备进行发电的工作,但垃圾焚烧过程中会产生空气污染,对人体的伤害特别大,因此需对垃圾焚烧空气进行技术处理,特别是产生致癌物质二恶英,在空气处理的过程中带来很大的麻烦,也是全世界现在关注的话题之一,因此采取有效的方法来控制二恶英在空气中的散发,能够提高垃圾焚烧发电烟气处理的好坏程度,本文详细介绍了我国在垃圾焚烧发电烟气处理的现状,以及对现阶段垃圾焚烧发电烟气处理技术的对比,并根据处理效果给出一个最优的烟气处理方案。 我国人口居多,城市化进程的步伐逐渐加快,在对电的需求量往往供不应求在,在夏季的用电高峰期内往往会采用地域性局部停电,从而来保证居民的用电需求,我国的发电厂遍布在全国各地,且发电形式也多样化,有大自然赋予我的财富,例如风能发电、水能发电、太阳能发电,还有利用资源发电,其中大多数都对环境带来不同程度的危害,例如火能发电、核能发电、垃圾焚烧发电。垃圾焚烧发电技术作为新型的发电技术,在社会中也存在这许许多多的优点,但也存在着不足。 一、我国垃圾焚烧发电烟气处理的现状 由于我国人口基数大,在产生生活垃圾的程度上比其他国家要多得多,又因为我国是生产大国,其中也不能避免会制造出许许多多的垃圾,据统计,我国现在的大中型城市大约有650多个,城市消费水平相对农村普遍较高,2012年我国城市垃圾达到惊人的3亿吨,面临这么多垃圾我们该怎么处理,每天在清洁工人在城市垃圾清扫干净之后,由垃圾运输车到制定地点进行处理,其中有一半以上并没有进行处理,裸露在大气中,或者就地燃烧,在垃圾焚烧中由于充斥着各种物体,其中包括塑料,还有其他一些有害物质,在燃烧过程中会释放有害气体,给环境带来极大的污染,损害人类的健康,近年来一些欧美发达国家垃圾焚烧的一系列措施,来防止垃圾焚烧发电的烟气给环境带来致命的打击。 垃圾焚烧发电主要产生二恶英,给人体带来危害,我国在垃圾焚烧发电烟气处理与其他国加相比仍然还存在着许许多多的不足,在二

生活垃圾焚烧处理工程技术要求规范

生活垃圾焚烧处理工程技术规范 CJJ90-2002 1 总则 1.0.1 为贯彻《中华人民共和国固体废物污染环境防治法》和国家有关生活垃圾处理法规,实现生活垃圾处理的资源化、减量化、无害化目标,规范生活垃圾焚烧处理工程规划、设计、施工及验收和运行管理,制定本规范。 1.0.2 本规范适用于以焚烧方法处理生活垃圾的新建工程。 本规范不适用于有毒、有害废物和危险废物的焚烧处理工程。 1.0.3 生活垃圾焚烧工程规模的确定和技术路线的选择,应根据城市社会经济发展、城市总体规划、环境卫生专业规划和垃圾收集与处置以及焚烧技术的适用性等合理确定。 1.0.4 生活垃圾焚烧工程建设,应采用成熟可靠的技术和设备,做到焚烧技术先进、运行可靠、维修方便、经济合理、管理科学、保护环境、安全卫生。垃圾焚烧热能应充分加以利用。 1.0.5 采用焚烧技术处理生活垃圾(以下简称“垃圾”)的工程建设,除应遵守本规范外,尚应符合国家现行的有关强制性标准的规定。 2 术语 2.0.1 生活垃圾municipal solid waste(MSW) 人们在日常生活中或为日常生活提供服务的活动中产生的固体废物,以及法律、行政法规规定视为城市生活垃圾的固体废物。生活垃圾主要包括居民生活垃圾、集市贸易与商业垃圾、公共场所垃圾、街道清扫垃圾及企事业单位垃圾等。 2.0.2 垃圾焚烧锅炉 waste incineration boiler 垃圾焚烧炉和利用垃圾焚烧释放的热能进行有效换热,并产生蒸汽或热水的热力设备的统称。 2.0.3 低位热值 low heat value (LHV)

单位质量垃圾完全燃烧时,当燃烧产物回复到反应前垃圾所处温度、压力状态,并扣除其中水分汽化吸热量后,放出的热量。 2.0.4 焚烧速率rate of burning 单位炉排面积、单位时间的垃圾焚烧量。又称炉排机械负荷。 2.0.5 炉排热负荷heat intensity per grate area 单位炉排面积、单位时间内焚烧垃圾的发热量。 2.0.6 连续焚烧方式continuous incineration 通过送料器连续运动,将垃圾投入垃圾焚烧炉内进行焚烧的作业方式。 2.0.7 焚烧线 incineration line 对垃圾进入垃圾焚烧装置,经过焚烧变成炉渣排出和垃圾热能的转换,以及产生烟气的净化等垃圾处理过程所需要的全部工程设施的总称。 2.0.8 燃烧室 combustion chamber 垃圾焚烧锅炉内的垃圾燃烧空间。包括垃圾在炉床上干燥、燃烧、燃尽过程和燃烧过程中生成的可燃气体与可燃颗粒物燃烧过程所占据的全部空间。 2.0.9 飞灰稳定化flyash stabilization 使飞灰转化为非危险废物的处理过程。 2.0.10 飞灰固化 flyash solidification 采用物理、化学等方法使飞灰稳定化的处理过程。 2.0.11 垃圾焚烧锅炉热效率 thermal efficiency of waste incineration boiler 垃圾焚烧锅炉输出的热量与输入的总热量之比。 2.0.12 炉渣热灼减率 loss of ignition 焚烧垃圾产生的炉渣在600±25℃保持3h条件下,经灼热减少的质量占烘干后的原始炉渣质量的百分比。 2.0.13 烟气净化系统 flue gas cleaning system 对烟气进行净化处理所采用的各种处理设施组成的系统。 2.0.14 二噁英类 dioxins 多氯代二苯并一对一二噁英(PCDDs)、多氯代二苯并呋喃 (PCDFs)等化学物质的总称。 2.0.15 渗沥液 leach ate

生活垃圾焚烧处理工程技术规范CJJ新版新版

中华人民共和国行业标准 生活垃圾焚烧处理工程技术规范 TechnicalcodeforProjectsofMunicipalWasteIncineration CJJ90—2009 批准部门:中华人民共和国建设部 前言 根据建设部建标[2007]号文的要求,规范编制组在广泛调查研究,认真总结实践经验,参考有关国际标准和国内外先进标准,并在广泛征求意见的基础上,对《生活垃圾焚烧处理工程技术规范》CJJ90-2002进行了修订。 本次修订主要在下列方面对上一版(CJJ90-2002,J184-2002)进行了较大修订: 1对术语进行了充实和完善; 2本着节约用地的原则,提出了对厂区道路设计和绿地率要求; 3在垃圾焚烧系统章节中,修改了一些不确切条款,增加了一些适应节能减排新形势要求的条款;4对烟气净化系统工艺增加了干法和湿法的内容; 5根据修订的《生活垃圾填埋场污染控制标准》,对飞灰的处理增加了可进入生活垃圾卫生填埋场处理的条件; 6为适应新技术的发展和新形势的要求,对电气和仪表控制章节进行了一些修改; 7为了节约用水,对给排水和消防章节进行了调整和部分修改; 8与修改条文相适应,对相应的条文说明进行了修改和补充。 本规范由建设部负责管理和对强制性条文的解释,由主编单位负责具体技术内容的解释。 本规范主编单位:城市建设研究院(地址:北京市朝阳区惠新里3号;邮政编码:100029)、五洲工程设计研究院(地址:北京市西便门内大街85号;邮政编码:100053)。 本规范参加单位:上海日技环境技术咨询有限公司、深圳市环卫综合处理厂、上海市环境工程设计科学研究院。 本规范主要起草人: 徐文龙孙振安郭祥信陈海英白良成梁立军杨宏毅云松陈恩富朱先年滕清张益 王敬民龙吉生金福青吕德彬陈峰蒋旭东卜亚明闫磊张小慧龚柏勋蔡辉张国辉翟力新李万修徐海云孙彦曹学义岳优敏姜宗顺程义军骞瑞欢康振同安淼 目录 1总则 2术语 3垃圾产生量与特性分析 垃圾处理量 垃圾特性分析 4垃圾焚烧厂总体设计 垃圾焚烧厂规模 厂址选择 全厂总图设计 总平面布置 厂区道路

危废焚烧处理工艺及图片

危废焚烧处理工艺及 公司内部: (GOOD-TMMT-MMUT-UUPTY-UUYY-DTTl-

资料整理 危废处理工艺流程 (1) 系 工 主 程 图 积 大 废 经 后与不需破碎的废物由抓斗混合后送至废物给料斗,经计量后从料斗经溜槽由推料机构送入回转窑内。液态危险废物根据热值的不同并经过过滤后分别喷入回转窑和二燃室内焚烧。固态废物和液态废物根据化验分析的成分和分析由技术部门制定配料单,进料量根据回转窑内温度等工况条件由控制室内的计算机进行调节和控制。整个焚烧系统配备了自动控制和监测系统,在线显示运行工况和尾气排放监测,并能自动反馈,对有关的主要工艺参数进行自动调节。焚烧系统还设有可靠的配风装置以保证回转窑、二燃室处于负压运行状态。

危险废物在回转窑内进行高温分解及燃烧反应,废物大幅减量,部分未燃尽的残渣从回转窑排出后直接掉落在二燃室下部的炉排上再次燃烧,燃尽后由出渣系统连续排出,回转窑焚烧产生的烟气进入二燃室内进一步燃烧,二燃室的出口烟气温度保证维持在IIOO O C以上,烟气停留时间超过2秒,使烟气中的有机物和二恶英彻底分解,达到无害化的目的。 二燃室产生的高温烟气进入余热锅炉回收部分能量产生蒸汽。烟气经余热锅炉后温度降为500°C-600°C之间。再经过烟气急冷中和塔将温度降低到20O a C- 180°C之间,避免二恶英等有毒气体的再合成。经急冷后的烟气进入干式反应装置,在干式反应装置中喷入活性炭及Ca (OH) 2对烟气进一步脱酸,并对重金属及可能再生产的二恶英等物质进行吸附,再进入布袋除尘器进行除尘。然后烟气进入SCR脱氮装置脱除氮氧化物。烟气净化的最后一道工序是湿式脱酸,在湿式脱酸塔中喷入碱液脱除So2、HCK HF等酸性气体,达到严格的烟气排放标准。最后经过净化的烟气被加热以消去白烟后通过引风机的作用送入烟囱排入大气中。 (2)危险废物储存与预处理系统

垃圾焚烧电厂烟气系统(DOC)演示教学

垃圾焚烧电厂烟气系 统(D O C)

烟气净化系统 1.主要设计原则 烟气净化系统采用“半干法(喷氢氧化钠溶液和冷却水)+干法(喷消石灰粉)+活性炭喷射+布袋除尘”工艺。 烟气净化设备由每条焚烧线反应塔、袋式除尘器与一套全厂公用的氢氧化钠制备与喷射系统、消石灰、活性炭储存与喷射系统组成。 1.1 烟气指标 1)原始烟气参数 生活垃圾焚烧量: 500t/d/线 烟气流量:88033 Nm3/h/线 温度:230℃ 2)净化后烟气指标

注:1)本表规定的各项标准限值,均以标准状态下含11%O 2的干烟气为参考值换算。 2)烟气最高黑度时间,在任何1h 内累计不得超过5min 。 3)在不喷碱液的MCR 工况条件下,石灰消耗量≤15kg/t 垃圾、活性炭消耗量≤0.9 kg/t 垃圾,满足上表格要求。 1.2.公用品及化学原材料 1)压缩空气供应 压力 0.6~ 0.8 MPa 工艺用压缩空气:含油量小于0.1mg/m 3, 含尘粒径小于1μm , 压力露点2 ℃ 仪表用压缩空气:含油量小于0.01 mg/m 3, 含尘粒径小于0.01μm, 压力露点-40℃。 2)消石灰质量指标

3)活性炭质量指标 4)NaOH质量指标 二、安全规则 2.1总则 在系统平台上工作时,作业人员必须时刻注意可能发生的危险(参见下述列表),作业人员必配带下安全帽、劳动保护服、劳动保护鞋、防毒口罩、安全手套。

2.2吸收剂Ca(OH)2处理的安全规则 2.2.1总则 眼睛接近石灰时(CaO/Ca(OH)2)必须采取眼睛保护措施。没有保护措施是不允许搬运生石灰CaO的。 由于熟石灰Ca(OH)2对眼睛和人体软组织有伤害,搬运时必须小心。搬运所有含石灰质的物料时都必须采取相同的防范措施。 警示:在密闭容器中的生石灰CaO千万不能被水淋洒,如灰仓中的石灰堆。因为这会反应产生大量热量,沸腾后会引起爆炸。 三、烟气脱酸系统 3.1冷却反应塔 3.1.1概述 冷却反应塔是烟气净化系统的关键组件。整个冷却反应塔系统包含:一个带有导流板的进口烟道的反应塔体;一个喷洒工艺冷却水及碱液的双相流喷头及阀门组;一个喷射消石灰及活性炭的塔后烟道;一个带有电伴热及破拱空气炮的收集沉下的固体灰渣的底部锥体;相应电气热控仪表。 冷却反应塔的功能是,高温烟气离开锅炉与被双相流喷头增湿雾化的工艺水接触降温,为中和反应提供合适的温度平台。烟气中的重金属和有害气体成分(HCl, SOx),与冷却反应塔喷入的碱液或塔后烟道喷入的消石灰接触发生

等离子体火炬生活垃圾焚烧处理方案.doc

等离子体火炬生活垃圾焚烧处理方案 概述: 随着我国经济的快速发展,城市规模日益扩大,人口大量增加,生活垃圾产生量逐年增长。 生活垃圾处理不当将污染土壤、地下水,传播疾病,对环境造成巨大危害。 采用现代化技术,提高管理水平,以投资省、运行费用低、运行稳定、安全可靠为设计 宗旨。 妥善处理生活垃圾焚烧处理过程中产生的烟气、废渣,避免二次污染。 焚烧装置概况: 近年来永研环保科技陆续推出等离子火炬工业固废焚烧、等离子火炬医疗废弃物焚烧、 等离子火炬生活垃圾焚烧装置等一系列产品。 等离子火炬生活垃圾焚烧装置由等离子火炬、等离子火炬电源、进出料装置、焚烧炉、 搅拌输送、烟气处理系统组合而成。 焚烧装置工作机理: 生活垃圾、固态、半固态、液态废弃物由料仓进入等离子火炬焚烧炉,等离子焚烧炉内 置等离子火炬、搅拌、输送装置。 生活垃圾在搅拌输送装置作用下,翻滚前移,离子体火炬上千度穿透力极强的等离子焰, 在短时间内将生活垃圾焚烧殆尽。 汞、锌、铅、锡、铜等重金属氧化并随烟气排出,经活性炭喷射装置,喷射活性炭富集 后再行处理。 等离子火炬焚烧炉内烟气与生活垃圾逆向运动,助燃空气由等离子火炬焚烧炉布气机构输 入炉体。 生活垃圾由干燥区进入焚烧区时含水率已经显著降低,高温烟气自焚烧区经干燥区与生活垃圾相向运动。 焚烧炉工作于微负压状态,设有泄爆装置保证设备安全。 烟气净化: SNCR+ 半干法 +干法 +活性炭喷射 +袋式。 焚烧装置技术参数: 等离子体火炬: 工作温度:800--1000 ℃用户设定,自动控制。 输出功率:100--400kW 自动调节输出功率,精确控制焚烧炉温度。 使用寿命:连续工作 5000 小时 焚烧炉: 等离子火炬焚烧炉(微负压)日处理 50 吨 --200 吨 送料装置:以处理量决定进料频度。 温度传感器:实时采集温度数据。 泄压装置保证设备安全 控制器:DCS 控制

城市生活垃圾焚烧处理工程项目建设标准模板

《城市生活垃圾焚烧处理工程项目建设标准》( 建标[ ]213号) - 第一章总则 第一条为促进社会经济和环境保护的协调发展, 实现城市生活垃圾处理的无害化、减量化、和资源化, 加强国家对建设项目投资和建设的管理, 提高城市生活垃圾焚烧处理工程项目的决策和规划建设水平, 合理确定和正确掌握建设标准, 保护环境, 推动技术进步, 充分发挥投资效益, 制定本建设标准。 第二条本建设标准是为项目决策服务和合理确定项目建设水平的全国统一标准, 是编制、评估、审批城市生活垃圾焚烧处理工程项目可行性研究报告的重要依据, 也是有关部门审查城市生活垃圾焚烧处理工程项目初步设计和监督检查整个建设过程标准的尺度。 第三条本建设标准适用于城市生活垃圾焚烧处理新建工程项目。改、扩建工程项目可参照执行。 第四条城市生活垃圾焚烧处理工程项目的建设, 必须遵守国家有关的法律、法规, 执行国家环境保护、节约土地、劳动保护、安全卫生、节约能源、消防等有关方面的规定。 第五条城市生活垃圾焚烧处理工程的建设水平, 应以本地区的经济发展水平和垃圾成分特点, 并考虑城市经济建设和科学技术的发展, 按不同城市、不同建设规模, 合理确定, 做到技术先进、经济合理、安全卫生。

第六条城市生活垃圾焚烧处理工程项目的建设, 应根据城市总体规划和环境卫生专业规划, 统筹规划, 近、远期结合, 以近期为主。建设规模、布局和选址应与现有的垃圾收运及处理系统相协调, 改、扩建工程应充分利用原有设施。 第七条城市生活垃圾焚烧处理工程项目的建设, 应采用成熟可靠的技术、工艺和设备; 对于需要引进的先进技术和关键设备, 应以提高项目的综合效益、推动技术进步为原则, 在充分的技术经济论证的基础上合理确定。 第八条城市生活垃圾焚烧处理工程项目的建设, 应坚持专业化协作和社会化服务的原则, 合理确定配套工程项目, 提高运营管理水平, 降低运营成本。 第九条城市生活垃圾焚烧处理工程项目的建设, 应考虑焚烧处理的资源化利用。 第十条城市生活垃圾焚烧处理工程项目的建设, 应落实工程建设资金和土地、供电、给排水、交通、通信等建设条件; 并采取有效措施确保工程建成后正常运行所需的费用。 第十一条城市生活垃圾焚烧处理工程项目的建设, 除执行本建设标准外, 尚应符合国家现行的有关标准、定额和指标的规定。 第二章建设规模与项目构成 第十二条城市生活垃圾焚烧处理工程项目主体是城市生活垃圾焚烧厂( 以下简称”焚烧厂”) , 焚烧厂的建设, 应根据城市的规模与特点, 合理确定建设规模和建设数量。中小城市集中的地区宜进行

垃圾焚烧电厂烟气系统

烟气净化系统 1.主要设计原则 烟气净化系统采用“半干法(喷氢氧化钠溶液和冷却水)+干法(喷消石灰粉)+活性炭喷射+布袋除尘”工艺。 烟气净化设备由每条焚烧线反应塔、袋式除尘器与一套全厂公用的氢氧化钠制备与喷射系统、消石灰、活性炭储存与喷射系统组成。 1.1 烟气指标 1)原始烟气参数 生活垃圾焚烧量: 500t/d/线 烟气流量:88033 Nm3/h/线 温度:230℃ 2)净化后烟气指标

注:1)本表规定的各项标准限值,均以标准状态下含11%O 2的干烟气为参考值换算。 2)烟气最高黑度时间,在任何1h 内累计不得超过5min 。 3)在不喷碱液的MCR 工况条件下,石灰消耗量≤15kg/t 垃圾、活性炭消耗量≤0.9 kg/t 垃圾,满足上表格要求。 1.2.公用品及化学原材料 1)压缩空气供应 压力 0.6~ 0.8 MPa 工艺用压缩空气:含油量小于0.1mg/m 3, 含尘粒径小于1μm , 压力露点2 ℃ 仪表用压缩空气:含油量小于0.01 mg/m 3, 含尘粒径小于0.01μm , 压力露点-40℃。 2)消石灰质量指标

3)活性炭质量指标 4)NaOH质量指标 二、安全规则 2.1总则 在系统平台上工作时,作业人员必须时刻注意可能发生的危险(参见下述列表),作业人员必配带下安全帽、劳动保护服、劳动保护鞋、防毒口罩、安全手套。

2.2吸收剂Ca(OH)2处理的安全规则 2.2.1总则 眼睛接近石灰时(CaO/Ca(OH)2)必须采取眼睛保护措施。没有保护措施是不允许搬运生石灰CaO的。 由于熟石灰Ca(OH)2对眼睛和人体软组织有伤害,搬运时必须小心。搬运所有含石灰质的物料时都必须采取相同的防范措施。 警示:在密闭容器中的生石灰CaO千万不能被水淋洒,如灰仓中的石灰堆。因为这会反应产生大量热量,沸腾后会引起爆炸。 三、烟气脱酸系统 3.1冷却反应塔 3.1.1概述 冷却反应塔是烟气净化系统的关键组件。整个冷却反应塔系统包含:一个带有导流板的进口烟道的反应塔体;一个喷洒工艺冷却水及碱液的双相流喷头及阀门组;一个喷射消石灰及活性炭的塔后烟道;一个带有电伴热及破拱空气炮的收集沉下的固体灰渣的底部锥体;相应电气热控仪表。 冷却反应塔的功能是,高温烟气离开锅炉与被双相流喷头增湿雾化的工艺水接触降温,为中和反应提供合适的温度平台。烟气中的重金属和有害气体成分(HCl, SOx),与冷却反应塔喷入的碱液或塔后烟道喷入的消石灰接触发生中和反应,降低其在烟气中的含量,另外与消石灰一道喷入的活性炭吸附烟气中的汞和二恶英。大部分固体灰渣混在烟气中一同进入下游的除尘器中并继续进行反应。小部分灰渣会从烟气中分离出来沉落于冷却反应塔底部,然后经过底部的双层气动插板进入灰渣输送储存系统。 3.2.2过程说明 冷却反应塔的主要功能是: 1)在烟气通过时,提供充分的滞留时间(大约 4 秒)降低温度,为 中和反应提供合适的温度平台 2)为酸碱中和反应提供合适的空间条件 冷却反应塔入口烟道设有导流片,使得烟气尽可能均匀分布。烟气方向和双相流喷头方向一致,喷头采用美国喷雾公司FM系列喷头,专为脱硫除酸系统

相关主题
文本预览
相关文档 最新文档