当前位置:文档之家› 影响镀层厚度分布均匀性的因素

影响镀层厚度分布均匀性的因素

影响镀层厚度分布均匀性的因素
影响镀层厚度分布均匀性的因素

一、影响镀层厚度分布均匀性的因素:

使镀层厚度分布均匀的重要性

电沉积时总希望镀层厚度在工件上的分布越均匀越好。当工件上沉积的总金属量相同时,若厚度分布不均匀,则会带来很多坏处:

(1)对于阳极性镀层,镀层薄处经不起牺牲腐蚀会先使基体产生锈蚀。而一个制件部分锈蚀后则已不合格,造成了镀层过厚处金属的浪费。若为保证最薄处不生锈,只能加大平均厚度,导致电镀成本增大。

(2)对于阴极性镀层,薄处镀层孔隙率高,很易产生点状锈蚀,继而锈点加大,形成连片锈蚀。与阳极性镀层相比,阴极性镀层薄处锈蚀更快。对于局部防渗氮、渗碳镀层,薄处易形成孔眼,失去保护作用。若厚度均匀则各部分孔隙率差别不大,总体防蚀性提高。例如,对电池钢壳滚镀亮镍,壳内(特别是靠底部的地方)镀层很薄,甚至在清洗烘干时即已起小锈点、泛黄,为此要“出白”处理,迅速用水溶性封闭剂封闭后干燥。

(3)对于光亮性电镀,镀层薄处因阴极电流密度小,故光亮整平性差,影响整体外观。

(4)合金电沉积时,不同厚度处的合金组分不相同,或外观不均(如仿金镀),又或抗蚀性不一致(如锌镍合金)。

(5)不同厚度处镀层的物理、机械性能(如脆性、内应力等)不一样。若镀后还要作冲压成型等机加工处理,镀层过厚处往往机加工性能不良(起皮、开裂、粉状脱落等)。

无论从防蚀性,还是外观、机加工性能等方面讲,都希望提高镀层厚度的均匀性。对于尺寸镀硬铬,若用户要求镀后不作磨削处理,则很难办到;有时为了保证最薄处达到最终尺寸要求,厚度均匀性差时,不得不大大加大平均厚度,这在生产中并不少见。为使制件上镀层各部分厚度尽量接近,必须了解影响厚度分布均匀性的因素。

二、影响镀层厚度分布均匀性的因素:

镀液性能因素-镀液的分散能力与深镀能力

这是镀液的两项重要技术指标,一般为新工艺研究的必测指标。

镀液的分散能力是指镀液使镀层厚度分布均匀的能力,又称均镀能力,通常用T·P表示。在其他条件相同时,分散能力越好,则镀层厚度分布越均匀。测定分散能力的方法常用“远近阴极法”,其结果应标出K值(远近阴极距离之比)及所采用的计算公式,否则是无意义的;也可用赫尔槽试片测定3或8个点的镀层厚度再作计算。具体的测定方法可参考有关手册。

镀液的深镀能力是指镀液使复杂件深凹处沉积镀层的能力,又称覆盖能力。常用通孔或盲孔管件作试验,比较镀层深入的尺寸。其结果应标明孔内径、管长与试验时管件的悬挂方式,否则无可比性。

分散能力与深镀能力属于“铁路警察各管一段”:分散能力只管厚度均匀性,不管复杂件深凹处能否沉积上镀层;而只要复杂件深凹处能沉积上镀层,则可认为深镀能力好,但不管各处镀层厚度的差异有多大。有关镀液分散能

力影响因素的结论比较明确,但对影响深镀能力的因素却缺乏研究。只能推

断金属的析出电位越正,深镀能力就越好。原因是工件深凹处阴极电流密度

很小,阴极极化值也就很小,测定出的阴极负电位也负得少。至于用什么手

段能使金属的析出电位趋正,人们仍缺少认识。一般而言,分散能力好则深

镀能力也较好。六价铬镀铬是分散能力、深镀能力及阴极电流效率都很差,

故其镀液组分虽简单,却是最难掌握的镀种。

三、影响镀层厚度分布均匀性的因素:

镀液性能因素-阴极上的电流分布

当只考虑几何因素对阴极电流分布的影响时,称为“一次电流分布”;若同时考虑电化学因素的影响,则称为“二次电流分布”。电流分布不等于金

属分布,因为后者还与不同阴极电流密度时的电流效率有关。在此,先讨论

二次电流分布的影响因素,即不考虑阴极电流效率影响的问题。显然,此时

工件上的阴极电流密度分布越均匀,则镀层厚度分布越均匀。

2.2.1 几个概念

2.2.1.1 远阴极与近阴极

将一个工件装挂于阴极杆上,同一个阴极工件的不同部位到阳极的距离不可能完全相同(与工件装挂方式及其本身形状和复杂程度有关)。离阳极最近的一点(或线、面)称为“近阴极”,其与阳极的距离以k表示;离阳极最远的一点(或线、面)称为“远阴极”,其与阳极的距离用,抚表示。

2.2.1.2 远近阴极距离差

远、近阴极与阳极距离之差,称为远近阴极距离差,以△l表示,则△l=l 远—l近。

2.2.1.3 镀液的电导率

镀液为正负离子导电,是第二类导体,它也存在电阻。镀液单位体积(边长为 1 cm的正方体,即l cm3)的电阻称为镀液的电阻率,以p表示。电阻的倒数称为电导,电阻率的倒数二则为电导率,单位为“西门子/厘米”(S/cm)。电流通过电阻时会产生电压降。平时所说的“槽电压”就是电流通过镀液、阴极杆与挂具、挂具与工件及阳极相关部分总串联电阻的电压降。镀液的电导率越高,则槽电压越低。整流器的输出电压要高于槽电压,其差值则为汇流排、汇流排与阴阳极杆接触电阻、汇流排与整流器输出板接触电阻等“外电阻”的电压降。若汇流排(或软线)面积过小、接头太多或接头接触不良,外电路上发热量大,直流损耗也就大。当阴阳极杆的截面积过小时,也有压降损失,两个端头测得的槽电压会有差别。将直流回路上的电压损失尽量降低,是必要的节能措施。滚镀时,浸入镀液中滚筒孔眼的总表面积为镀液的导电面积。若滚桶孔眼过小、开孔率过低,该值则很小,槽电压很高,槽液发热快,甚至整流器开至最大,电流也上不去。如镀亮镍,、挂镀时选用12 V整流器已可,而滚镀一般应选l5~18 V的才行。

2.2.1.4 阴极极化度

阴极极化度为阴极极化曲线的斜率,在第四讲已作过介绍。

2.2.2 影响二次电流分布的因素

设近阴极的电流密度为Jk,近,远阴极的电流密度为Jk,远,则可推导出下述公式:

(1)当时,则Jk,近=Jk,远,即远、近阴极的电流密度相等,其上镀层厚度相同,分散能力最好。但实际上不可能办到,只能希望该比值越接近于l 越好。为此,式(1)右边第二项越接近于零或越小就越好,即分子越小或分母

越大就越好。分母中又有两项,一为k,二为。后者为电化学因素:阴

极极化度越大越好,镀液电导率越大越好。阴极极化度与添加剂、配合物电镀的配合状况等有关,而提高电导率可通过加入导电盐、调整pH等来实现。

需重点讨论的是几何因素△l与l近,因为它们与生产实际中正确地装挂工件及设计挂具、镀槽等密切相关。

2.2.2.1 远近阴极距离差△l越小越好

对于平板件的装挂,有如图l所示A、B、C三种挂法:A为板平面与阴极杆平行,此时△l最小,仅为板厚度的ll2,但挂件数最少;B为倾斜一定角度,随着倾角不同,△l也不同,装挂量比A大;c为板平面与阴极杆垂直,此时出最大,为板宽度的l/2,但装挂量最大。从分散能力的角度讲,A最好,C最差。实际生产中,不少人为了挂得多,不愿采用A挂法,而选择B甚至C挂法,这是不懂电镀原理的表现。

图1工件装挂方式

Figure l Methods for loading workpiece

A挂法虽一次装挂少,但镀速最快,整板亮度最均匀,可能 5 min能取一槽。而B特别是C挂法会有以下问题:

(1)电流不敢开大,否则近阴极处易烧焦。

(2)因分散能力差,镀层厚度相差大,要保证板中间部位的最低厚度,边上部分就要镀很厚,加之平均电流密度不能大,故要镀很长时间,甚至一个

多小时,浪费了镀层金属,想快反而快不起来。

(3)对于任何光亮性电镀,阴极电流密度越小处光亮整平性越差,最后整板亮度不均匀。譬如板件氯化物镀锌后若彩钝,板周边附近色泽鲜艳但中间

部分色淡甚至灰暗;蓝白钝时周边蓝度好,但中间部位发黄、发花。

(4)引发其他问题,甚至造成返工。例如光亮酸铜前预镀暗镍或铜,预镀层都薄,中间部位更薄,再镀酸铜时,中间部位阴极电流密度又小,电沉积

速度可能小于通过高孔隙的置换速度,造成中间部位因严重置换而发花、起泡、脱皮。

A挂法一般用两个挂钩,B、C挂法虽只用一个挂钩,但采用阴极移动时,工件摇来晃去,可能发生重叠而导致不合格。因此,快、省、好的还是A挂法。当镀管件或封底腔盒体,要求内部镀层良好时,则管件内部中间部位或

腔盒体底角处的△l非常大,分散能力特差,内部镀层难以合格。此时必须以棒或板作辅助阳极,如图2所示。在管件内部,当辅助阳极棒居于圆心时,

则内部各处到辅助阳极的△l几乎相等。可见,采用辅助阳极的实质就是要减小△l。

图2辅助阳极

Figure 2 Auxmary anode

对于灯泡银碗之类反光聚光件,要求内部具有良好的反光聚焦功能。采用装饰镀铬时,有时要用铅合金制成与内部曲线接近的“象形阳极”(如图3所示),内部才能套好铬。“象形”的目的也是为了减小△l。

图3象形阳极

Figure 3 Conformal anode

2.2.2.2近阴极到阳极的距离越大越好

式(1)右边第2项分母中的,l近越大,则电流密度分布越均匀。要增大l 近,一般只有加大阴阳极问的距离。对于图1中的A挂法,不但△l最小,而且l近也最大。为加大阴阳极间的距离,镀槽不宜设计过窄。单排电镀时,

槽净宽不宜小于0.8 m。即使槽的净宽达到l m,除去槽两边阳极所占位置,以及槽侧加热/冷却器本身与阳极绝缘物(防止加热/冷却器与阳极相碰而

打火击穿)所占位置,实际最大阴阳极距离也仅0.4 m左右。有些人为了节

省一次投资,将镀槽设计得很窄,因此稍复杂的工件,别人能镀好的他镀不好。对于复杂的钢家具(如成型靠背椅等),甚至根本无法出入镀槽,想省钱

却挣不到钱。另外,当镀槽不够宽时,不宜挂双排工件。若要挂双排,槽净

宽不宜小于l.2 m。

四、影响镀层厚度分布均匀性的因素:

镀液性能因素-金属分布

实际金属厚度的分布还与阴极电流效率随阴极电流密度变化的情况有关。有3种情况:

(1)阴极电流效率几乎不随阴极电流密度变化而变化。这种情况不多见,硫酸盐酸性镀铜基本属于这种情况。此时金属的分布与二次电流分布基本一致。

(2)阴极电流密度增大时阴极电流效率下降。多数工艺属于这种情况,阴极电流密度增大时,副反应(如析氢)加剧,阴极电流效率降低。此时,金属分

布均匀性好于二次电流分布均匀性。原因是近阴极处电流密度大,但阴极电

流效率低,部分抵消了由于阴极电流密度大所导致的镀速提高。

(3)阴极电流密度增大时阴极电流效率也增大。这种情况也不多,六价铬镀铬即是如此。此时金属分布均匀性比二次电流分布均匀性还差:近阴极处

电流密度大,镀速快,若阴极电流效率大,主反应强烈而析氢副反应减少,

这无异于“雪上加霜”,使金属分布更不均匀。

五、影响镀层厚度分布均匀性的因素:

阳极的影响-水平方向阳极排布的影响

1.水平方向阳极排布的影响

水平方向阳极排布是均匀分布好还是集中分布好?是密一点好还是稀一点好?

对于长件电镀(如钢管镀锌),生产中常有如图4中a、b、c三种阳极排布。

图4水平方向的阳极布置

Figure 4 Horizontal distribution of anodes

采用a的阳极分布时,水平方向阳极总长度超过工件许多,工件左右两头的电力线过于集中、紧密,阴极电流密度过大,两头不仅镀层厚,且很易烧焦。

采用b排布,阳极水平方向两头均短于工件长度(一般宜短l0~15 cm),则电力线分布较均匀,工件霞头镀层不致过厚,也不易烧焦,是合理的阳极

分布。因此,阳极在阳极杆上的位置不应一成不变,而宜根据工件情况,适

时给予恰当的调整。

图4中c排布则阳极过少、过稀,这是不大懂电镀的人常犯的错误。讲一个真实故事:一次,陪某设备厂老板去一家小厂收款,进大门时扫了一下堆

在门口的成品镀锌钢管。到了办公室后,我问电镀厂老板:“最近没钱买锌

板了吗?”老板很吃惊:“袁老师,你真神了,还未去车间看,咋知这回事?”其实一点不神:因为镀的钢管一段亮一段不亮,差别很明显,显然槽中只稀

稀拉拉挂了几个锌板。当阳极过稀时,电力线分布很不均匀,离阳极近的一

段电力线密集,电流密度较大,镀层光亮性好;两阳极间隔处对应的工件部

分则情况刚好相反。原则上,在阳极面积允许大的情况下,阳极越密集,则

电力线分布越均匀,电镀效果越好。那种以为少挂阳极就可省金属材料消耗

的想法,是连物质不灭定律都不懂的无知表现。

六、影响镀层厚度分布均匀性的因素:

阳极的影响-垂直方向阳极长度的影响

滚镀的阳极长度

滚镀时,工件集中在滚桶下部分,如图5所示。当阳极过短时,仅通过滚桶上部孔眼使上部工件导电,而集中在桶下部的工件则缺少电流,因而耗时

长且效果差。原则上,阳极长度超出滚桶最下部分10~15 cm,工件的受镀面积才最大,滚镀快且效果好。也讲一个真实的故事。多年前,某个体户新上

氯化钾滚镀锌,为求快而将滚桶直径做得很大。由助剂厂家配套供应全部材料,但新配液怎么也滚不亮,对镀液调来调去还是不行。只好新配一槽液,

但仍然不行,找不出原因。笔者前去诊断,赫尔槽试验虽不理想,但应无大

问题。后见阳极杆上直接挂着锌锭,急叫找来工具,将锌锭重新铸造为长锌板,挂上后再镀,效果较好,问题迎刃而解。其实问题就出在助剂厂家也不

懂滚镀对阳极长度的要求。

图5滚镀的阳极

Figure 5 Anodes in barrel plating

3.2.2阴阳极的相对长度与上下相对位置

阴阳极的相对长度与上下相对位置对电力线分布的影响如图6所示。

图6阴阳极垂直方向长度与位置

Figure 6 Vertical lengths and positions of cathode and anode

(1)一般而言,阳极的长度应略短于工件(或挂具)垂直方向的长度;否则因槽底空间过多,阳极又过长时,工件下端电力线过于集中,下端镀层厚且易烧焦。对于定型产品加工,应先认真考虑阳极或挂具的设计。曾有一专业加工摩托车消声器工厂,在设计自动线时,将镀镍的阳极钛篮设计过长,生产后消声器下部老是烧焦返工,无法解决。后来只好将500余支钛篮分批交钛制品厂将下端截去一段后重新封底,这岂不浪费?所以设备生产厂家也应有懂电镀工艺要求的人才行。

(2)当工件较短时,对于定型产品,最好设计挂具,多件连接装挂;对于非定型产品,若图省事,为取挂快而不愿连接,单件钩或栓挂,则一方面应注意铜挂钩长度要适宜,另一方面只能减小平均电流密度以防上部或下部烧焦。当工件悬挂较深时,上部易烧焦。举一实例:某厂镀摩托车衣架,铜钩挂上部连杆圆环,但上部镀镍烧焦不少,镀镍烧焦后返修又难,十分头痛。笔者见后笑日:“何不把铜挂钩做短一点?既不会烧焦还省了铜材!”一试就灵,果然再不烧焦返工了。看似小菜一碟的问题,若不注重阴阳极位置的相互关系,也会出大错。这不但是一个实际问题,背后还涉及一些理论基础。

实际生产中,阳极长度是不好轻易变动和灵活掌握的。像镀铬的不溶性阳极,一旦成型就很难改变,此时不妨采用“阳极屏蔽法”来调整其有效导电长度:阳极外面设一个两头系软线的PVC塑料板,通过调整其高度来调整阳极被屏蔽的下端长度,起到调整阳极有效长度的作用。而对于可溶性阳极,多数会出现溶损后过短的问题,故应及时检查、更新。

图7为采用辅助阴极与屏蔽阴极的情况。辅助阴极是在电流密度过大处另加一个与阴极相连的阴极(比如用铜丝烧制的螺旋圆面),让其消耗部分电流以减少工件对应部分的电流。这在镀铬中被常采用。屏蔽阴极则是在电流密度过大处附近设法固定大小适中的绝缘塑料板,使部分电力线无法穿透。后者若设计得当,则其上不会像辅助阴极那样会沉积消耗金属。

图7辅助阴极与屏蔽阴极

Figure 7 Auxiliary anode and shielding cathode

七、影响镀层厚度分布均匀性的因素:

传质不均造成厚度分布不均匀

当电镀大平面工件(如大铁板镀锌)时,由于平板中间部位的主盐金属离子消耗后的传质补充速度小于周边主盐金属离子的补充速度,浓差极化较大,往往中间部位镀层薄、亮度差。此时若静镀,效果很差,采用阴极移动则稍好。当允许空气搅拌时,最好采用空气搅拌。另一办法是在板中间部位设法加辅助阳极。

思考题:l.为什么镀槽不宜设计过窄?

2.为什么滚镀时阳极不宜过短?

3.采用辅助阳极和辅助阴极各起什么作用?

第七讲思考题的参考答案:

1.阴极上的主要副反应是H+放电还原而析氢。其主要害处有:(1)降低阴极电流效率,浪费电;(2)降低允许阴极电流密度,镀层易烧焦;(3)产生气体针孔、麻点;(4)造成基体或镀层渗氢,产生氢脆,镀层起泡;(5)升高镀液pH;(6)使某些工件“窝气”,局部无镀层.

2.阳极析氧的主要坏处有:(1)降低阳极电流效率;(2)造成阳极钝化,使阳极溶解不良或破坏电流分布的均匀性;(3)氧化破坏镀液中某些组分,造成损失或产生有害杂质。

镀锌颜色厚度及种类

颜色: 在GB/T13911-92标准中,电镀锌的后处理有四种: 1. 光亮铬酸盐处理――光泽镀锌,也是白锌;其后处理的表示符号为:c1A; 2. 漂白铬酸盐处理――白锌,就是我们常说的蓝白锌;其后处理的表示符号为:c1B; 3. 彩虹铬酸盐处理――彩锌;其后处理的表示符号为:c2C; 4. 深色铬酸盐处理――黑锌、军绿、橄榄绿。其后处理的表示符号为:c2D。 厚度: 层的抗蚀性能主要取决于镀层的厚度。在同样的厚度时,抗蚀性能与钝化膜种类密切相关。 按照ISO(国际标准)要求,镀锌层的厚度要依镀件使用的环境来定。按环境的条件分为四等:极严酷,严酷、一般和较好。相应的锌层厚度就保持在40μm、25μm、12μm和5μm。 那么,到底应该镀多厚呢?这要看用户需求而定。而不是电镀者随意来定的。有些行业有自己的标准,在确定镀层厚时,应参考相关标准。 种类: 电镀锌,厚度在~之间 热镀锌,可以控制在25~50um,也有说可达60-100um,但表面质量不好,有积瘤,它只是用在室外输电线路配件上。 热喷涂锌,镀层厚度可达100-200 um 1、碱性氰化物镀锌 2、碱性锌酸盐镀锌 3、铵盐镀锌 4、 5、铵钾混合浴镀锌 6、硫酸盐镀锌

电镀锌与热镀锌的比较 电镀锌 1、原理 由于锌在干燥空气中不易变化,而在潮湿的空气中,表面能生成一种很致密的碳酸锌,这种薄膜能有效保护内部不再受到腐蚀。并且当某种原因使镀层发生破坏而露出不太大的时,锌与钢基体形成微电池,使紧固件基体成为阴极而受到保护。在运输等行业中应用较广,但需要的是层、锌镍合金镀封闭涂层,减少六价铬钝化有害、有毒层。 2、性能特点 锌镀层较厚,结晶细致、均匀且无孔隙,抗腐蚀性良好;电镀所得锌层较纯,在酸、碱等雾气中腐蚀较慢,鞥有效保护紧固沙件基体,镀锌层经钝化后形成白色、彩色、军绿色等,美观大方,具有一定的装饰性,由于镀锌层具有良好的延展性,因此可进行冷冲、轧制、折弯等各种成型而不损坏镀层。 3、应用范围 电镀锌所涉及的领域越来越广泛,紧固件产品的应用已遍及机械制造、电子、、化工、交通运输、航天等在国民经济中有重大意义。 热镀锌 1、原理 热浸锌层是锌在液态下,分三个步骤形成的,铁基表面被锌液溶解形成锌、铁合金相层;合金层中的锌离子进一步向基体扩散形成锌、铁互溶层;合金层表面包裹着锌层。 2、性能特点 具有较厚致密的纯锌层覆盖在紧固件表面上,它可以避免钢铁基体与任何腐蚀溶液的接触,保护钢铁紧固件基体免受腐蚀。在一般大气中,锌层表面形成一层很薄而密实的氧化锌层表面。它很难溶于水,故对钢铁紧固件基体起着一定保护作用。如果氧化锌与大气中其它成分生成不溶性锌盐后,则防腐蚀作用更理想;具有锌—铁合金合金层,结合致密,在海洋性盐雾大气及工业性大气中表现特有抗腐蚀性;由于结合牢固,锌—铁互溶,具有很强的;由于锌具有良好的延展性,其合金层与钢铁基体附着牢固,因此热镀锌可进行冷冲、轧制、拉丝、弯曲等各种成型工序,不损伤镀层;件热浸锌后,相当于一次退火处理,能有效改善钢铁基体的,消除钢件成型焊接时的应力,有利于对钢结构件进行车削加工;热浸锌后的紧固件表面光亮美观;纯锌层是热浸锌中最富有塑性的一层镀锌层,其性质基本接近锌,具有良好的延展性。 3、应用范围 这种镀法特别适用于各种强酸、碱雾气等强中。

镀层厚度检验方法

臾JHrt客 1?范围 本标准规定了高压电器产品制件镀覆层疗度的检验规则和允许偏差。 本标准适用于电镀锌、热镀锌、镀银、镀锡及其它常规镀覆层疗度检査。 2?规范性引用文件 GB/T 12SS4-2001金属和其他非有机覆盖层关于厚度测量的定义和一般规则 3?镀层厚度检验的基本规定 3.1镀层片度检验的规定 GB/ T12SS4明确规定零件镀层疗度为零件“最小疗度”。即“零件主要表面上任何测 量区域在一个可测量的小面积上采用可行的实验方法得到的可比较的局部厚度”。这个小面积称“参比面r “采用无损检测时9应将在参比面上测量的平均值作为局部疗度化 根据产品零部件特性,规定主要表面指产品装配后容易受到腐蚀、摩擦或工作(导电接触)的零件表面。通常电镀条件不易镀到的表面,如深凹处、孔内部一般不作为主要表面。因此测量时,必须选择零件主要表面作为测量区域,在测量参比面所测多点平均值为局部片度,即最小厲度。 3.2镀层片度分布特性 在电镀过程中,受零件儿何形状和结构及工艺操作等诸多因素影响,同一零件表面疗度往往是不均匀的。山于电镀会产生“边缘效应”特性,即零件中间部位和深凹处、盲孔部位镀层较薄,而零件边角和结构突出部位镀层较庁,有些部位其至超疗0?5?1倍。同槽电镀零件镀层分布也是不均匀的。这给镀层疗度测量带来一定难度。 4?镀层厚度测量仪器 乂1镀层厚度测量仪性能.测量种类、误差及影响误差的因素见表1。

土2库仑S000通用测片仪,在测试过程中会对银(锡)层产生一个约lmm2腐蚀漏铜点。 且要求测量面一般为在士mm2以上。 ±3 1100磁性测厚仪和库仑S000测片仪使用方法和测量要求,按有关操作规程进行。 对于镀银件测量时,表面若涂过防银变色剂,先用百洁布或橡皮轻轻擦除后再测。 5?检验规则 5.1测量点的选定 5.1.1以磁性测片仪测片的零件(如镀锌件、热镀锌件)测量点应选在主要表面且远离 零件边缘5?lOmm任一区域。表面要求光滑平整,无污物。 5.1.2以库仑仪测片的零件(如镀银件、镀锡件)山于釆用库仑电解测量会产生破坏性 镀层腐蚀,测量点应选在图样指定的部位。若没有指定部位,测量点则选在距镀层工作面最近的非工作面,且该点必须满足电解池封闭环所需面积 5.1.3同一外协镀件,若供需双方因测量点不同,测量结果产生较大差异时,应协商解 决,并对测量部位进行统一规定。 5.2抽样方法及频次

电镀层厚度不均危害也很大

电镀层厚度不均危害也很大很多时候,评价一个制件电镀加工效果的如何,主要看其表面是否光滑、致密、镀层的厚度是否均匀。因此,电沉积时总希望镀层厚度在工件上的分布越均匀越好,当工件上沉积的总金属量相同时,若厚度分布不均匀,则会带来许多缺陷。 比如镀锌层厚度的不均匀性问题是螺纹紧固件制造中不可忽视的问题,它关系到螺纹的旋合性和镀层的质量。电镀锌层厚度对镀锌层的质量关系较大,主要表现在: (1)、镀锌层的抗腐蚀性能取决于镀层厚度和暴露环境,使用条件越恶劣,需要的镀层越厚,而整个镀层的抗腐蚀性能又取决于镀层的最薄弱部分包括局部厚度最小的地方的抗腐蚀能力。 (2)、锌层过厚的地方容易出现粗糙、结瘤、脱落等疵病。 (3)、锌层过薄的地方,光泽度差,发暗、发雾,在出光、钝化的过程中容易露底。 对阳极性镀层,镀层薄处经不起牺牲腐蚀会使基体产生锈蚀。而一个制件部分锈蚀后则已不合格,过厚处实际上形成了镀层金属的浪费。若为保证最薄处不生锈,只能大大加厚平均厚度,电镀加工成本加大。 对阴极性镀层,薄处镀层孔隙率高,很易产生点状锈蚀,继而锈点加大,形成连片锈蚀。与阳极性镀层相比,镀层薄处锈蚀更快。对局部防渗氮、渗碳镀层,薄处易形成孔眼,失去保护作用。若厚度均匀,则各部分孔隙率差别不大,总体耐蚀性提高。

对光亮性电镀,镀层薄处因阴极电流密度小,光亮平整性差,恶化整体外观。 合金电沉积是不同厚度处合金组分不相同,或外观不均,或抗蚀性不一致。 不同厚度处镀层处物理、力学性能不一样(如脆性、内应力等)。若镀后还要作冲压成型等机加工处理时,镀层过厚处往往机加工性能不良(起皮、开裂、粉末脱落等)。 无论从防蚀性、外观、机加工性能等方面讲,都希望提高镀层厚度均匀性。对尺寸要求精密的零件镀硬铬,有时用户要求镀后不作磨削处理,则很难办到;有时为了保证最薄处达到最终尺寸要求,厚度均匀性差时,不得不大大加厚平均厚度,这在生产中并不少见。为使制件上镀层各部分厚度尽量接近,必须了解影响厚度分布均匀性的因素。 在电镀加工过程中,电流密度和时间、温度、主盐浓度、阳极面积、镀液搅拌等因素都会对镀层厚度的均匀性产生影响,因此电镀厂在进行电镀加工时需多加注意

镀锌层厚度要求以及国家标准

热镀锌层厚度要求及工艺标准 热镀锌也称热浸镀锌,是钢铁构件浸入熔融的锌液中获得金属覆盖层的一种方法。近年来随高压输电、交通、通讯事业迅速发展,对钢铁件防护要求越来越高,热镀锌需求量也不断增加。 1、概述 在各种保护钢基体的涂镀方法中,热浸锌是非常优良的一种。它是在锌呈液体的状态下,经过了相当复杂的物理、化学作用之后,在钢铁上不仅镀上了较厚的纯锌层,而且还生成了一种锌铁合金层。这种镀法,不仅具备了电镀锌的耐腐蚀的特点,而且由于具有锌铁合金层。还有电镀锌无法比拟的强耐腐蚀性,因此这种镀锌法特别适用于各种强酸,碱雾气等强腐蚀环境中。 2、原理 热镀锌层是锌在高温液态下,分三个步骤形成的: (1)铁基表面被锌液溶解形成了锌铁合金层 (2)合金层中的锌离子进一步向基体扩散,形成了锌铁互溶层(3)合金层表面包络着锌层 3、镀锌层厚度 参照GB/T13912-2002国家标准,热镀锌层厚度的标准如下:(1)工件的厚度大于或等于6毫米的,平均厚度应大于85微米,

局部厚度应大于70微米 (2)工件的厚度小于6毫米大于3毫米的,平均厚度应大于70我米,局部厚度应大于55微米 (3)工件的厚度小于3毫米大于1.5毫米的,平均厚度应大于55微米,局部应大于45微米 (4)本标准不包括经过离心分离处理过的镀层和铸铁件镀锌层厚度。 4、工艺过程及有关说明 (1)工艺过程: 工件→脱脂→水洗→酸洗→水洗→浸助镀溶剂→烘干预热→热镀锌→整理→冷却→钝化→漂洗→干燥→检验 (2)有关工艺过程说明 ●脱脂 采用化学去油或者水基金属脱脂清洗剂去油,达到工件完全被水浸润为止。 ●酸洗 采用H2S04 15%,硫脲0.1%,40~60℃或者用HCI25%,乌洛托品3~5g/L,20~40℃进行酸洗。加入缓蚀剂可以防止基体过腐蚀以及减少铁基体吸氢量,同时加入抑雾剂抑制酸雾逸出。脱脂

镀层均匀性研究

摘要:本文针对图形电镀线电镀均匀性不佳的状况,通过一系列细致的试验分析,完成了在缸体上部增加特定尺寸的阳极挡板,以及在浮槽侧面进行大小、间距适宜的开孔等改造措施,改善了该线的电镀均匀性,使其均匀程度由改善前的20.8%,提高到改善后10.3%。 关键词:电镀均匀性;阳极挡板;浮槽 1.前言 随着PCB不断向轻、薄、短小高密度方向发展,给很多设备和生产工艺带来了更高要求。其中线路板图形间距越来越小,而孔铜厚要求却越来越高,给图形电镀均匀性就提出了新的挑战。 我司旧图形电镀线在加工整板细密线路(最小间距3.5mil)的板子时,板边细密线路容易夹膜,导致报废。且发现板上有规律的铜厚分布不均匀,导致半成品切片判断孔铜失误,不能有效对半成品的铜厚作出准确判断。故决定对此线电镀均匀性进行专门测试分析,组织进行改善。 2.测试说明: 1)整个图形电镀线的电镀窗口为52×24(Inch2),深方向为24Inch; 2)采用生益FR-4板材,尺寸:24X24Inch2,2块此尺寸板并排放置于电镀缸中进行测试; 3)测试板距溶液表面0-1Inch,悬挂于溶液中间,不加分流条,22ASF,电镀60分钟; 4)深方向是指板子从镀液表面到溶液底部的方向;水平方向是指与阴极杆平行的方向; 5)测量仪器采用的是德国Fischer公司感应式表面铜厚测试仪,测量误差< 0.5um;

6)测试时每2×2Inch2取一个测量点,用电镀后的铜厚减去电镀前的铜厚进行统计分析; 7)因每进行一次测试,2块板两面共有576个数据,限于篇幅,文中只展示每次正面测量所作出示意图。7次测试的数据,作为附件,另附一个文档。 3.改善目标: 1)总体COV(标准偏差与总体平均值的比值百分数)<11%(业界参考标准为<= 8-12%); 2)深方向镀铜厚度平均差异(深方向极差)<3um。 4.首次测试: 选取该线12#缸进行均匀性测试,其总体COV为20.8%,水平方向的不均匀主要在板最两边,可以通过在挂具两侧加分流条和调整阳极间距来避免和改善。 另外,从深方向的平均铜厚分布图(如图1)可以看出存在如下问题: 如图1所示: 图1第一次测试深方向平均铜厚分布图

怎么控制镀锌层的厚度

热镀锌厚度的控制 调整锌液合金比例;温度,及浸锌时间、 如果钢材的硅含量较高,可加入锌镍合金降低上锌量。也可加入助镀剂添加剂来改变助镀剂的性质,使镀层变得漂亮。 在热镀锌过程中,如果要使镀件表面光亮、镀层博,这跟各道工序都有很大关系,酸洗不到位,助镀液配方不对,锌温高低,人工操作,行车的起吊速度,这都就是有很大关系的, 这个问题您最好买一本热镀锌的工艺相关的书籍好好瞧下。太多学问在里面了。 热镀锌层形成过程就是铁基体与最外面的纯锌层之间形成铁-锌合金的过程,工件表面在热浸镀时形成铁-锌合金层,才使得铁与纯锌层之间很好结合,其过程可简单地叙述为:当铁工件浸入熔融的锌液时,首先在界面上形成锌与α铁(体心)固熔体。这就是基体金属铁在固体状态下溶有锌原子所形成一种晶体,两种金属原子之间就是融合,原子之间引力比较小。因此,当锌在固熔体中达到饱与后,锌铁两种元素原子相互扩散,扩散到(或叫渗入)铁基体中的锌原子在基体晶格中迁移,逐渐与铁形成合金,而扩散到熔融的锌液中的铁就与锌形成金属间化合物FeZn13,沉入热镀锌锅底,即为锌渣。当工件从浸锌液中移出时表面形成纯锌层,为六方晶体。其含铁量不大于0、003%。 减小厚度 提高热镀锌锌温,但要考虑锌锅情况,铁锅不宜超过480度,陶瓷锅可以到530度 减少浸锌时间 取出时速度要缓慢 添加锌铝合金可以减少镀层厚度 1、放慢工件提升速度。 2、尽量控制镀锌时间。 3、适量添加减薄合金。 关于热镀锌层厚度的说明 关于热镀锌层厚度的说明 热镀锌镀层的形成机理 热浸镀锌就是一个冶金反应过程、从微观角度瞧,热浸镀锌过程就是两个动态平衡:热平衡与锌铁交换平衡、当把钢铁工件浸入450℃左右的熔融锌液时,常温下的工件吸收锌液热量,达到200℃以上时,锌与铁的相互作用逐渐明显,锌渗入铁工件表面、随着工件温度逐渐接近锌液温度,工件表面形成含有不同锌铁比例的合金层,构成锌镀层的分层结构,随着时间延长,镀层中不同的合金层呈现不同的成长速率、从宏观角度瞧,上述过程表现为工件浸入锌液,锌液面出现沸腾,当锌铁反应逐渐平衡,锌液面逐渐平静、工件被提出锌液面,工件温度逐渐降低至200℃以下时,锌铁反应停止,热镀锌镀层形成,厚度确定、 热镀锌镀层厚度要求 影响锌镀层厚度的因素主要有:基体金属成分,钢材的表面粗糙度,钢材中的活性元素硅与磷含量及分布状态,钢材的内应力,工件几何尺寸,热浸镀锌工艺、现行的国际与中国热镀锌标准都根据钢材厚度划分区段,锌镀层平局厚度以及局部厚度应达到相应厚度,以确定锌镀层的防腐蚀性能、钢材厚度不同的工件,达成热平衡与锌铁交换平衡所需的时间不同,形成的镀层厚度也不同、标准中的镀层平均厚度就是基于上述镀锌机理的工业生产经验值,局部厚度就是考虑到锌镀层厚度分布的不均匀性以及对镀层防腐蚀性要求所需要的经验值、因此,ISO标准,美国ASTM标准,日本JIS标准与中国标准在锌镀层厚度要求上略有不同,大同小异、 热镀锌镀层厚度的作用与影响 热镀锌镀层的厚度决定了镀件的防腐蚀性能、详细讨论请参见附件中由美国热镀锌协会提供的相关数据、用户可以选择高于或低于标准的锌镀层厚度、对于表面光滑的3mm以下薄钢板,工业生产中得到较厚的镀层就是困难的,另外,与钢材厚度不相称的锌镀层厚度会影响镀层与基材的结合力以及镀层外观质量、过厚的镀层会造成镀层外观粗糙,易剥落,镀件经不起搬运与安装过程中的碰撞、钢材中如果存在较多的活性元素硅与磷,工业生产中得到较薄的镀层也十分困难,这就是由于钢中的硅含量影响锌铁间的合金层生长方式,会使ζ相锌铁合金层迅速生长并将ζ相推向镀层表面,致使镀层表面粗糙无光,形成附着力差的灰暗镀层、 因此,如上述讨论结果,镀锌层的生长存在不确定性,实际生产中要取得某一范围的镀层厚度常常就是困难的,热镀锌标准中规定的厚度就是大量实验后产生的经验值,照顾到了各种因素与要求,较为合理、

屏蔽板补偿作用改进引线框架镀层厚度均匀性

doi :10.3969/j.issn.1001-3849.2014.07.007 屏蔽板补偿作用改进引线框架 镀层厚度均匀性 王津生 叶德洪 孙德义 张学雷 (飞思卡尔半导体(中国)有限公司,天津300385) 摘要:基于统计学理论建立了镀层厚度均匀性评估的方法并分析了电镀工艺中对其产生影响的因 素。最终发现,通过调整电镀槽中屏蔽板的上下位置,使引线框架形成上薄下厚和上厚下薄的两种分布的镀层厚度,这两种镀层厚度叠加在一起改善镀层整体的厚度分布,从而提高了新型引线框架表面电镀层厚度的均匀性,同时降低了镀层厚度超出规格限的风险。关 键 词:屏蔽板;补偿;镀层厚度;均匀性;引线框架中图分类号:TQ153文献标识码:B 收稿日期:2014-01-21 修回日期:2014-03-10 Improving the Coating Thickness Uniformity of Lead Frame Plating by Using Shielding Board Compensation Effect Properly WANG Jin-sheng ,YE De-hong ,SUN De-yi ,ZHANG Xue-lei (Freescale semiconductor (Chian )Limited Co..Tianjin 300385,China ) Abstract :A new method was set up to evaluate the coating thickness uniformity of lead frame plating based on statistics theory.Factors which could affect the coating thickness uniformity were screened out with Fish-Bone Chart.And finally found out that shield board height was the key factor.When the shield board height was adjusted in different location ,there were two types of thickness distribution.One was thinner on top and thicker on bottom of the lead frame ,the other one was thicker on top and thinner on bottom.Superposition of the two types of coating thickness could improve overall coating thickness ,thereby coating thickness uniformity of the new lead frame was improved ,while the risk of coating thickness ex-ceeding specification limit was reduced. Keywords :shield board ;compensation ;coating thickness ;uniformity ;lead frame 引言 近十年,电子产品市场迅速扩大,竞争越来越 激烈,价格越来越低,各生产厂家为取得市场份额,求得生存,在开发新产品的同时,也在不断寻求降低IC 器件成本的方法。引线框架电镀是IC 封装过程中的一个关键工序,其作用是要在引线管脚区域镀覆上一层钎焊性能良好的金属,使IC 器件与PCB 板上的焊盘具有良好的焊接性,以连接封装体内部芯片和PCB 上的外电路。 1实验背景 为降低某封装体的成本,定压缩引线框架的冗 余量,把引线框架两排排列改为三排排列并适当增加框架的宽度, 电镀纯锡后测量镀层厚度发现该引线框架的镀层厚度与之前相比标准差明显变大,也 · 03·Jul.2014 Plating and Finishing Vol.36No.7Serial No.256

电镀锌标准

电镀锌标准 1、适用范围: 本标准规定了汽车零部件(以下简称“零件”)防锈及装饰用电镀锌镀层,(以下简称“镀层”)的技术要求。 2、术语定义 本标准中的术语定义如下。*其它术语应与JISH0400(电镀术语汇编)中的定义一致。 (1)光亮铬酸盐处理 铬酸盐处理在锌镀层上生成防腐层,同时进行化学抛光。光亮铬酸盐处理就是使用化学抛光的方法使镀层光亮。 化学抛光通常采用两种方法:一种方法是使用铬酸溶液,它是在抑制防腐层形成的同时完成化学抛光。另一种方法方法是使用碱溶液,是在防腐蚀层形成之后获得光亮镀层。 (2)有色铬酸盐、绿色铬酸盐及黑色铬酸处理用来防腐蚀的铬酸盐镀层厚且有色。因此,这种防腐蚀镀层被称作“有色铬酸盐”。其色调随镀层的主要成分铬酸铬(XCr2·yCrq3·ZH2O)的比例不同而变化;绿色色调的叫做“绿色铬酸盐”黑色色调的被称为“黑色铬酸盐”。 (3)表面干涉带 在镀层上相当薄的铬酸盐涂层里有着透明的及看不见的薄涂层。当白色光照在其表面上时,涂层及镀层表面上的反光互相进一步干涉,显出彩虹般的色彩。这种现象所引起的条纹图案称作“干涉带”。 (4)表面色散 有色铬酸盐的色调随涂层成分的不同而起变化。而涂层成分又随铬酸盐处理浴的成分及操作条件的变化而变化。因此,即使是同一批次的某种零件,每个零件的色调都有可能不同,即使在同一表面也很难获得均匀的色调,而导致色彩不匀。 (5)白色腐蚀物 锌的腐蚀物大多数情况下包括象碱性碳酸锌那样的白色混合物。这种腐蚀物(锌锈)是在铬酸盐镀层受损,锌暴露在腐蚀环境中时产生的。 3、种类与代号 镀层被分为19类,其类型及代号示于表1

表1代号 备注: 1、代号尾部的B表示:“亮光铬酸盐处理”,C表示“有钯铬酸盐处理”,G表示“绿色铬酸盐处理”(通常叫作“黄褐色处理”),GS表示绿色铬酸盐处理中的腐蚀性能特好,K表示“黑色铬酸盐处理”。 2、内部指的是车体内部各场所,零件安装在这些地主不会直接或间接淋雨。 3、外部指非内部的场所。然而,某个场所虽然位于内部,但仍有部分受到气候的影响,这应被看作外部。 4、质量 4、1外观 镀层外表应光滑,无烧伤,起泡,裸基底金属,及其它可能影响使用性的缺陷。对于亮

镀层厚度检验方法

镀层厚度检验方法 1、范围 本标准规定了高压电器产品制件镀覆层厚度得检验规则与允许偏差。 本标准适用于电镀锌、热镀锌、镀银、镀锡及其它常规镀覆层厚度检查。 2.规范性引用文件 GB/T 12334-2001 金属与其她非有机覆盖层关于厚度测量得定义与一般规则 3。镀层厚度检验得基本规定 3。1镀层厚度检验得规定 GB/ T12334 明确规定零件镀层厚度为零件“最小厚度”。即“零件主要表面上任何测量区域”“在一个可测量得小面积上采用可行得实验方法得到得可比较得局部厚度”。这个小面积称“参比面”,“采用无损检测时,应将在参比面上测量得平均值作为局部厚度”、根据产品零部件特性,规定主要表面指产品装配后容易受到腐蚀、摩擦或工作(导电接触)得零件表面。通常电镀条件不易镀到得表面,如深凹处、孔内部一般不作为主要表面、因此测量时,必须选择零件主要表面作为测量区域,在测量参比面所测多点平均值为局部厚度,即最小厚度、 3、2镀层厚度分布特性 在电镀过程中,受零件几何形状与结构及工艺操作等诸多因素影响,同一零件表面厚度往往就是不均匀得。由于电镀会产生“边缘效应”特性,即零件中间部位与深凹处、盲孔部位镀层较薄,而零件边角与结构突出部位镀层较厚,有些部位甚至超厚0、5~1倍。同槽电镀零件镀层分布也就是不均匀得。这给镀层厚度测量带来一定难度、 4、镀层厚度测量仪器 4、1 镀层厚度测量仪性能、测量种类、误差及影响误差得因素见表1。 表1镀层厚度测量仪性能、测量种类、误差及影响误差得因素

4。2库仑3000通用测厚仪,在测试过程中会对银(锡)层产生一个约1mm2腐蚀漏铜点。且要求测量面一般为在4mm2以上、 4。3 1100磁性测厚仪与库仑3000测厚仪使用方法与测量要求,按有关操作规程进行。对于镀银件测量时,表面若涂过防银变色剂,先用百洁布或橡皮轻轻擦除后再测。 5.检验规则 5.1 测量点得选定 5.1.1 以磁性测厚仪测厚得零件(如镀锌件、热镀锌件)测量点应选在主要表面且远离零件边缘5~10mm任一区域。表面要求光滑平整,无污物。 5.1.2 以库仑仪测厚得零件(如镀银件、镀锡件)由于采用库仑电解测量会产生破坏性镀层腐蚀,测量点应选在图样指定得部位。若没有指定部位,测量点则选在距镀层工作面最近得非工作面,且该点必须满足电解池封闭环所需面积4mm2。 5.1.3 同一外协镀件,若供需双方因测量点不同,测量结果产生较大差异时,应协商解决,并对测量部位进行统一规定、 5、2抽样方法及频次 5.2.1 以磁性测厚仪测厚得零件,每批随意抽查3件或5件,(100件以下按3件抽查,100件以上按5件抽查)每件在主要表面局部测量3~5点(镀层面积在1m2以下按3点测量、1m 2以上按5点测量)、以3~5点厚度平均值为准,热镀锌则为散布测量多点平均厚度值为准。若不合格,加倍抽查,仍若不合格判定本批不合格。(注:在磁性测量中,若遇个别点测量值超

镀锌层厚度

热镀锌层厚度的标准 热镀锌层厚度的标准与镀锌工件的厚度有关,通常如下: 工件的厚度大于或等于6毫米的,平均厚度应大于85微米,局部厚度应大于70微米; 工件的厚度小于6毫米大于3毫米的,平均厚度应大于70微米,局部厚度应大于55微米; 工件的厚度小于3毫米大于1.5毫米的,平均厚度应大于55微米,局部应大于45微米; 本标准不包括经过离心分离处理过的镀层和铸铁件镀锌层厚度 具体请参照GB/T 13912-2002国家标准 中锌热浸镀有限公司申建甫 热镀锌和热浸锌是一回事,区别于电镀锌 电镀锌 钢铁在空气、水或土壤中很容易生锈,甚至完全损坏。每年因腐蚀造成的钢铁损失约占整个钢铁产量的1/10,另一方面,为使钢铁制品与零件表面具有某种特殊功能,同时赋予其表面装饰性的外观,所以,一般采用电镀锌的方式对其处理。 一、原理: 由于锌在干燥空气中不易变化,而在潮湿的空气中,表面能生成一种很致密的碱式碳酸锌薄膜,这种薄膜能有效保护内部不再受到腐蚀。并且当某种原因,使镀层发生破坏而露出不太大的钢基时,锌与钢基体形成微电池,使钢基体成为阴极而受到保护。 二、性能特点: 1、锌镀层较厚,结晶细致、均匀且无孔隙,抗腐蚀性良好; 2、电镀所得锌层较纯,在酸、碱等雾气中腐蚀较慢,能有效保护钢基体; 锌镀层经铬酸钝化后形成白色、彩色、军绿色等,美观大方,具有一定的装饰性;由于锌镀层具有良好的延展性,因此可进行冷冲、轧制、折弯等各种成型而不损坏镀层。 三、应用范围: 随着科学技术生产的发展,电镀工业所涉及的领域越来越广泛。目前,电镀锌的应用已遍及国民经济的各个生产和研究部门。例如,机器制造、电子、精密仪器、化工、轻工、交通运输、兵器、航天、原子能等等,在国民经济中有重大意义。 热浸锌: 一、概述: 在各种保护钢基体的涂镀方法中,热浸锌是非常优良的一种。它是在锌呈液体的状态下,经过了相当复杂的物理、化学作用之后,在钢铁上不仅镀上较厚的纯锌层,而且还生成一种锌一铁合金层。这种镀法,不仅具备了电镀锌的耐腐蚀特点,而且由于具有锌铁合金层。还具有电镀锌所无法相比拟的强耐蚀性。因此这种镀法特别适用于各种强酸、碱雾气等强腐蚀环境中。 二、原理:热镀锌层是锌在高温液态下,分三个步骤形成的: 1、铁基表面被锌液溶解形成锌—铁合金相层;

镀层厚度检验方法

镀层厚度检验方法 1.范围 本标准规定了高压电器产品制件镀覆层厚度的检验规则和允许偏差。 本标准适用于电镀锌、热镀锌、镀银、镀锡及其它常规镀覆层厚度检查。 2.规范性引用文件 GB/T 12334-2001 金属和其他非有机覆盖层关于厚度测量的定义和一般规则 3.镀层厚度检验的基本规定 3.1 镀层厚度检验的规定 GB/ T12334 明确规定零件镀层厚度为零件“最小厚度”。即“零件主要表面上任何测量区域”“在一个可测量的小面积上采用可行的实验方法得到的可比较的局部厚度”。这个小面积称“参比面”,“采用无损检测时,应将在参比面上测量的平均值作为局部厚度”。 根据产品零部件特性,规定主要表面指产品装配后容易受到腐蚀、摩擦或工作(导电接触)的零件表面。通常电镀条件不易镀到的表面,如深凹处、孔内部一般不作为主要表面。因此测量时,必须选择零件主要表面作为测量区域,在测量参比面所测多点平均值为局部厚度,即最小厚度。 3.2 镀层厚度分布特性 在电镀过程中,受零件几何形状和结构及工艺操作等诸多因素影响,同一零件表面厚度往往是不均匀的。由于电镀会产生“边缘效应”特性,即零件中间部位和深凹处、盲孔部位镀层较薄,而零件边角和结构突出部位镀层较厚,有些部位甚至超厚0.5~1倍。同槽电镀零件镀层分布也是不均匀的。这给镀层厚度测量带来一定难度。 4.镀层厚度测量仪器 4.1 镀层厚度测量仪性能、测量种类、误差及影响误差的因素见表1。 表1 镀层厚度测量仪性能、测量种类、误差及影响误差的因素

4.2 库仑3000通用测厚仪,在测试过程中会对银(锡)层产生一个约1mm2腐蚀漏铜点。且要求测量面一般为在4mm2以上。 4.3 1100磁性测厚仪和库仑3000测厚仪使用方法和测量要求,按有关操作规程进行。对于镀银件测量时,表面若涂过防银变色剂,先用百洁布或橡皮轻轻擦除后再测。 5.检验规则 5.1 测量点的选定 5.1.1 以磁性测厚仪测厚的零件(如镀锌件、热镀锌件)测量点应选在主要表面且远离零件边缘5~10mm任一区域。表面要求光滑平整,无污物。 5.1.2 以库仑仪测厚的零件(如镀银件、镀锡件)由于采用库仑电解测量会产生破坏性镀层腐蚀,测量点应选在图样指定的部位。若没有指定部位,测量点则选在距镀层工作面最近的非工作面,且该点必须满足电解池封闭环所需面积4mm2。 5.1.3 同一外协镀件,若供需双方因测量点不同,测量结果产生较大差异时,应协商解决,并对测量部位进行统一规定。 5.2 抽样方法及频次

影响镀层厚度和质量的主要因素【详述】

影响镀层厚度和质量的主要因素 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 整个反应历程中镍析出的少,产生的氢多。通常沉积镍层中总会有百分之三到百分之十五的磷,这就是电镀镍和化学镀镍的根本区别所在。影响镀层厚度和质量的主要因素是时间、温度和PH值。在槽液温度和PH值固定的条件下,镀层厚度和化学镀时间的关系,可见,随着时间延长,镀层随之增厚,但是沉积速率随着时间稍有减小。槽液温度随沉积速率的影响。随着温度提高,沉积速率急速增大。在槽液温度低于50摄氏度的时候,沉积速率几乎为零。当温度高于80摄氏度的时候,沉积速率明显下降。最佳操作温度为八十摄氏度左右。 沉积速率受PH值影响,当PH值等于四的时候,发现底材镁合金产生严重溶解,沉积物几乎没有附着力。当PH值大于八的时候,镀层会产生内应力,镀层内磷含量很低,这就使镀层耐蚀性下降。最佳的条件是PH值等于6.5±1。试验证明,工艺工程中碱洗对零件尺寸变化可以忽略。酸洗,尺寸减小为每分钟1毫米,氟化物活化处理为每分钟0.08微米。镀层密度为7.28~7.32每立方厘米。镀层附着力好,经过两小时250摄氏度处理后空冷,没有发现镀层变色、裂纹、鼓泡或者脱落。没有经过热处理镀层显微硬度为760~785VHV。两小时230摄氏度处理后显微硬度可以提高55~65VHV。

在湿度百分之九十五,温度九十五摄氏度的恒温恒湿箱中试验四十八小时,镀层没有任何变化。该镀层热稳定性优良。在二百五十摄氏度,真空度为1.33*10-3帕真空箱四十八小时试验,镀层没有变化。经过热循环试验100次,镀层完好。化学镀镍层采用高活性酸性溶剂很容易焊接。如果镀层在空气中长期放置,或者经过热处理,不采用高活性酸性溶剂就很难进行焊接。这个事例证明,镁合金表面上可以直接进行化学镀镍,其附着性很好,其耐蚀性、硬度、可焊性均能满足工业要求,这对镁合金在通讯行业中应用开拓了广大市场空间。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

镀层厚度测试

涂/镀层厚度测试 目的: 检查涂覆、电镀、化学镀所形成镀层厚度及其镀层均匀性 涂/镀层产品来料厚度检验 方法: 截面法(仲裁方法) X射线荧光膜厚法 依据标准: 截面法:GB/T 6462-2005,ASTM B 487-85(2002),ASTM B748-1990(2010) X射线荧光膜厚法:ASTM B 568-98,GB/T 16921-2005,ISO 3497 典型图片: 金相显微镜测量镀层厚度SEM测量镀层厚度 链接: 一、截面法之显微镜测试 二、截面法之SEM测试 三、X射线荧光膜厚测试

镀层厚度测量的最高倍数1000X,最低可测试至0.8μm the Maximum magnific ation of the optic al mic roscope is 1000X, the size measured c an be as low as 0.8μm) 铁基体上镀锌层厚度测量 Zn layer thickness measurement on iron substrate 渗碳层深度测量 The depth measurement of carburizing layer 第3层 第2层 第1层 基材 漆膜层厚度测量

多层镀层厚度测量 Cr layer Substrate Cu layer Ni layer

链接三:X射线荧光膜厚测试 X-RAY荧光测厚仪(X-Ray fluorescence thickness tester) 具体可针对如Sn/Fe(基材)、Zn/Cu(基材)、Ni/Cu(基材)、Cr/Ni/Fe(基材)、Au/Ni/Cu(基材)等数十种电镀工艺镀层进行厚度测量,具有测量精度高、简便快捷、无损的优点,特别是对微薄镀层厚度(一般指小于0.2微米)测量效果较佳。 X-Ray fluorescence thickness tester, being highly accurate, fast and easy-to-operate, non-destructive, is mainly used for the thickness measurements of plating layers, such as Sn/Fe (substrate), Zn/Cu (substrate), Ni/Cu (substrate), Cr/Ni/Fe(substrate) and Au/Ni/Cu (substrate). Especially good for the thickness measurement of extra-thin coatings(generally less than 0.2 um). 典型样品:

影响镀层厚度和质量的主要因素

影响镀层厚度和质量的主要因素 整个反应历程中镍析出的少,产生的氢多。通常沉积镍层中总会有百分之三到百分之十五的磷,这就是电镀镍和化学镀镍的根本区别所在。影响镀层厚度和质量的主要因素是时间、温度和PH值。在槽液温度和PH值固定的条件下,镀层厚度和化学镀时间的关系,可见,随着时间延长,镀层随之增厚,但是沉积速率随着时间稍有减小。槽液温度随沉积速率的影响。随着温度提高,沉积速率急速增大。在槽液温度低于50摄氏度的时候,沉积速率几乎为零。当温度高于80摄氏度的时候,沉积速率明显下降。最佳操作温度为八十摄氏度左右。 沉积速率受PH值影响,当PH值等于四的时候,发现底材镁合金产生严重溶解,沉积物几乎没有附着力。当PH值大于八的时候,镀层会产生内应力,镀层内磷含量很低,这就使镀层耐蚀性下降。最佳的条件是PH值等于6.5±1。试验证明,工艺工程中碱洗对零件尺寸变化可以忽略。酸洗,尺寸减小为每分钟1毫米,氟化物活化处理为每分钟0.08微米。镀层密度为7.28~7.32每立方厘米。镀层附着力好,经过两小时250摄氏度处理后空冷,没有发现镀层变色、裂纹、鼓泡或者脱落。没有经过热处理镀层显微硬度为760~785VHV。两小时230摄氏度处理后显微硬度可以提高55~65VHV。 在湿度百分之九十五,温度九十五摄氏度的恒温恒湿箱中试验四十八小时,镀层没有任何变化。该镀层热稳定性优良。在二百五十摄氏度,真空度为1.33*10-3帕真空箱四十八小时试验,镀层没有变化。经过热循环试验100次,镀层完好。化学镀镍层采用高活性酸性溶剂很容易焊接。如果镀层在空气中长期放置,或者经过热处理,不采用高活性酸性溶剂就很难进行焊接。这个事例证明,镁合金表面上可以直接进行化学镀镍,其附着性很好,其耐蚀性、硬度、可焊性均能满足工业要求,这对镁合金在通讯行业中应用开拓了广大市场空间。

热镀锌层厚度的标准与镀锌工件的厚度有关

热镀锌层厚度的标准与镀锌工件的厚度有关,通常如下: 工件的厚度大于或等于6毫米的,平均厚度应大于85微米,局部厚度应大于70微米; 工件的厚度小于6毫米大于3毫米的,平均厚度应大于70微米,局部厚度应大于55微米; 工件的厚度小于3毫米大于1.5毫米的,平均厚度应大于55微米,局部应大于45微米; 本标准不包括经过离心分离处理过的镀层和铸铁件镀锌层厚度 具体请参照GB/T 13912-2002国家标准 中锌热浸镀有限公司申建甫 1金属覆盖层钢铁制品热镀锌层技术要求 2008-10-17 17:01 中华人民共和国国家标准 金属覆盖层钢铁制品热镀锌层技术要求 GB/T 13912-92 本标准参照采用国际标准 ISO 1459——1973(E)《金属覆盖层——热铰锌防腐蚀层——指导原则》和 ISO 1461——1973(E)《金属覆盖层——钢铁制品热镀锌层——技术条件》。 中华人民共和国国家标准金属覆盖层钢铁制品热镀锌层技术要求 GB/T 13912-92 本标准参照采用国际标准 ISO 1459——1973(E)《金属覆盖层——热铰锌防腐蚀层——指导原则》和 ISO 1461——1973(E)《金属覆盖层——钢铁制品热镀锌层——技术条件》。 1 主题内容与适用范围 本标准规定了钢铁制品上热镀锌层的技术要求。 本标准适用于钢铁制品防腐蚀的热镀锌层。 本标准不适用于未加工成形的钢铁线材、管材和板材上的热镀锌层。 本标准对热镀锌前基体材料的性质、表面状态不作规定。影响热镀锌效果的基体

材料状况参见附录A( 参考件)。 本标准对热镀锌产品的后处理未作规定。 2 引用标准 GB 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB 4956 磁性金属基体上非磁性覆盖层厚度测量磁性方法 GB 12334 金属和其他无机覆盖层关于厚度测量的定义和一般规则 GB/T 13825 金属覆盖层黑色金属材料热镀锌层的质量测定称量法 3 术语 3.1 热镀锌 将钢件或铸件浸入熔融的锌液中在其表面形成锌—铁合金或锌和锌—铁合金覆盖层的工艺过程和 方法。 3.2 热镀锌层(简称:镀层) 采用热镀锌方法所获得的锌—铁合金或锌和锌—铁合金覆盖层。 3.3 主要表面 指制件上热镀锌前和热镀锌后的某些表面。该表面上的镀层对于制件的外观和(或)使用性能是起主要 作用的。 3.4 检查批(简称:批) 为实施抽样检查汇集起来的热镀锌件。 在热镀锌厂检验时,指一个生产班内同一镀槽中生产的相同类型和大小的热镀锌件。 交货后由需方检验时,指一次订货或一次交货量。 3.5 样本 从批中随机抽取的镀件或镀件组。 3.6 基本测量面 在主要表面上进行规定次数测量的区域。 3.7 局部厚度 在基本测量面内进行规定次数厚度测量的算术平均值。 3.8 平均厚度 一大制件上或一样本中所有制件上的局部厚度的算术平均值。 4 需方向热镀锌厂家提供的资料 4.1 必要资料 a. 本标准的标准号。 b. 基体金属的成分及有关特性。 4.2 附加资料 必要时,需方应提供下列资料。 a. 主要表面,可在图纸上标明,也可用有适当标记的样品说明;

影响镀层厚度分布均匀性的因素

一、影响镀层厚度分布均匀性的因素: 使镀层厚度分布均匀的重要性 电沉积时总希望镀层厚度在工件上的分布越均匀越好。当工件上沉积的总金属量相同时,若厚度分布不均匀,则会带来很多坏处: (1)对于阳极性镀层,镀层薄处经不起牺牲腐蚀会先使基体产生锈蚀。而一个制件部分锈蚀后则已不合格,造成了镀层过厚处金属的浪费。若为保证最薄处不生锈,只能加大平均厚度,导致电镀成本增大。 (2)对于阴极性镀层,薄处镀层孔隙率高,很易产生点状锈蚀,继而锈点加大,形成连片锈蚀。与阳极性镀层相比,阴极性镀层薄处锈蚀更快。对于局部防渗氮、渗碳镀层,薄处易形成孔眼,失去保护作用。若厚度均匀则各部分孔隙率差别不大,总体防蚀性提高。例如,对电池钢壳滚镀亮镍,壳内(特别是靠底部的地方)镀层很薄,甚至在清洗烘干时即已起小锈点、泛黄,为此要“出白”处理,迅速用水溶性封闭剂封闭后干燥。 (3)对于光亮性电镀,镀层薄处因阴极电流密度小,故光亮整平性差,影响整体外观。 (4)合金电沉积时,不同厚度处的合金组分不相同,或外观不均(如仿金镀),又或抗蚀性不一致(如锌镍合金)。 (5)不同厚度处镀层的物理、机械性能(如脆性、内应力等)不一样。若镀后还要作冲压成型等机加工处理,镀层过厚处往往机加工性能不良(起皮、开裂、粉状脱落等)。 无论从防蚀性,还是外观、机加工性能等方面讲,都希望提高镀层厚度的均匀性。对于尺寸镀硬铬,若用户要求镀后不作磨削处理,则很难办到;有时为了保证最薄处达到最终尺寸要求,厚度均匀性差时,不得不大大加大平均厚度,这在生产中并不少见。为使制件上镀层各部分厚度尽量接近,必须了解影响厚度分布均匀性的因素。 二、影响镀层厚度分布均匀性的因素: 镀液性能因素-镀液的分散能力与深镀能力 这是镀液的两项重要技术指标,一般为新工艺研究的必测指标。

镀层厚度检验方法

镀层厚度检验方法 1. 范围 本标准规定了高压电器产品制件镀覆层厚度的检验规则和允许偏差。 本标准适用于电镀锌、热镀锌、镀银、镀锡及其它常规镀覆层厚度检查。 2. 规范性引用文件 GB/T 12334-2001金属和其他非有机覆盖层关于厚度测量的定义和一般规则 3. 镀层厚度检验的基本规定 镀层厚度检验的规定 GB/ T12334明确规定零件镀层厚度为零件“最小厚度”。即“零件主要表面上任何测量区域” “在一个可测量的小面积上采用可行的实验方法得到的可比较的局部厚度”。这个小面积称“参比面”,“采用无损检测时,应将在参比面上测量的平均值作为局部厚度”。 根据产品零部件特性,规定主要表面指产品装配后容易受到腐蚀、摩擦或工作(导电接触)的零件表面。通常电镀条件不易镀到的表面,如深凹处、孔内部一般不作为主要表面。因此测量时,必须选择零件主要表面作为测量区域,在测量参比面所测多点平均值为局部厚度,即最小厚度。镀层厚度分布特性 在电镀过程中,受零件几何形状和结构及工艺操作等诸多因素影响,同一零件表面厚度往往是不均匀的。由于电镀会产生“边缘效应”特性,即零件中间部位和深凹处、盲孔部位镀层较薄,而零件边角和结构突出部位镀层较厚,有些部位甚至超厚?1倍。同槽电镀零件镀层分布也是不均匀的。这给镀层厚度测量带来一定难度。 4. 镀层厚度测量仪器 镀层厚度测量仪性能、测量种类、误差及影响误差的因素见表1。 表1镀层厚度测量仪性能、测量种类、误差及影响误差的因素

库仑3000通用测厚仪,在测试过程中会对银(锡)层产生一个约1mrf腐蚀漏铜点。且要求测量面一般为在4mm以上。 1100磁性测厚仪和库仑3000测厚仪使用方法和测量要求,按有关操作规程进行。对于镀 银件测量时,表面若涂过防银变色剂,先用百洁布或橡皮轻轻擦除后再测。 5. 检验规则 测量点的选定 5.1.1以磁性测厚仪测厚的零件(如镀锌件、热镀锌件)测量点应选在主要表面且远离零件边缘5?10mn任一区域。表面要求光滑平整,无污物。 5.1.2以库仑仪测厚的零件(如镀银件、镀锡件)由于采用库仑电解测量会产生破坏性镀层腐蚀,测量点应选在图样指定的部位。若没有指定部位,测量点则选在距镀层工作面最近的非工作面,且该点必须满足电解池封闭环所需面积4mn。 5.1.3同一外协镀件,若供需双方因测量点不同,测量结果产生较大差异时,应协商解决,并对测量部位进行统一规定。 抽样方法及频次 5.2.1以磁性测厚仪测厚的零件,每批随意抽查3件或5件,(100件以下按3件抽查,100 件以上按5件抽查)每件在主要表面局部测量3?5点(镀层面积在1吊以下按3点测量、1m以上按5点测量)。以3?5点厚度平均值为准,热镀锌则为散布测量多点平均厚度值为准。若不合格,加倍抽查,仍若不合格判定本批不合格。(注:在磁性测量中,若遇个别点 测量值超低,并非反映该面真实厚度,应换点重测。)

相关主题
文本预览
相关文档 最新文档