当前位置:文档之家› 区域交通协调控制中基于时段的相位差计算方法

区域交通协调控制中基于时段的相位差计算方法

区域交通协调控制中基于时段的相位差计算方法
区域交通协调控制中基于时段的相位差计算方法

道路交通信号灯图解

道路交通信号灯使用说明书 第一节概述 道路交通信号灯是为了加强道路交通管理 , 减少交通事故 , 提高道路使用效率 , 从而改善交通状况的一种重要工具. 道路交通LED信号灯具有以下特点: ● 符合中华人民国GB14887标准中的技术指标; ● 拥有多项国家专利; ?高亮度 : 采用 LED 组装的灯芯色彩亮丽 ; ?低功耗 : 只有白炽灯的四分之一,仅 25VA ; ?长寿命 : 可达 50000 小时以上 ; ?调光控制 : 根据环境变化自动调节亮度 ; ?限流控制 : 自动校正负载电流 ; ?亮度均衡 : 设有平衡电流电路加上专门设计的光学部件,发光特别均匀;?严格老化 : 产品经长时间通电老化 , 性能更加稳定。 ● 防护等级大于 IP53 。 第二节性能指标 1 .光学性能 1.1 光强分布 符合 GB14887 的要求 1.2 色度坐标 符合 GB14887 的相关要求,包括颜色视觉功能有缺陷的观察者所要达到的关规定 2 .电气性能 2.1 工作电压AC220 ± 15% V 50 ± 2Hz 2.2 额定功率单灯 <15 W 2.3 绝缘电阻 >10M? 2.4 介电强度耐压 144 VAC 2.5 燃点寿命正常条件使用下可达 50000h

3. 物理、机械性能 3.1 抗风压符合 GB14887 的相关要求 3.2 抗振动符合 GB14887 的相关要求 3.3 防护等级大于 IP53 4. 适应环境 4.1 信号灯工作环境温度为 -40oС~50oС, 可耐 -40oС 和+80oС 的高低温测试 4.2 温度为25oС 时 , 空气相对湿度不大于 95% 第三节结构尺寸 1 .道路交通信号灯总装图示: L 型支架安装 组合种类 a b c d e f h w ф 300 二灯600 1270 70 985 70 195 370* 130 三灯600 1620 70 1335 70 195 370 130 四灯600 1970 70 1685 70 195 370 130 五灯600 2320 70 2035 70 195 370 130 ф 300 二灯600 1445 70 1160 70 195 370 130

交通信号控制系统方案

交通信号 控制系统(ATC)设计方案 x x x x有限责任公司

目录 1.概述 (1) 1.1系统简介 (1) 1.2设计原则 (2) 1.3系统设计依据及执行标准 (4) 2.总体设计方案 (6) 2.1控制系统总体功能 (6) 2.2通信系统总体结构 (6) 2.3通信系统主要优势 (8) 3.详细设计方案 (9) 3.1监测点设备 (9) 3.1.1设备功能描述 (9) 3.1.2监测点设备组成、结构及特点 (9) 3.2防雷保护及安全设计 (14) 3.3详细设备说明 (15) 3.3.1高清晰摄像机 (15) 3.3.2标清视频检测 (15) 3.3.3补光设备 (15) 3.3.4嵌入式存储 (15) 3.3.5 GOE210千兆工业以太网交换机 (15) 3.3.6 POE工业以太网光纤收发器 (17) 3.4系统典型配置清单 (18)

1.概述 城市发展交通智能信号灯,减少道路拥堵,最终达到智能化区域交通信号控制系统。智能交通信号灯迎合实现绿色经济的时代潮流,为了解决这个问题,提出智能交通信号灯及网络技术,会根据路口车辆多少,自动调节时间,可减少等候时间在75%以上,从而大大节省了人们的出行时间,减少了路口的无效等候,使出行更快捷。 在智能交通系统中,以往的常规摄像机是对所有通过该地点的机动车辆的车牌进行拍摄、记录与处理。由于受到图像采集设备分辨率的制约,图片仅能反映出车型、车身颜色、车牌号码等简单信息。公安执法部门对部分治安案件、交通肇事案件的取证要求上,希望能掌握更详细更清楚的资料,如驾驶员的面貌特征、车内驾驶室的情况、清晰的车辆信息、货车的装载情况。采用高清晰摄像机做前端采集,可以实现所抓拍的图像中用肉眼清楚地分辨:车辆的颜色、特征、车牌的号码、车牌颜色、司乘人员的面部特征。 如此一来智能化同时也带来了网络数据流量的剧增,对网络通信的可靠传输提出了更高的要求。工业以太网交换机在区域交通信号控制系统网络中稳定性、高可靠性、高安全性成为关键中的关键。 1.1系统简介 区域交通信号控制系统(ATC) 智能化区域交通信号控制系统采用百万像素的数字化网络摄像机(1600×1200 CCD传感器),一台摄像机覆盖两条车道,准确抓拍正常行驶、压线行驶、并行通过的车辆,并自动识别车牌号码,抓拍的车辆图片可清晰地显示车辆特征及前排司乘人员的面部特征。摄像机工作于外触发方式,通过视频分析、环形线圈或者窄波雷达检测通过车辆,在抓拍车辆的同时可获取车辆的行驶速度。两条车道共用一台高清数字摄像机的方式在保障系统性能的前提下,大大降低了系统成本。

人工智能技术在交通控制领域的应用

人工智能技术在交通控制领域的应用 交通信号控制(TrafficSignalControl,TSC)是依据路网交通流数据,对交通信号进行初始化配时和控制,同时根据实时交通流状况,实时调整配时方案,实现交通控制的优化。交通控制从被控区域的最小延误时间出发,获得最佳的配时方案,是系统化最优的思想。为获得整个路口交通效益的最大,可采用两种方法:一是采用数学模型对交叉口各个方向的车辆到达作准确的预测,根据运筹学和最优化理论确定各个方向的绿灯时间;二是采用智能控制的 交通信号控制(Traffic Signal Control,TSC)是依据路网交通流数据,对交通信号进行初始化配时和控制,同时根据实时交通流状况,实时调整配时方案,实现交通控制的优化。交通控制从被控区域的最小延误时间出发,获得最佳的配时方案,是系统化最优的思想。 为获得整个路口交通效益的最大,可采用两种方法:一是采用数学模型对交叉口各个方向的车辆到达作准确的预测,根据运筹学和最优化理论确定各个方向的绿灯时间;二是采用智能控制的方法对交叉口进行控制。由于城市交通系统具有随机性、模糊性、不确定性等特点,很难对其建立数学模型。计算机的出现和广泛应用促成了人工智能研究热潮的掀起,针对传统交通控制系统的固有缺陷和局限性,许多学者把人工智能的实用技术相继推出并应用到交通控制领域。 1 交通控制领域中人工智能研究方法 1.1 基础研究方法 交通控制领域中人工智能基础研究方法有模糊控制、遗传算法、神经网络,另外还有蚁群算法、粒子群优化算法等。 模糊系统模糊逻辑是一种处理不确定性、非线性等问题的有力工具,特别适用于表示模糊及定性知识,与人类思维的某些特征相一致,故嵌入到推理技术中具有良好效果。模糊控制能有效处理模糊信息,但是产生的规则比较粗糙,没有自学习能力。 遗传算法遗传学通过运用仿生原理实现了在解空间的快速搜索,广泛用于解决大规模组合优化问题。在解决实时交通控制系统中的模型及计算问题时,可以通过遗传算法进行全局搜索和确定公共周期,也可以利用遗传算法来解决面控系统中各交叉路口信号控制方案的最优协作问题,有效避免可能由此引起的交通方案组合爆炸后果。 神经网络人工神经网络擅长于解决非线性数学模型问题,并具有自适应、自组织和学习功能,广泛应用于模式识别、数据分析与处理等方面,其显著特点是具有学习功能。

区域协调发展面临的新挑战

区域协调发展面临的新挑战 ——范恒山教授在上海交通大学的演讲 范恒山 ? 2012-06-13 16:37:22 来源:解放日报2012年6月3日 人物小传:范恒山,经济学博士,现任国家发展和改革委员会地区经济司司长。参与许多重大文件的起草,主持了大量重要发展改革、区域发展规划和专项方案的制定,以及一些重大理论与政策课题的研究,多项研究成果获奖。兼任北京大学、中国人民大学、上海交通大学等多所高校教授。著、编、译作30余部,发表学术论文数百篇。 区域发展不平衡是我国经济社会发展面临的一个重要问题。“十一五”以来,随着国家区域政策的不断细化、实化和差别化,我国区域发展的协调性明显增强。“十二五”时期,促进区域协调发展的国内外环境更加复杂,区域发展面临的任务仍然十分艰巨。国家将着力实施区域发展总体战略和主体功能区战略,推动形成区域协调发展、良性互动的新格局。 阶段特点 中国地域辽阔,地区间差距较大,因此有必要根据实际情况将区域政策进一步细化、实化、差别化,更有针对性地解决各个地方的发展问题。 自觉地、系统地研究制定区域政策是在新中国成立以后,中央高度重视区域协调发展,在不同的阶段,根据不同的情况采取了不同的政策举措。大体说,从建国初期到改革开放前,是国家通过调整工业布局来推进沿海与内地均衡发展的时期。为了改变旧中国遗留下来的工业基础薄弱、沿海与内地布局畸轻畸重的格局,同时,基于当时特殊的国际政治环境,国家提出了调整沿海内地工业布局的战略举措,并通过这一布局调整来改善区域发展不平衡的格局。代表性的论断是

毛泽东《论十大关系》中提出的“两个必须”:沿海的工业基地必须充分利用,但为了平衡工业发展的布局,内地工业必须大力发展。根据这一战略思想,国家投资明显向内地倾斜。这个转变有力地推进了内地的工业化进程,使旧中国遗留下来的工业布局极不平衡的格局得到初步改观,直到现在,内地的发展仍在倚赖这个基础。理论界一般称这一阶段为生产力均衡布局或区域均衡发展阶段。 从改革开放初到上个世纪90年代中后期,是沿海地区率先发展阶段。改革开放初期,我国的首要任务是发展经济,考虑到当时沿海的综合条件较好,在区域发展方面采取了让沿海地区先发展起来的战略举措。在这方面,代表性的论述是邓小平的“让一部分人先富起来”的思想和“两个大局”观。经过努力,我国东部沿海地区迅速发展起来,而沿海地区的发展又从整体上支撑了中国经济的发展,带来了整个国家综合实力的提升。理论界通常把这一阶段称为梯度推进或不均衡发展战略阶段。 从上个世纪90年代中后期到现在,是我国区域协调发展总体战略初步形成并不断完善的阶段。在国家整体经济实力不断提升的同时,也出现了地区差距不断拉大的问题。为此,从“九五”时期开始,中央把缩小地区差距、促进区域协调发展放到了党和国家工作的突出位置,并陆续采取了一系列重大举措。1999年提出实施西部大开发战略,2003年提出振兴东北地区等老工业基地战略,2006年又提出促进中部地区崛起战略。至此,中央关于区域协调发展就形成了一个比较完整的战略体系。这个体系的具体内容非常丰富,简单说就是“四句话”,即推进西部大开发、振兴东北地区等老工业基地、促进中部地区崛起,以及改革开放初期提出来、后来我们所概括的“鼓励东部地区率先发展”,一般称为“四大板块”战略。在这一总体战略的推动下,我国区域发展的状况逐渐发生积极变化。特别是东中西不同地区之间的经济增长速度的差距开始缩小,区域发展的协调性逐渐增强。理论界把这一阶段叫做促进协调或趋向协调发展阶段。 但是,对于地域辽阔,地区间自然条件、历史基础和经济发展水平差距较大的我国来说,四大板块的划分从地理空间尺度来看仍然偏大,有必要根据实际情

城市道路交通信号控制方式适用规范

城市道路交通信号控制方式适用规范1范围 本标准规定了不同信号控制方式的适用基本原则、多相位控制方式设计原则以及采用不同控制方式的技术-经济评价方法。 本标准适用于城市道路交通信号控制方式的设计和建设。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GA/T 509-2004城市交通信号控制系统术语 3术语和定义 GA/T 509-2004中确立的术语和定义适用于本标准。 4单点多时段定时控制方式、单点感应控制方式、线协调控制方式、区域协调控制方式适用基本原则单点多时段定时控制方式、单点感应控制方式、线协调控制方式、区域协调控制方式均应根据交通需求和道路条件选定,并需进行技术-经济评价。 在选用某种控制方式时,宜采用计算机仿真技术进行分析比较和配时方案的优化。 4.1单点多时段定时控制方式适用原则 单点多时段定时控制方式是最基本、最经济的控制方式。 当交通状况符合总体流量稳定、变化比较规律的条件时,可选用此种控制方式。 4.2单点感应控制方式适用原则

4.2.1当单点控制的交叉口交通状况变化比较频繁且没有规律时,宜采用单点感应控制。 4.2.2单点感应控制一般在交叉口进口车道设置检测器或在人行横道线前设置行人按钮,信号配时参数可随检测到的信息而改变。 4.2.3单点感应控制分为半感应控制和全感应控制。 在支路流量比较小的信号控制交叉口或路段的人行横道处,可采用半感应控制。在支路上设置检测器或在人行横道处设置行人按钮,根据是否有交通需求而确定是否运行该相位,并根据交通需求情况确定相应相位时间。 在各进口流量相近,且变化较为频繁的信号控制交叉口宜采用全感应控制方式。若单个路口信号机有能力根据检测的实时交通状况进行配时优化,也可实现单点优化控制。 4.3线协调控制方式适用原则 4.3.1当需要在单点控制的基础上扩大控制范围,对若干连续交叉口形成的线路上进行协调控制以提高整体通行效率时,可采用线协调控制方式。 4.3.2采用此种控制方式时,针对若干连续交叉口设计一种相互协调的配时方案,通过时钟同步,各交叉口的信号机按预设方案协调运行。 4.3.3线协调控制方式应考虑相邻交叉口的距离。通常若路口间距离大于800 m以上时,会降低路口间的协调效果。 4.3.4线协调控制通常采用无电缆线协调控制方式。 交通状况符合总体流量稳定、变化比较规律的条件时,可选用此种控制方式,但不能适应随机性较强的交通。 采用此种控制方式,宜进行事前交通调查,根据调查结果设定控制参数,并应根据交通变化情况适时调整控制参数,以取得较好的控制效果。 无电缆线协调控制方式若适当设置检测器,应用感应控制,可根据交通需求调整绿信比,提高控制效果。 4.4区域协调控制方式适用原则

交通信号控制优化服务解决方案

交通信号控制优化服务解决方案 1概述 交通信号控制优化服务是借助专业团队对交通信号控制方面进行挖掘,以更加有效地缓解目前由于机动车数量过快增长而造成路网交通运行压力增大,道路硬件资源增长严重失衡这一问题。具体服务内容包括: ?对交通信号控制理论及相关技术进行总结,规范信号优化工作流程,落实责任,建立统一化与个性化相结合的交通信号管理模式,保证交通信号合理运行,满足各种条件下道路交通参与者的通行需要。 ?通过对相关路口进行周期性调查,及时发现存在不足并予以改善、跟踪,从而不断提高其运行水平。 ?通过路口排查和调研,对有条件进行协调控制的路口设计协调控制方案,降低协调控制路口的行车延误,提高交叉口服务能力。 ?以周报、月报和专项分析报告总结归纳工作开展情况及完成效果,有计划性的回检评价历史优化路口,提炼可取之处及考虑不周的地方,对未来将有可能发生变化的交叉口或路段有一定预测性。 2服务内容 2.1交通信号管理基础工作 (1)交通信号控制理论及相关技术总结 交通信号控制理论及相关技术的总结包括对交通信号控制相关理论的总结和对现今主流信号控制模式及方法的总结2部分内容。 ?对交通信号控制相关理论的总结 包括对信号控制涉及的相关参数的总结、对通过能力的总结及对信号路口对车流停滞作用的总结3部分内容。 ?对现今主流信号控制模式及方法的总结 包括对单点信号控制模式与方法的总结、对交通信号子区划分的模式与方法的总结、对主干道交通信号协调控制模式与方法的总结、对同类型交通信号路口协调控制模式与方法的总结、对长距离交通信号协调控制模式与方法的总结以及

对区域协调控制模式与方法的总结六大类涵盖点、线、面三个层次的信号控制与协调方法的相关技术理论的总结。 在对交通信号控制相关理论的总结基础上,根据各地市信号路口特点,重点对适用该地信号控制特点的信号控制模式及方法进行总结。 ?单点信号控制 主要包括单点定时信号控制、单点感应信号控制和单点自适应信号控制三种方式。针对信号控制路口常用的单点信号控制方法有Webster等方法。 ?交通信号子区划分 主要基于距离原则、车流特征原则、周期原则的子区划分原则及其相关的关联度判断方法、合理周期范围判断方法的划分方法总结。 ?主干道交通信号协调控制 主要包括单向绿波协调控制、对称双向绿波协调控制、非对称双向绿波协调控制的方法。针对不同地市信号控制路口不同的流量特征可选用相对应的主干道信号协调控制方法。 ?同类型交通信号路口协调控制 主要针对信号路口饱和度同类型及其基础上的潮汐特征同类型进行交通信号路口同类型的判定分析,归纳与其相对应的信号控制适用方法。 ?长距离交通信号协调 主要对相邻路口间距离较长的信号路口及交通信号路口数较多的整体距离较长的协调控制方法进行研究,针对长距离交通信号协调的分类归纳相对应的协调模式及方法。 ?区域协调控制 交通区域协调控制是二维上的控制,它通过将绿波协调控制的路口利用组合叠加的方式,对各信号控制路口的信号周期、绿信比以及路口间的相位差进行优化,以减小延误、提高路网通行效率的信号控制方法。当前交通信号区域协调控制的方法主要可以分为结合调控的协调方法、基于延误的协调方法和基于绿波带优化的协调方法。 通过全面深入的了解信号控制的基础理论及信号控制主流模式及技术方法,掌握前沿技术,归纳出适用性强的主流核心技术规范,为交通信号控制优化提供

交通信号控制系统解决实施方案

交通信号控制系统解决方案 1概述 交通信号控制系统,是智能交通系统(ITS)在交通管理工作中的基本应用,也是城市智能交通管控系统中最直接、最基础的应用系统。通过建设信号控制系统,实现信号路口联网远程控制、交通流量的采集、路口自适应控制、绿波协调控制以及区域的自适应控制,有效减少车辆的停车次数,节省旅行时间;后台实时调整信号配时,采取多时段控制方式,必要时,可通过智能交通管理中心人工干预,直接控制路口交通信号机执行指定相位,有效的疏导交通,减少行车延误,提高通行能力,缓解日益严峻的城区道路交通拥堵压力,提高城区交通综合管理能力,减少汽车尾气排放,美化环境,提升城区形象。 2系统结构设计 系统结构划分为3级:分别为中心控制级设备、区域控制级设备以及路口控制级设备。交通信号控制系统设备主要包括中心设备、前段设备和通信设备。

(1)中心控制级设备 中心控制级设备作用主要是: ?监控整个系统的运行。 ?协调区域控制级的运行。 ?具备区域控制级的所有功能。(2)区域控制级设备 区域控制级设备作用主要是: ?监控受控区域的运行。

?对路口交通信号进行协调控制。 ?对路口交通信号机的工作状态和故障情况进行监视。 ?通过人机回话对路口交通信号机进行人工干预。 ?监视和控制区域级外部设备的运行。 ?进行交通流量统计处理。 (3)路口控制级设备 路口控制级设备即信号机,其作用主要是: ?控制路口交通信号灯。 ?接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送。 ?接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息。 ?具有单点优化能力。 3系统功能设计 3.1基础功能 (1)区域自适应控制 系统以控制子区作为基本控制单元,综合考虑子区内的交通运行状态(如交通阻塞、交通拥挤、交通顺畅)、交叉口的关联性大小、交叉口的实际交通量,确定公共信号周期与相位差的决策模型,并运用智能优化算法实时优化子区协调控制配时参数,实现控制子区交叉口的协调控制功能。 系统的区域交叉口协调控制能够确保控制区域内的交通流时刻处于最佳运行状态,相邻交叉口之间协调方向的行驶车流可以获得尽可能不停顿的通行权,大大降低车辆在交叉口频繁加减速所产生的交通污染,减少区域交通总的车辆燃油

珠江三角洲区域交通协调发展研究

珠江三角洲区域交通协调发展研究 摘要:在我国城镇化加速阶段,城镇密集地区作为国家经济做发达的地区和城市化发展最快的地区,城镇之间的协调发展将成为引导城市化深入、提高区域竞争力的主要手段,而区域交通设施的协调将是城镇密集地区协调的重要内容。在这一背景下展开的珠江三角洲区域协调发展研究表明,协调区域交通基础设施的发展对于促进区域空间的合理布局,加强区域内各城市间的经济联系和互动合作,引导和促进区域一体化发展方面,是政府可以充分发挥作用领域。可以预计,对区域交通协调发展的研究将成为下一阶段我国城市交通设施研究的一个重点。 1. 珠江三角洲地区城市发展特征与交通 1.1 珠江三角洲城镇与交通发展概况 珠江三角洲位于广东省中南部、珠江下游,总面积41698平方公里。2001年末,珠江三角洲户籍人口2336.8万。按照"五普"统计,2000年珠江三角洲总人口达4150万,有5个城市人口达到700万(包括香港)。 经过20余年的发展,珠三角的经济发展取得了显著成就。2001年,珠江三角洲国内生产总值8363.94亿元,比2000年增长12.7%,人均国内生产总值31040元,比全省平均水平高17310元。三产业比重为5.3:49.5:45.2。 2001年珠江三角洲有设市城市23个,建制镇369个,城镇密度达到94个/平方公里。设市城市中有特大城市2个,大城市8个,中等城市6个,小城市7个,已发展成为一个以广州、深圳为中心,与香港、澳门联系紧密,城乡一体、类型完备的城市群。2001年,按非农户籍人口比重计算,珠三角城市化水平达48.7%,按"五普"人口统计,城市化水平已达72.7%。 在城市空间上,珠江三角洲地区已经形成城镇连绵发展,城市经济活动一体化初具规模的都市地区,行政界限在大部分地区已经只是管理上的界限。 同时,珠江三角洲也是交通运输最发达的地区。经过多年的建设,目前已形成以广州为中心,铁路、公路、水运、民航等多种运输方式相

道路交通信号控制设计方案

道路交通信号控制设计方案 1.KITOZER_1.0简易信号机 1.1适用围: 适用畴为两相位控制的过街请求,广泛的使用于超市、学校、医院等人流较多的非十字路口。该产品具有成本低、产品稳定可靠、操作简单、调试方便等特点。 1.2技术指标: 交流输入:220(±20%)VAC,50±2HZ。 输入交流功耗≤50W (不包括信号灯功耗)。 额定电流:20A。 工作环境温度:-20℃~70℃ 1.3功能特点: 两相位过街请求运行模式。 可运行黄闪、全红、全灭等降级模式。 操作简单,使用方便的上位机界面控制。 兼容3.0以上的信号机组网协议。 2.KITOZER_1.1移动信号机 2.1适用围: 是路口停电或者其他紧急情况下信号机的替代产品,该产品使用太阳能提供电源,续航能力达到72小时。另外,该产品

具有两相位、四相位、黄闪等多种运行模式,完全满足目前十字路口信号灯车辆控制的需求。 2.2技术指标: 交流输入:220(±20%)VAC,50±2HZ。 输入交流功耗≤50W (不包括信号灯功耗)。 额定电流:20A。 工作环境温度:-20℃~70℃ 2.3功能特点: 太阳能信号灯是一种将太阳能转换成电能的环保信号灯。 可设置两相位、四相位、黄闪等多种运行模式。 绿灯时间可按路况需求任意调配。 蓄电池充电装置,一次充电最少可用72小时。 信号灯的高度可适度调节。 使用方便、操作简单,可随时工作。 3.KITOZER_1.2行人过街触发信号机 3.1适用围: 该产品是专门为学校、医院、商场等门口车流量稳定,只有车道和人行道的小型交通路口,方便行人安全过街而设计的设备。该产品具有成本低、安装方便、操作简单、在户外恶劣气候条件下运行稳定等诸多特点。 3.2技术指标:

交通信号控制系统

1交通信号控制系统概述交通信号控制系统是智能交通管理系统的重要子系统,其主要功能是自动协 1.1调和控制整个控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染减至最小,充分发挥道路系统的交通效益。 必要时,可通过控制中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。 NATS交通信号控制系统用于城市道路交通的控制与管理,可以提高车速、减少延误、减少交通事故、降低能耗和减轻环境污染。 从上个世纪八十年代中期以来,中国电子科技集团公司第二十八研究所就开始了NATS系统和路口交通信号控制机的研制开发。 该系统通过了国家鉴定验收,获得了国家重大科技攻关成果奖、公安部科技进步一等奖和国家科技进步三等奖。 NATS交通信号控制系统特点: 适合中国城市混合交通的特点,具有自行车控制功能;系统支持多种硬件平台(微机、工作站以及大、中、小型计算机),多种软件平台(WINDOWS 98/NT/2000/XP);支持多种外部设备(动态地图板、室内信息板、室外信息板、违章记录仪…);支持多种系统互联(电视监视系统、地理信息系统、车辆定位系统、违章捕捉系统、信息管理系统…);系统配置灵活、裁剪方便;支持远程控制和维护;支持多种通信方式(光缆、电话线、GPRS/CDMA无线通信、城域网…);系统人机界面友好,显示内容丰富,操作使用方便;与国外同类系统相比,具有很高的性能价格比。 1.2系统结构 1.2.1系统控制应用层结构NATS交通信号控制系统采用三级分布式递阶基本控制结构: 中心控制级,区域控制级,路口控制级(参见下图)。

中心控制级区域控制级1区域控制级2路口控制级路口控制级路口控制级区域控制级N 1.2.2系统基本结构区域监控台动态地图板室内信息板违章捕捉仪区域控制计算机数据通信控制机(光端机)光纤(光端机)(光端机)路口信号机…(光端机)(光端机)路口信号机室外情报板…室外情报板交通信号灯车辆检测器其中: 区域控制计算机监视、控制、协调整个系统的运行,可同时控制128个外部设备,如果外部设备超过128路,可采用多台区域控制计算机。 区域监控台用作交通工程师工作台,实时显示被控区域内的交通状态和信息,下达人机会话命令;数据通信控制机为区域控制计算机与户外设备提供通信通道;路口信号机负责采集、处理、传送交通信息,控制路口信号灯色;环形线圈检测器和微波检测器安装位置可分布在路口或者路段;动态地图板实时显示被控区域内的交通状态。 1.3系统功能 1.3.1系统三级控制功能1)中心控制级监控整个系统的运行;协调区域控制级的运行;具备区域控制级的所有功能。 2)区域控制级监控受控区域的运行;对路口交通信号进行协调控制; 对路口交通信号机的工作状态和故障情况进行监视;通过人机会话对路口交通信号机进行人工干预;监视和控制区域级外部设备的运行;进行交通流量统计处理。 3)路口控制级控制路口交通信号灯;接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送;接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息;具有单点优化能力。 4)终端控制为了方便灵活地控制系统,系统可挂接终端控制计算机(工作站),终端控制计算机提供与区域控制计算机完全同样的显示操作功能,终端控制计算机既可以是本地的(如放在管控中心),也可以是远程的(如在任何地方通过公安网进行控制)。 1.

城市道路智能交通信号控制系统

城市道路智能交通信号控制系统 智能交通信号控制系统是城市道路交通管理系统中对交叉路口、行人过街,以及环路出入口采用信号控制的子系统,是运用了交通工程学、心理学、应用数学、自动控制与信息网络技术以及系统工程学等多门学科理论的应用系统。 主要包括交通工程设计、车辆信息采集、数据传输与处理、控制模型算法与仿真分析、优化控制信号调整交通流等。国内外各大中城市已有的交通信号控制系统就是根据不同环境条件,基于各自城市道路的规划和发展水平建立起来的。 国家重点基础研究规划(973)项目“信息技术与高性能软件”中设立的二级课题“城市交通监控系统”,结合我国城市交通发展的特点,确定了建立实时自适应的城市道路智能交通信号控制系统的智能化管理的发展方向。 智能交通信号控制系统的基本组成 智能交通信号控制系统的基本组成是主控中心、路口交通信号控制机以及数据传输设备。其中主控中心包括操作平台、交互式数据仓、效益指标优化模型、数据(图象)分析处理等。具体结构框架见下图。

城市道路智能交通信号控制系统框架 智能交通信号控制系统的核心 智能交通信号控制系统的核心是控制模型算法软件,是贯穿规划设计在内的信号控制策略的管理平台,体现着交通管理者的控制思想,它包括信号控制系统将起到的作用和地位。 目前,国内外已应用的信号控制系统大多是以优化定周期方案、优化路口绿信号配比以及协调相关路口通行能力为基础的,是根据历史数据和自动检测到的车流量信息,通过设置的控制模型算法选取适当的信号配比控制方案,是被动的控制策略。 应用较多的核心软件即效益指标优化模型的是英国运输和道路研究所(TRRL)

研制的SCOOT系统(Split Cycle Offset Optimization Technique)和澳大利亚悉尼为应用背景开发的SCATS系统 (Sydney Coordinated Adaptive Traffic System),他们是动态的实时自适应控制系统的早期代表,也是未来一个时期交通信号控制系统智能化发展的开发基础。 随着网络技术的发展,交互式控制策略使信号控制由感控到诱导实现了真正的智能,交通信号控制系统不仅可以检测到车流量等交通信息参数,调控路口绿信号配比,变化交通限行、禁行等指路标志,还可以根据系统联接的数据仓完成与交通参与者之间的信息交换,向交通参与者显示道路交通信息、停车场信息,提供给交通参与者合理的行驶线路,以达到均衡道路交通负荷的主动的控制策略。 尤其重要的是计算机网络技术和数字化使数据传输和信息利用得到了可靠保证。可以说,城市道路智能交通信号控制系统是城市道路交通管理随着信息产业技术迅猛发展的综合产物。 交通信号控制系统的主要术语和参数 周期:是指信号灯色发生变化,显示一个循环所需的时间,也称周期长,即红、黄、绿灯时间之和。 相位:即信号相位,是指在周期时间内按需求人为设定的,同时取得通行权的一个或几个交通流的序列组。 相位差:具有相同周期长的相关路口,在同方向上的两个相关相位的启动时间差,称为相位差。 绿信比:是指在周期长内的各相位绿灯时间与周期长之比。 饱和流量:是衡量路口交通流施放能力的重要参数,通常是指一个绿灯时间内的连续通过路口的最大车流量。 流量系数:是实际流量与饱和流量的比值。既是计算信号配时的重要参数,又是衡量路口阻塞程度的一个尺度。 绿灯间隔时间:是指从失去通行权的相位的绿灯结束,到下一个得到通行权的相位绿灯开始所用的时间。 有效绿灯时间:是指被有效利用的实际车辆通行时间。它等于绿灯时间与黄灯

智能交通控制解决方案

智能交通控制解决方案

智能交通信号控制系统 解 决 方 案

目录 1系统概述 (6) 2系统功能 (7) 3智能交通信号控制系统..... 错误!未定义书签。 3.1系统说明 错误!未定义书签。 3.2路口需求 10 3.3系统特点 10 3.4系统设计 错误!未定义书签。 3.4.1系统硬件拓扑结构 10 3.4.2PL-20-CM系统软件构成 11 3.4.3路口感应控制模式 12 3.4.4行人过街控制 16 3.4.5公车优先感应控制 错误!未定义书签。

3.4.6绿波控制模式 16 3.4.7区域协调控制模式 20 3.4.8特勤控制 22 3.5智能交通信号控制管理软件系统 错误!未定义书签。 3.5.1系统软件的主要功能 22 3.6PL-5D 智能交通信号控制主机 错误!未定义书签。 3.6.1概述 错误!未定义书签。 3.6.2控制主机视图 错误!未定义书签。 3.6.3技术特点 错误!未定义书签。 3.6.4技术指标 错误!未定义书签。 3.6. 4.1主机箱外形尺寸 ......................... 错误!未定义书签。

3.6. 4.2性能及功能说明......................... 错误!未定义书签。 3.6. 4.3一般要求......................... 错误!未定义书签。 3.6. 4.4启动时序......................... 错误!未定义书签。 3.6. 4.5信号转换......................... 错误!未定义书签。 3.6. 4.6控制方式转换......................... 错误!未定义书签。 3.6. 4.7性能参数......................... 错误!未定义书签。

道路交通信号控制系统方案Word版

道路交通信号控制 解 决 方 案

目录 1 方案概述 (1) 1.1应用背景和现状分析 (1) 2 方案总体设计 (2) 2.1设计目标 (2) 2.2设计原则 (2) 2.3设计依据 (3) 2.4方案总体架构 (4) 2.4.1 组网拓扑 (4) 2.4.2 方案组成 (5) 3 方案详细设计 (6) 3.1系统组成 (6) 3.2控制模式 (8) 3.2.1 单点多时段控制 (8) 3.2.2 单点感应控制 (8) 3.2.3 单点自适应控制 (9) 3.2.4 干线绿波控制 (9) 3.2.5 区域协调控制 (10) 3.2.6 远程手动控制 (10) 3.2.7 路口排队溢出控制 (10) 3.2.8 路口溢出拥堵控制 (11) 3.2.9 紧急车辆优先控制 (11) 3.2.10 公交优先控制 (11) 3.2.11 故障降级控制 (12) 3.3流量检测方式 (12) 3.3.1 电子警察相机 (12) 3.3.2 环形线圈检测器 (13) 3.3.3 视频流量检测器 (13) 3.4系统技术指标 (13) 3.5中心控制平台介绍 (14) 3.5.1 全中文图形化操作界面 (14) 3.5.2 运行状态显示 (15) 3.5.3 手动控制 (15) 3.5.4 警卫任务设置 (16) 3.5.5 日志记录和管理 (16) 3.5.6 数据统计分析 (17) 3.5.7 系统状态监视 (17) 3.5.8 系统故障报警 (18) 3.5.9 电子地图操作 (19)

3.5.10 用户管理 (20) 3.5.11 时钟校准功能 (20) 3.5.12 多时段控制配时 (20) 3.5.13 参数设置 (21) 4 方案特色 (23) 4.1标准化通信协议设计 (23) 4.2先进的算法模型为基础 (23) 4.3全过程数据安全加密处理 (23) 4.4安装、维护简单,工作量小 (23) 4.5L INUX系统防病毒 (23) 4.6高性价比 (24) 4.7模块化设计,稳定性和可扩展性强 (24) 4.8部署灵活,最大限度满足客户建设需求 (24) 5 配套产品介绍 (25) 5.1交通信号控制系统DSS-T720 (25) 5.2交通信号联网控制平台DSS-T520 (26) 5.3道路交通信号控制机-96路 (28) 5.4道路交通信号控制机-44路 (30)

交通信号控制优化服务解决实施方案

交通信号控制优化服务解决实施方案

————————————————————————————————作者:————————————————————————————————日期:

交通信号控制优化服务解决方案 1概述 交通信号控制优化服务是借助专业团队对交通信号控制方面进行挖掘,以更加有效地缓解目前由于机动车数量过快增长而造成路网交通运行压力增大,道路硬件资源增长严重失衡这一问题。具体服务内容包括: ?对交通信号控制理论及相关技术进行总结,规范信号优化工作流 程,落实责任,建立统一化与个性化相结合的交通信号管理模式,保证交 通信号合理运行,满足各种条件下道路交通参与者的通行需要。 ?通过对相关路口进行周期性调查,及时发现存在不足并予以改善、 跟踪,从而不断提高其运行水平。 ?通过路口排查和调研,对有条件进行协调控制的路口设计协调控 制方案,降低协调控制路口的行车延误,提高交叉口服务能力。 ?以周报、月报和专项分析报告总结归纳工作开展情况及完成效果, 有计划性的回检评价历史优化路口,提炼可取之处及考虑不周的地方,对 未来将有可能发生变化的交叉口或路段有一定预测性。 2服务内容 2.1交通信号管理基础工作 (1)交通信号控制理论及相关技术总结 交通信号控制理论及相关技术的总结包括对交通信号控制相关理论的总结和对现今主流信号控制模式及方法的总结2部分内容。 ?对交通信号控制相关理论的总结 包括对信号控制涉及的相关参数的总结、对通过能力的总结及对信号路口对车流停滞作用的总结3部分内容。 ?对现今主流信号控制模式及方法的总结 包括对单点信号控制模式与方法的总结、对交通信号子区划分的模式与方法的总结、对主干道交通信号协调控制模式与方法的总结、对同类型交通信号路口协调控制模式与方法的总结、对长距离交通信号协调控制模式与方法的总结以及

交通信号控制系统方案

交通信号控制系统 1.1项目概述 对当地的简单介绍及交通状况的分析。 1.1.1系统概述 城市交通的管理与控制是智能交通系统的重要组成部分,城市交叉口的通行能力是决定道路通行的关键。交通信号控制系统对城市交叉口进行系统化协调控制,能缓解拥堵区域的交通压力,使交通流量在整个城市范围内的分配趋于合理,能够降低或消除对道路的瓶颈影响,提高道路的通行能力和服务水平。 交通信号控制系统的发展经历了点控、线控和面控3个阶段: (1)每个交叉口的交通控制信号只按照该交叉口的交通情况独立运行,不与其邻近交叉口的控制信号有任何联系的,称为单个交叉口交通控制,也称为单点信号控制,俗称“点控制”。 (2)把干道上若干连续交叉口的交通信号通过一定的方式联结起来,同时对各交叉口设计一种相互协调的配时方案,各交叉口的信号灯按此协调方案联合运行,使车辆通过这些交叉口时,不致经常遇上红灯,称为干道信号联动控制,也叫“绿波”信号控制,俗称“线控制”。 (3)以某个区域中所有信号控制交叉口作为协调控制的对象,称为区域交通信号控制系统,俗称“面控制”。 1.1.2设计目标 交通信号控制系统目标如下: (1)降低交通延误,降低停车次数,提高车速,降低机动车油耗,减少交通污染,改善城市环境; (2)科学控制交通流,最大限度利用现有道路,提高道路的通行能力; (3)使交通有序运动,从而改善交通秩序,有利于交通安全; (4)节省警力,降低交警的劳动强度。 1.1.3设计原则 根据我公司多年来在城市智能交通领域的建设经验,对公安、交通行业业务需求的深入理解,结合我国交通发展的现状,根据信号控制系统设计理论,在设

计过程中秉承以下原则: 1.1.3.1标准化原则 交通信号控制系统严格按照公安部颁布的标准GA47-2002《道路交通信号控制机》和GB/T20999-2007《交通信号控制机与上位机间的数据通信协议》规定的技术要求进行设计,所有数据格式与接口均符合国家标准,并在此基础上加以完善,以适应各地的交通状况。 1.1.3.2先进性原则 采用科学的、主流的、符合发展方向的技术、设备和理念,系统集成化、高清化、网络化、模块化,使系统具有“国内领先,国际先进”的总体水平,能够适应交通控制未来发展的要求。 1.1.3.3实用性原则 系统提供清晰、简洁、友好的中文操作界面,操控简便灵活,易学易用,便于管理和维护,系统具有自动恢复功能,整个系统的操作简单、快捷、环节少,以保证不同的操作者都能熟练操作系统,具有高度友好的界面和使用性。 系统设计、选材、选型符合国家及行业的有关标准,与用户及其上级管理部门的有关规定要求相适应,与用户在经济能力方面实际情况相吻合。 1.1.3.4可靠性原则 交通信号控制系统选用集成度和稳定性高的设备,具有系统自诊断和维护管理功能、远程设备监控、数据备份等功能。室外设备具有耐高温、耐高湿、耐低温,防雷、防尘等特性,保证系统的正常可靠运行。 1.1.3.5安全性原则 交通信号控制系统具有防误操作特性,通过合理的硬件结构设计、有效的外场保护措施以及完善的内部管理机制有效避免系统遭到恶意攻击和数据被非法提取的现象出现,保障系统的信息安全。同时通过数据加密、备份、补录、恢复等措施,提高系统在传输链路故障时的数据完整性及安全性。 1.1.3.6经济性原则 交通信号控制系统的可靠性得到提升,因此系统的维护成本显著下降。采用技术先进的设备,通过最优化的系统集成,设备使用寿命长,系统经济性显著提高。

道路交通信号控制系统的基本要求

交通信号控制系统的基本要求 1、交通信号控制机 1.1、必须通过公安部交通安全产品质量监督中心的检测,符合国家标准GB25280-2010,达到集中协调式交通信号控制机的要求。1.2、要求具备全感应控制功能,支持多种车辆检测器:视频车辆检测器、超声波、雷达、环形线圈等。 1.3、信号机具备LED路口模拟显示板,及时反映信号灯状态。在驱动路口信号灯之前,能先在路口模拟显示板上试运行。1.4、信号机要求可驱动带脉冲触发的新型倒计时器。 1.5、信号机要求5套以上相位方案可供调用,每天可以分时段调用相应的相位方案。 1.6、信号机的输出要求采用可控硅,并要求每路输出都具备防雷击能力。信号机的独立输出(不含公共端)不能小于44路,最 大需要64路。 1.7、要求使用前后双开门机箱。门的开启角度不小于120°。内部能预留空间装置其他设备. 1.8、信号机应具备现场设置修改用的按钮和显示屏。或者是手持终端。 1.9、信号机应具备路段行人过街控制功能。 1.10、信号机应在国内外50个以上城市得到使用,并且实际使用时间不少于5年。 1.11、信号机须具备右转单独黄闪功能。

1.12、信号机要具备工业级的品质,工作温度-40 至70度。通过公安部低温测试。 1.13、信号机的驱动输出,每路都必须要有独立的保险。 1.14、信号机箱要求为铝合金或者是不锈钢材质,外面做喷塑处理。机箱分上下两层。底层为接线箱。 1.15、可增加路口无线遥控器,便于执勤人员现场遥控信号灯,实现VIP车队通行。 2、中心系统和软件: 2.1、系统组网方式:RS232C或者以太网。 2.2、中心软件系统的控制路口数量,不能小于250个。 2.3、要求采用WINDOWS XP汉语操作系统。 2.4、要求将通讯协议书免费提供给业主单位做技术备案。 2.5、中心软件,应该具备调用路口机的方案,并能修改、保存、回发给信号机。 2.6、中心软件,应具备交通管制功能,预留多个交通管制方案,做到一键调用。 2.7、中心软件,应具备自动对所有路口机的校时功能。 2.8、中心软件,应能设置和管理不少于100条绿波带。而且路段的车速可以限定为不同的数值。 2.9、在指挥中心,应能类似于路口手动控制那样,人为控制该相位的绿灯时间。以便于特殊情况下,在中心进行手动控制。 2.10、要求中心软件10年内免费升级。

城市道路交通信号控制方式适用规范(GA527-2005 )

城市道路交通信号控制方式适用规范(GA527-2005 ) 1 范围 本标准规定了不同信号控制方式的适用基本原则、多相位控制方式设计原则以及采用不同控制方式的技术-经济评价方法。 本标准适用于城市道路交通信号控制方式的设计和建设。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。 凡是不注日期的引用文件,其最新版本适用于本标准。 GA/T 509-2004 城市交通信号控制系统术语 3 术语和定义 GA/T 509-2004中确立的术语和定义适用于本标准。 4 单点多时段定时控制方式、单点感应控制方式、线协调控制方式、区域协调控制方式适用基本原则 单点多时段定时控制方式、单点感应控制方式、线协调控制方式、区域协调控制方式均应根据交通需求和道路条件选定,并需进行技术-经济评价。

在选用某种控制方式时,宜采用计算机仿真技术进行分析比较和配时方案的优化。 4.1 单点多时段定时控制方式适用原则 单点多时段定时控制方式是最基本、最经济的控制方式。 当交通状况符合总体流量稳定、变化比较规律的条件时,可选用此种控制方式。 4.2 单点感应控制方式适用原则 4.2.1 当单点控制的交叉口交通状况变化比较频繁且没有规律时,宜采用单点感应控制。 4.2.2 单点感应控制一般在交叉口进口车道设置检测器或在人行横道线前设置行人按钮,信号配时参数可随检测到的信息而改变。 4.2.3 单点感应控制分为半感应控制和全感应控制。 在支路流量比较小的信号控制交叉口或路段的人行横道处,可采用半感应控制。 在支路上设置检测器或在人行横道处设置行人按钮,根据是否有交通需求而确定是否运行该相位,并根据交通需求情况确定相应相位时间。 在各进口流量相近,且变化较为频繁的信号控制交叉口宜采用全感应控制方式。 若单个路口信号机有能力根据检测的实时交通状况进行配时优化,也可实现单点优化控制。 4.3 线协调控制方式适用原则

相关主题
文本预览
相关文档 最新文档