当前位置:文档之家› 加乘原理和排列组合

加乘原理和排列组合

加乘原理和排列组合
加乘原理和排列组合

加乘原理和排列组合

排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1

的和与2+1+3的和是一个组合.(一)两个基本原理是排列和组合的基础(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n 步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.(二)排列和排列数(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.(2)排列数公式:从n个不同元素中取出

m(m≤n)个元素的所有排列当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!(三)组合和组合数(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同[例题分析]排列组合思维方法选讲1.首先明确任务的意义例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。

分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。设a,b,c成等差,∴2b=a+c, 可知b由a,c决定,又∵2b是偶数,∴a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,C(2,10)*2*P(2,2),因而本题为180。例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以

逐层深入(一)从M到N必须向上走三步,向右走五步,共走八步。(二)每一步是向上还是向右,决定了不同的走法。(三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,∴本题答案为:=56。2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。

第一类:A在第一垄,B有3种选择;第二类:A在第二垄,B有2种选择;第三类:A在第三垄,B有一种选择,同理A、B位置互换,共12种。例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。(A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。(一)从6双中选出一双同色的手套,有6种方法;(二)从剩下的十只手套中任选一只,有10种方法。(三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法;(四)由于选取与顺序无关,因(二)(三)中的选法重复一次,因而共240种。例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种。例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法? 分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。第一类:这两个人都去当钳工,有10种;第二类:这两人有一个去当钳工,有100种;第三类:这两人都不去当钳工,有75种。因而共有185种。例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数? 分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。抽出的三数含0,含9,有32种方法;抽出的三数含0不含9,有24种方法;抽出的三数含9不含0,有72种方法;抽出的三数不含9也不含0,有24种方法。因此共有

32+24+72+24=152种方法。例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种。分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有362880种停车方法。3.特殊元素,优先处理;特殊位置,优先考虑例9.六人站成一排,求(1)甲不在排头,乙不在排尾的排列数(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。第一类:乙在排头,有p(5,5)种站法。第二类:乙不在排头,当然他也不能在排尾,有4X4XP(4,4)种站法,共

p(5,5)+4X4XP(4,4)种站法。(2)第一类:甲在排尾,乙在排头,有P(4,4)种方法。第二类:甲在排尾,乙不在排头,有3XP(4,4)种方法。第三类:乙在排头,甲不在排头,有4XP(4,4)种方法。第四类:甲不在排尾,乙不在排头,有P(3,3)XP(4,4)种方法。共P(4,4)+3XP(4,4)+4XP(4,4)+P(3,3)XP(4,4)=312种。例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能? 分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。第一步:第五次测试的有C(4.1)种可能;第二步:前四次有一件正品有C(6.1)中可能。第

三步:前四次有P(4.4)种可能。∴共有种可能。4.捆绑与插空例11. 8人排成一队(1)甲乙必须相邻(2)甲乙不相邻(3)甲乙必须相邻且与丙不相邻(4)甲

乙必须相邻,丙丁必须相邻(5)甲乙不相邻,丙丁不相邻分析:(1)甲乙必须相邻,就是把甲乙捆绑(甲乙可交换) 和7人排列P(7.7)*2 (2)甲乙不相邻,

P(8.8)-P(7.7)*2。(3)甲乙必须相邻且与丙不相邻,先求甲乙必须相邻且与丙相邻

P(6.6)*2*2 甲乙必须相邻且与丙不相邻P(7.7)*2-P(6.6)*2*2 (4)甲乙必须相邻,丙丁必须相邻P(6.6)*2*2 (5)甲乙不相邻,丙丁不相邻,P(8.8)-P(7.7)*2*2+P(6.6)*2*2 例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况? 分析:∵连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。另外没有命中的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即P(5.2)。例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种? 分析:即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。∴共C(6.3)=20种方法。4.间接计数法.(1)排除法例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形? 分析:有些问题正面求解有一定困难,可以采用间接法。所求问题的方法数=任意三个点的组合数-共线三点的方法数,∴共种。例15.正方体8个顶点中取出4个,可组成多少个四面体? 分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数,∴共

C(8.4)-12=70-12=58个。例16. l,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数? 分析:由于底数不能为1。(1)当1选上时,1必为真数,∴有一种情况。(2)当不选1时,从2--9中任取两个分别作为底数,真数,共,其中log2为底4=log3为底9,log4为底2=log9为底3, log2为底3=log4为底9, log3为底2=log9为底4. 因而一共有53个。(3)补上一个阶段,转化为熟悉的问题

例17. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢? 分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。因而有=360种。(二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种,∴共=120种。例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法? 分析:首先不考虑男生的站位要求,共P(9.9)种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。因而有=9×8×7×6=3024种。若男生从右至左按从高到矮的顺序,只有一种站法,同理也有3024种,综上,有6048种。例19. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法? 分析:先认为三个红球互不相同,共种方法。而由于三个红球所占位置相同的情况下,共有变化,因而共=20种。5.挡板的使用例20.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法? 分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式。因而共36种。6.注意排列组合的区别与联系:所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。例21. 从0,l,2,……,9中取出2个偶数数字,3个奇数数字,可组成多少个无重复数字的五位数? 分析:先选后排。另外还要考虑特殊元素0的选取。(一)两个选出的偶数含0,则有种。(二)两个选出的偶数字不含0,则有种。例22. 电梯有7位乘客,在10层楼房的每一层停留,如果三位乘客从同一层出去,另外两位在同一层出去,最后两人各从不同的楼层出去,有多少种不同的下楼方法? 分析:(一)先把7位乘客分成3人,2人,一人,一人四组,有种。

(二)选择10层中的四层下楼有种。∴共有种。例23. 用数字0,1,2,3,4,5组成没有重复数字的四位数,(1)可组成多少个不同的四位数? (2)可组成多少个不同的四位偶数? (3)可组成多少个能被3整除的四位数? (4)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么? 分析:(1)有个。(2)分为两类:0在末位,则有种:0不在末位,则有种。∴共+种。(3)先把四个相加能被3整除的四个数从小到大列举出来,即先选0,1,2,3 0,1,3,5 0,2,3,4 0,3,4,5 1,2,4,5 它们排列出来的数一定可以被3整除,再排列,有:4×()+=96种。(4)首位为1的有=60个。前两位为20的有=12个。前两位为21的有=12个。因而第85项是前两位为23的最小数,即为2301。7.分组问题例24. 6本不同的书(1) 分给甲乙丙三人,每人两本,有多少种不同的分法? (2) 分成三堆,每堆两本,有多少种不同的分法?(3) 分成三堆,一堆一本,一堆两本,一堆三本,有多少种不同的分法?(4) 甲一本,乙两本,丙三本,有多少种不同的分法? (5) 分给甲乙丙三人,其中一人一本,一人两本,第三人三本,有多少种不同的分法? 分析:(1)有中。(2)即在(1)的基础上除去顺序,有种。(3)有种。由于这是不平均分组,因而不包含顺序。(4)有种。同(3),原因是甲,乙,丙持有量确定。(5)有种。例25. 6人分乘两辆不同的车,每车最多乘4人,则不同的乘车方法为_______。分析:(一)考虑先把6人分成2人和4人,3人和3人各两组。第一类:平均分成3人一组,有种方法。第二类:分成2人,4人各一组,有种方法。(二)再考虑分别上两辆不同的车。综合(一)(二),有种。例26. 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有________种. 分析:(一)先把5个学生分成二人,一人,一人,一人各一组。其中涉及到平均分成四组,有C(5,3)种分组方法。可以看成5个元素三个板不空的隔板法(二)再考虑分配到四个不同的科技小组,有A(4,4)种,由(一)(二)可知,共=240种。

排列组合基本原理和几种类型

课题:___排列组合基本原理和几种类型___ 教学任务 教学流程说明 教学过程设计

资源5、平面上有7个点 共线,则一共可以连成________ 资源6、.8个人排成一排,若甲、乙两人之 排列组合基本原理和几种类型 一、选择: 1、四支足球队争夺冠、亚军,不同的结果有( C ) A.8种B.10种C.12种D.16种 2、.由0,3,5,7,9这五个数组成无重复数字的三位数,其中是5的倍数的共有多少个(B )A.9 B.21 C. 24 D.42

3、五种不同商品在货架上排成一排,其中,A B 两种必须连排,而,C D 两种不能连排,则不同的排法共有(C ) A .12种 B .20种 C .24种 D .48种 4、学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是 ( D ) A .64 B .20 C .18 D .10 5、从9,5,0,1,2,3,7--七个数中,每次选不重复的三个数作为直线方程0ax by c ++=的系数,则倾斜角为钝角的直线共有( C )条. A . 14 B .30 C . 70 D .60 二、填空: 6、4名男生和3名女生排成一行,按下列要求各有多少种排法: (1)男生必须排在一起 4444576p p = ; (2)女生互不相邻 43 451440p p = ; (3)男女生相间 3434144p p = ; (4)女生按指定顺序排列 47840p = . 7、6本不同的书全部送给5人,每人至少1本,有______1800___种不同的送书方法。 8、三名男歌手和两名女歌手联合举行一场演唱会,演出时要求两名女歌手之间恰有一名男歌手,则共有出场方案_____36_____种 9、圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是 ____4 12495C =_____ 10、7人站一排,甲不站排头,也不站排尾,不同的站法种数有 3600 种;甲不站排头,乙不站排尾,不同站法种数有 3720 种 11、远洋轮一根旗杆上用红、蓝、白三面旗帜中,一面,二面或三面表示信号,则最多可组成不同信号有______15________种。 12、从3名男工和7名女工中选派2男3女去做5项不同的工作,若每人各做一项,不同的选派方法有__12600___种。 13、从全班52名学生中选10名学生参加某项活动,如果正、副班长至少有一个在内,那么有_____5547746050__________种选法。 14、4人坐在一排10个座位上,若使每人的两边都有空位,则有____120____种不同的坐法。 15、象棋比赛中,进行单循环比赛其中有2人,他们各赛了3场后,因故退出了比赛,这样,这次比赛共进行了83场,比赛开始时参赛者有_____15__人 分析:需要考虑两种情况:第一种,因故退出比赛的两人之间没有进行比赛,则2 2683n C -+=,此方程无正整数解;第二种,因故退出比赛的两人之间进行了比赛,则226183n C -+-=, 解得15n =,所以,比赛开始时参赛者有15人 三、解答: 16、三年级4个班举行班级之间男、女排球单循环赛,问: ① 男女各需比赛多少场?②组织这次比赛共需安排多少场比赛? ① C 24 =6;C 24=6②C 24+ C 2 4=12 答案:

高中数学选修--排列组合(基础)方法练习

排列组合 1、分类加法计数原理: 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有N =m +n 种不同的方法。 2、分步乘法计数原理: 完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法. 那么完成这件事共有N =m ×n 种不同的方法。 3、排列及排列数: (1) 排列:从n 个不同元素中取出m 个(m ≤n )个元素,按照一定的顺 序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 (2) 排列数:从n 个不同元素中取出m 个(m ≤n )个元素的所有排列的 个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示。 (3) 排列数公式:()()11+-???-=m n n n A m n . (4) 全排列:n 个不同元素全部取出的排列,叫做n 个不同元素的一个全 排列, ()()n n n n A n n =???????-?-?=12321! ()!!m n n A m n -= ,规定0!=1 4、组合及组合数: (1) 组合:从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 (2) 组合数:从n 个不同元素中取出m (m ≤n )个元素的所有组合个数, 叫做从n 个不同元素取出m 个元素的组合数,用m n C 表示。 (3) 计算公式:()()()()!!!1111m n m n m m m n n n A A C m m m n m n -=???-+-???-==. 由于0!=1,所以10=n C . 5、组合数的性质:

大学数学排列组合

1.两个基本原理 (l)从甲地到乙地,可乘火车、汽车、轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 分析:因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法. 一般地,有如下原理: 加法原理:做一件事,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法.那么完成这件事共有N =m 1十m 2十…十m n 种不同的方法. (2) 由A 村去B 村的道路有3条,由B 村去C 村的道路有2条.从A 村经B 村去C 村,共有多少种不同的走法? 分析:从A 村到B 村有3种不同的走法,按这3种走法中的每一种走法到达B 村后,再从B 村到C 村又有2种不同的走法.因此,从A 村经B 村去C 村共有 3×2=6种不同的走法. 一般地,有如下原理: 乘法原理:做一件事,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,…,做第n 步有m n 种不同的方法.那么完成这件事共有12n N m m m =???L 种不同的方法. 例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书. 1)从中任取一本,有多少种不同的取法? 2)从中任取数学书与语文书各一本,有多少的取法? 解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6+5=11. (2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是 6530N =?=. 例2 (1)由数字l ,2,3,4,5可以组成多少个数字允许重复三位数? (2)由数字l ,2,3,4,5可以组成多少个数字不允许重复三位数? (3)由数字0,l ,2,3,4,5可以组成多少个数字不允许重复三位数? 解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是555125N =??=. 练习:

高中排列组合基础题

排列、组合问题基本题型及解法 同学们在学习排列、组合的过程中,总觉得抽象,解法灵活,不容易掌握.然而排列、组合问题又是历年高考必考的题目.本文将总结常见的类型及相应的解法. 一、相邻问题“捆绑法” 将必须相邻的元素“捆绑”在一起,当作一个元素进行排列. 例1 甲、乙、丙、丁四人并排站成一排,如果甲、乙必须站在一起,不同的排法共有几种? 分析:先把甲、乙当作一个人,相当于三个人全排列,有33A =6种,然后再将甲、乙二人全排列有22A =2种,所以共有6×2=12种排法. 二、不相邻问题“插空法” 该问题可先把无位置要求的元素全排列,再把规定不相邻的元素插入已排列好的元素形成的空位中(注意两端). 例2 7个同学并排站成一排,其中只有A 、B 是女同学,如果要求A 、B 不相邻,且不站在两端,不同的排法有多少种?. 分析:先将其余5个同学先全排列,排列故是55A =120.再把A 、B 插入五个人组成的四个空位(不包括两端)中,(如图0×0×0×0×0“×”表示空位,“0”表示5个同学)有24A =2 种方法.则共有52 54A A =440种排法. 三、定位问题“优先法” 指定某些元素必须排(或不排)在某位置,可优先排这个元素,后排其他元素. 例3 6个好友其中只有一个女的,为了照像留念,若女的不站在两端,则不同的排法有 种. 分析:优先排女的(元素优先).在中间四个位置上选一个,有14A 种排法.然后将其余5个 排在余下的5个位置上,有55A 种方法.则共15 45A A =480种排法.还可以优先排两端 (位置优先). 四、同元问题“隔板法” 例4 10本完全相同的书,分给4个同学,每个同学至少要有一本书,共有多少种分法? 分析:在排列成一列的10本书之间,有九个空位插入三块“隔板”.如图: ×× × ××× ×××× 一种插法对应于一种分法,则共有39C =84种分法. 五、先分组后排列 对于元素较多,情形较复杂的问题,可根据结果要求,先分为不同类型的几组,然后对每一组分别进行排列,最后求和. 例5 由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有( ) (A )210个 (B )300个 (C )464个 (D )600个 分析:由题意知,个位数字只能是0,1,2,3,4共5种类型,每一种类型分别有55A 个、113433A A A 个、113333A A A 个、113233A A A 个、13 33A A 个,合计300个,所以选B 例6 用0,1,2,3,…,9这十个数字组成五位数,其中含有三个奇数数字与两个偶数数字的五位数有多少个? 【解法1】考虑0的特殊要求,如果对0不加限制,应有325555C C A 种, 其中0居首位的有314 544C C A 种,故符合条件的五位数共有325314 555544C C A C C A =11040个. 【解法2】按元素分类:奇数字有1,3,5,7,9;偶数字有0,2,4,6,8. 把从五个偶数中任取两个的组合分成两类:①不含0的;②含0的. ①不含0的:由三个奇数字和两个偶数字组成的五位数有325 545C C A 个; ②含0的,这时0只能排在除首位以外的四个数位上,有14A 种排法, 再选三个奇数数与一个偶数数字全排放在其他数位上,共有3141 5444C C A A 种排法. 综合①和②,由分类计数原理,符合条件的五位数共有325545C C A +3141 5444C C A A =11040个. 例8 由数字1,2,3,4,5可以组成多少个无重复数字,比20000大,且百位数字不是3

两个计数原理与排列组合知识点与例题

两个计数原理与排列组合知识点及例题 两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个)

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

排列组合基本知识

有关排列组合的基本知识 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列,当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!

(三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的. 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力 (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)

高中排列组合知识点汇总及典型例题(全)

一.基本原理 令狐采学 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等 于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等 于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常 用基本原理求解。 二.排列:从n 个不同元素中,任取m (m≤n)个元素,按照 一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1. 公式: 1.()()()()!!121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1) !(1)!,(1)!(1)!n n n n n n =?-+?=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m≤n)个元素并组成一 组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记 作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+=-11……!!!!10=n C 规定: ① ;②;③;④ 若12m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事 (审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略

(1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合 条件的所有情况去掉。这是解决排列组合应用题时 一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。 即:每两类的交集为空集,所有各类的并集为全集。(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排 列组合问题时,常常既要分类,又要分步。其原则是 先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2)、特殊元素优先考虑、特殊位 置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条 件的元素,然后再将不相邻接元素在已排好的元素之间及 两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法;

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

排列组合基本概念

两个基本原理 1.加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有 N=m1十m2十…十m n种不同的方法. 2.乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么完成这件事共有N=m1m2…m n种不同的方法.例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书. 1)从中任取一本,有多少种不同的取法? 2)从中任取数学书与语文书各一本,有多少的取法? 解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11. 答:从书架任取一本书,有11种不同的取法. (2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是 N=6X5=30.答:从书架上取数学书与语文书各一本,有30种不同的方法. 例2(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数? (2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数? (3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数? 解:要组成一个三位数可以分成三个步骤完成:第一步确定百

位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复, 这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是 N=5X5X5=125. 答:可以组成125个三位数. 排列 什么叫排列? 从n 个不同元素中,任取m(n m ≤)个元素按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 【排列数】 1. 定义:从n 个不同元素中,任取m(n m ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示. 2. 排列数公式:m n A =n(n-1)(n-2)…(n -m+1) 3.全排列、阶乘的意义; n !=n(n-1)(n-2)…1= n n A ,规定 0!=1 )! (!m n n A m n -= (其中m ≤n m,n Z ) 例1:⑴ 7位同学站成一排,共有多少种不同的排法? 解:问题可以看作:7个元素的全排列——7 7A =5040 ⑵ 7位同学站成两排(前3后4),共有多少种不同的排法? 解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040 ⑶ 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个) 【例题解析】 1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

高中数学知识系列之排列组合及概率的基本公式、概念及应用

高中数学知识系列之排列组合及概率的基本公式、概念及应用 70 分类计数原理(加法原理):12n N m m m =+++. 分步计数原理(乘法原理):12n N m m m =???. 71排列数公式 :m n A =)1()1(+--m n n n = ! !)(m n n -.(n ,m ∈N * ,且m n ≤).规定1!0=. 72 组合数公式:m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N * ,m N ∈,且m n ≤). 组合数的两个性质:(1)m n C =m n n C - ;(2) m n C +1 -m n C =m n C 1+.规定10 =n C . 73 二项式定理 n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,, =. 2012()()n n n f x ax b a a x a x a x =+=++++的展开式的系数关系: 012(1)n a a a a f ++++=; 012(1)(1)n n a a a a f -++ +-=-;0(0)a f =。 74 互斥事件A ,B 分别发生的概率的和:P(A +B)=P(A)+P(B). n 个互斥事件分别发生的概率的和:P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+ P(A n ). 75 独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B). n 个独立事件同时发生的概率:P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 76 n 次独立重复试验中某事件恰好发生k 次的概率:()(1).k k n k n n P k C P P -=- 77 数学期望:1122n n E x P x P x P ξ=++ ++ 数学期望的性质 (1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=. (3) 若ξ服从几何分布,且1 ()(,)k P k g k p q p ξ-===,则1 E p ξ= . 78方差:()()()2 2 2 1122n n D x E p x E p x E p ξξξξ=-?+-?+ +-?+

(完整版)人教版高中数学《排列组合》教案

排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法. (2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法? 板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一

奥数:排列组合的基本理论及公式.docx

一、排列合的基本理和公式,排列与元素的序有关,合与序无关。如 231 与 213 是两个排列, 2+ 3+ 1 的和与 2+ 1+3 的和是一个合。 (一 )两个基本原理是排列和合的基: (1)加法原理:做一件事,完成它可以有 n 法,在第一法中有 m1种不同的方法,在第二法中有 m2种不同的方法,??,在第n 法中有 m n种不同的方法,那么完成件事共有 N= m1+ m2+m3+?+ m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第 n 步有 m n种不同的方法,那么完成件事共 有N=m1×m2×m3×?×m n种不同的方法。 里要注意区分两个原理,要做一件事,完成它若是有 n法,是分,第一中的方法都是独立的,因此 用加法原理;做一件事,需要分n 个步,步与步之是 的,只有将分成的若干个互相系的步,依次相完成, 件事才算完成,因此用乘法原理。 完成一件事的分“ ”和“步”是有本区的,因此 也将两个原理区分开来。 C53表示从5 个元素中取出 3 个,共有多少种不同的取

法。这是组合的运算。例如:从 5 个人中任选三个人去参加 比赛,共有几种选法这就是从 5 个元素中取出 3 个的组合运算。可表示为C53。其计算过程是C53=5!/[3!× (5-3)!]叹号代表阶乘, 5!=5 ×4×3×2×1=120,3!=3 ×2×1=6,( 5-3)! =2! =2 ×,所以 C53=5!/[3! × (5-3)!]=120/(6 ×针2)=10对上 面 1=2 例子,就是从 5 个人中任选三个人去参加比赛,共有10 几种选法。 排列组合公式: 公式 P 是指排列,从N 个元素取 R 个进行排列。 公式 C 是指组合,从N 个元素取 R 个,不进行排列。 n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如9!= 9×8×7×6×5×4×3。×2×1 举例: Q1:有从1到9共计9个号码球,请问,可以组成多

2019-2020学年高中数学复习 排列组合基础篇.doc

2019-2020学年高中数学复习 排列组合基础篇 排列、组合与二项式定理是高中数学中相对独立的内容,不论是思考方法还是解题技巧,与其它章节都有很大的是同.本章内容比较抽象,解题方法比较灵活,重在抽象思维能力与逻辑思维能力的培养与提升.因此在学习过程中,要重视教材的基础作用,重视过程的学习.二项式定理的学习要从基础出发,对二项式的展开式、通项公式、二项式系数的性质等,要弄懂原理,牢固掌握,并会灵活运用.要在练习中领悟原理公式与概念的实质,注意计算的准确性和解题的规范性,从而形成解题方法和能力. 排列、组合、二项式定理之一――基础篇 一、要点导读 1、分类计数原理: ; 分步计数原理: . 2、 叫做从n 个不同元 素中取出m 个元素的一个排列,排列数m n A =_____________________________=_________. 3、 叫做从n 个不同元 素中取出m 元素的一个组合,组合数m n C =_____________ _________=_______________. 4、组合数的性质:(1)m n C = ;(2)m n C +1-m n C = . 5、二项式定理的内容是 .其通项为1+r T = ;二项式系数的性质是① ;② ;③ . 二、思维点拔 1、两个计数原理的区别在于一个和“分类”有关,一个和“分步”有关.在使用两个基本原理时,要认真审题,特别要理解题中所讲的“事情”是什么?明确完成这件事情需要“分类”还是“分步”,还是既要“分类”又要“分步”,并注意“分类”或“分步”的标准.在分析过程中,如能借助图形、表格帮助分析,则可使问题更加直观、清楚,而且可防止“分类”或“分步”中的重复和遗漏现象. 2、排列中最具典型的两类问题是“排数”和“排队”.无论是哪类问题,无外乎“元素”与“位置”的关系,即“某个元素排在什么位置”或“某个位置上排什么元素”.如按元素与位置的多少分类,排列组合大体上可分为三类:元素个数多于位置个数、元素个数等于位置个数、元素个数少于位置个数.常见的有限制条件的排列问题有“在”与“不在”、“相邻”与“不相邻”、有序与无序等问题,解决方法主要有直接法与间接法两种.解决“在”与“相邻”问题时常用直接法(如捆绑法),解决“不在”与“不相邻”问题常用间接法(如插空法),对于元素有顺序的排列问题,可先不考虑顺序排列后,再利用规定顺序求出结果. 3、解有关组合问题时,首先应判断此问题是不是组合问题.组合与排列的根本区别在于取出的元素是否与顺序有关.组合问题常见的类型有“含”与“不含”、 “至多”与“至少”等.“含”与“不含”问题的处理方法常用直接法,“至多”与“至少”问题常用间接法(排除法).对几何中的组合问题,常抽象出一个数学模型加以解决. 4、二项式定理问题常与二项式系数、某一项系数、通项公式、性质、最大最小项等有关,要在理解的基础上掌握方法与技巧,灵活运用.

排列组合基本概念

排列组合基本概念 两个基本原理 1.加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有 N=m1十m2十…十m n种不同的方法. 2.乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么完成这件事共有N=m1m2…m n种不同的方法. 例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书. 1)从中任取一本,有多少种不同的取法 2)从中任取数学书与语文书各一本,有多少的取法解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11. 答:从书架任取一本书,有11种不同的取法. (2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是N=6X5=30. 答:从书架上取数学书与语文书各一本,有30种不同的方法. 例2(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数 (2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数 (3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数 解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是 N=5X5X5=125. 答:可以组成125个三位数. 排列 什么叫排列

排列组合21个经典教案

高考数学轻松搞定排列组合难题二十一种方法 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的 排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.

相关主题
文本预览
相关文档 最新文档