当前位置:文档之家› 高等代数中的反例研究

高等代数中的反例研究

高等代数中的反例研究
高等代数中的反例研究

《高等代数Ⅱ》课程教学大纲

《高等代数Ⅱ》课程教学大纲 一、课程基本信息 二、课程教学目标 本课程的教学目的是使学生获得二次型,线性空间,线性变换,欧几里得空间等方面的系统知识,为进一步学习数值计算方法等后续课程打下坚实的基础。通过本课程的教学,使学生掌握代数基本理论和基本方法,培养学生代数方面的科学的思维、抽象的思维,逻辑推理、提高运算以及解决实际应用的能力,为进一步学习专业后续课程奠定坚实的代数基础。 应达到的具体能力目标: 具有独立思维能力和解决实际问题能力; 具有较强的抽象思维和逻辑推理能力; 熟练的计算能力及其应用代数工具解决实际问题的能力 三、教学学时分配 《高等代数Ⅱ》课程理论教学学时分配表

四、教学内容和教学要求 第五章二次型(14学时) (一)教学要求 1. 了解二次型与二次型的矩阵的概念; 2. 理解二次型的标准形、正定二次型的概念; 3. 掌握用正交变换、拉格朗日配方法、合同线性变换法化二次型为标准形,掌握 正定二次型的判定方法。 (二)教学重点与难点 教学重点:二次型的矩阵表示,化二次型为标准形的方法 教学难点:正定二次型的判定与证明 (三)教学内容 第一节二次型及其矩阵表示 1.二次型的定义 2.二次型的矩阵表示 3. 矩阵的合同关系 第二节标准形 1.二次型的标准形; 2.化二次型为标准形的方法; 3. 例题讲解 第三节唯一性 1.复数域上二次型的规范型 2. 实数域上二次型的规范型 第四节正定二次型 1.正定二次型的定义 2. 正定二次型的判定 3. 半正定二次型的定义及判定 本章习题要点:

1.化二次型为标准形的方法; 2. 正定二次型的判定方法与证明。 第六章线性空间(22学时) (一)教学要求 1.了解集合与映射的概念及性质; 2. 理解线性空间的概念与性质,线性空间同构的概念、性质及意义; 3. 掌握基和维数的概念、求法及维数定理,过渡阵概念、性质及求法,子空间的 概念和判别方法,掌握子空间的交、和、直和等概念。 (二)教学重点与难点 教学重点:线性空间的基与维数,子空间的和 教学难点:子空间的直和 (三)教学内容 第一节集合.映射 1.集合与映射的概念 2. 集合与映射的性质; 第二节线性空间的定义与性质 1.线性空间的定义; 2.线性空间的简单性质。 第三节维数、基、与坐标 1. 维数、基、坐标的概念 2. 维数、基、坐标的性质 第四节基变换与坐标变换 1.基变换 2.坐标变换。 第五节线性子空间 1.线性子空间的定义及性质 2.生成子空间的定义及性质 第六节子空间的交与和 1.线性子空间的交 2.线性子空间的和 3. 维数公式 第七节子空间的直和

反例在高等数学教学中的功能

反例在高等数学教学中的功能 发表时间:2014-08-22T11:01:32.153Z 来源:《素质教育》2014年6月总第154期供稿作者:韩召伟 [导读] 高等数学主要围绕数学知识的理论体系的建立来展开,然而解释概念、得出命题、阐明定理大都是从正面陈述的,对于反例的陈述少之又少。 韩召伟陕西师范大学数学与信息科学学院710062 摘要:高等数学是近代数学的基础,是现代科学技术中应用最广泛的一门学科。在高等数学教学中, 恰当地开发和有效地利用反例,能起到事半功倍的效果。本文具体以多元微分学中极限、可偏导和可微之间的关系为例,剖析了高等数学教学中反例的功能。 关键词:高等数学多元函数反例 一、引言 高等数学主要围绕数学知识的理论体系的建立来展开,然而解释概念、得出命题、阐明定理大都是从正面陈述的,对于反例的陈述少之又少。因为缺乏反例的衬托,在学习过程中学生对数学概念内涵和外延理解上的偏差或对于命题的条件和结论认知的不充分,都将成为学生高等数学学习的屏障。构造适当的反例,一方面能帮助学生全面理解和正确掌握高等数学中的基本知识,激发学生的求知欲;另一方面对于提高学生的数学学习能力和数学思维能力将会起到十分重要的作用。因此,在高等数学教学中,充分发掘反例的教学功能,有效地构造和利用反例,教师应予以足够重视。 二、高等数学教学中反例的功能 1.反例是全面理解概念的基础。数学知识理论体系向来以思维严密和逻辑严谨而著称,教材主要由定义和定理等内容构成,比较注重学生的抽象概括能力、逻辑思维能力、空间想象能力、分析运算能力、解决问题方面能力的培养,而这些能力的取得都以深刻理解概念和准确掌握概念为基础,因此,在教学中只要求学生死背概念是不行的,必须注重理解其实质。高等数学中具有若干新概念,而要很好地理解这些新概念,正面的例子可起到了解、熟悉新概念的作用,而反例则可加深对新概念的理解。在高等数学教学中,教师不仅要运用正确的例子深刻阐明知识点,而且要运用恰当的反例从另一个侧面抓住概念或规则的本质,弥补正面教学的不足,从而加深学生对知识的理解。

高等代数习题

高等代数习题 第一章基本概念 §集合 1、设Z是一切整数的集合,X是一切不等于零的有理数的集合.Z是不是X的子集 2、设a是集A的一个元素。记号{a}表示什么 {a} A是否正确 3、设 写出和 . 4、写出含有四个元素的集合{ }的一切子集. 5、设A是含有n个元素的集合.A中含有k个元素的子集共有多少个 6、下列论断那些是对的,那些是错的错的举出反例,并且进行改正. (i) (ii) (iii)

(iv) 7.证明下列等式: (i) (ii) (iii) §映射 1、设A是前100个正整数所成的集合.找一个A到自身的映射,但不是满射. 2、找一个全体实数集到全体正实数集的双射. 3、是不是全体实数集到自身的映射 4.设f定义如下: f是不是R到R的映射是不是单射是不是满射 5、令A={1,2,3}.写出A到自身的一切映射.在这些映射中那些是双射 6、设a ,b是任意两个实数且a

7、举例说明,对于一个集合A到自身的两个映射f和g来说,f g与 g f一般不相等。 8、设A是全体正实数所成的集合。令 (i)g是不是A到A的双射 (ii)g是不是f的逆映射 (iii)如果g有逆映射,g的逆映射是什么 9、设是映射,又令,证明 (i)如果是单射,那么也是单射; (ii)如果是满射,那么也是满射; (iii)如果都是双射,那么也是双射,并且 10.判断下列规则是不是所给的集合A的代数运算: 集合 A 规则1 2 3 全体整数 全体整数 全体有理数 b a b a+ → |) , (

4 全体实数 §数学归纳法 1、证明: 2、设是一个正整数.证明 ,是任意自然数. 3、证明二项式定理: 是个元素中取个的组合数. 这里 , 4、证明第二数学归纳法原理. 5、证明,含有个元素的集合的一切子集的个数等于。 §整数的一些整除性质 1、对于下列的整数 ,分别求出以除所得的商和余数: ; ; ; .

高等代数(北大版)第6章习题参考答案

第六章线性空间 . 设 M N , 证 明: M N M , M N N 。 1 证任 取M , 由 M N , 得 N , 所 以M N , 即证 M N M 。又因 M N M , 故 M N M 。再证第二式,任 取 M 或N , 但 M N , 因此无论 哪一种情形,都有N , 此即。但 N M N , 所以 M N N 。 2.证明 M ( N L ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。 证x M (N L), 则 x M 且 x N L. 在后一情形,于是 x M N或 x M L. 所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。反之,若 x (M N ) ( M L) ,则 x M N或 x M L. 在前一情形, x M , x N , 因此 x N L. 故得 x M ( N L ), 在后一情形,因而 x M , x L, x N L ,得 x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。 若 x M ( N L),则 x M , x N L 。 在前一情形 X x M N ,且 X M L,因而 x ( M N) ( M L)。 在后一情形, x N ,x 因而 x M N , 且 X M ,即 X ( M N)(M L)所以L, L (M N)(M L) M (N L) 故 M ( N L) =()(M L) M N 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量 乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: ( a1,b1)( a b ( a1a2,b1b2a1 a2) (kk 1) 2

高等代数课程的基本内容与主要方法

2010年第2期 牡丹江教育学院学报 No 12,2010 (总第120期) JOU RN A L OF M U D AN JIA N G CO LL EG E OF EDU CA T IO N Serial N o 1120[收稿日期]2009-10-25 [作者简介]戴立辉(1963-),男,江西乐安人,闽江学院教授,研究方向为矩阵论;林大华(1959-),男,福建福州人,闽江学院副教授,研究方向为代数学;吴霖芳(1979-),女,福建永安人,闽江学院讲师,硕士,研究方向为微分方程;陈翔(1980-),男,福建连江人,闽江学院讲师,硕士,研究方向为代数环论。 [基金项目]/十一五0国家课题/我国高校应用型人才培养模式研究0数学类子课题项目(F IB070335-A2-03)。 高等代数课程的基本内容与主要方法 戴立辉 林大华 吴霖芳 陈 翔 (闽江学院,福建 福州 350108) [摘 要] 对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时体现高等代数课程要求学生掌握的知识体系。 [关键词] 高等代数;基本内容;主要方法[中图分类号]O 15 [文献标识码]A [文章编号]1009-2323(2010)02-0146-03 高等代数是高等学校数学专业的一门必修的专业基础课程,它是由多项式理论和线性代数两部分组成。多项式部分以一元多项式的因式分解理论为中心,线性代数部分主要包括行列式、线性方程组、矩阵、二次型、线性空间、线性变换、K -矩阵与若尔当标准形、欧几里得空间等。 通过高等代数课程的教学,要求学生掌握一元多项式及线性代数的基本知识和基础理论,熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,提高抽象思维、逻辑推理及运算能力。根据我们多年的教学经验,本文拟对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时也体现出了高等代数课程要求学生掌握的知识体系。 一、多项式 一元多项式理论主要讨论了三个问题:整除性理论,因式分解理论和根的理论。其中整除性是基础,因式分解是核心。 (一)基本内容 1.整除性理论)))整除,最大公因式,互素。 2.因式分解理论)))不可约多项式,典型分解式,重因式。 3.根的理论)))多项式函数,根的个数,根与系数的关系。 (二)主要方法 1.多项式除多项式的带余除法。 2.用辗转相除法求两个多项式的最大公因式,最大公因式的判别法。 3.两多项式互素的判别法。 4.不可约多项式的判别法,多项式标准分解式求法,重因式的判别法。 5.多项式函数值的求法,x -c 除多项式f (x )的综合除法,多项式按x -x 0的方幂展开的方法。 6.多项式根的判别法,多项式重根的判别法。 7.整系数多项式有理根的求法,艾森斯坦判断法。二、行列式 行列式是线性方程组理论的一个重要组成部分,是一种重要的数学工具。 (一)基本内容 n 级排列及其性质,n 级行列式的概念,行列式的性质,行列式的计算,克拉默规则。 (二)主要方法 1.求一个排列的逆序数的方法。 2.行列式的计算方法:定义法,性质法,化为三角形行列式的方法,降级法(按一行或一列展开法、拉普拉斯展开法),化为范得蒙行列式的方法,递推法,加边法,数学归纳法,拆项法。 3.一些特殊行列式的计算方法)))三角形行列式,ab 型行列式,范得蒙行列式,爪型行列式,三对角行列式。 4.克莱姆规则。三、线性方程组 /线性方程组0这部分在理论上解决了线性方程组有解的判定、解的个数及求法、解的结构等。 (一)基本内容 1.向量的线性关系)))n 维向量,向量的线性运算,线性组合,线性表出,线性相关,线性无关,极大线性无关组,向量组等价,向量组的秩。 2.矩阵的秩)))矩阵的秩=矩阵行(列)向量组的秩,即矩阵的行(列)秩=矩阵不为零的子式的最大级数,初等变换不改变矩阵的秩,用初等变换计算矩阵的秩。 3.线性方程组的解的情形)))线性方程组有解的判定,线性方程组解的个数,齐次线性方程组解的情形。 4.线性方程组解的结构)))齐次线性方程组的基础解系,齐次线性方程组解的表示,非齐次线性方程组解的表示。

高等代数专题研究形成性考核册作业答案

《高等代数专题研究》作业参考答案 高等代数专题研究作业1 一、 单项选择题: 1-5: BCBDB 二、 填空题1、 交换。2、 不等价、 等价。3、 1212()()a a a a σσσ()=⊕, 且 σ是A 到B 的双射。 4、 具有下面性质的自然数的任何集合M 满足: :1;:i M ii ∈如果a M ∈, 则 'a M ∈。则M 含有一切自然数, 即M N =。 5、 对于一个与自然数有关的命题T, 若i: 若n=1时命题T 正确; ii: 假设命题T 对n

高等代数-北京大学第三版--北京大学精品课程

第一学期第一次课 第一章 代数学的经典课题 §1 若干准备知识 1.1.1 代数系统的概念 一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。 1.1.2 数域的定义 定义(数域) 设K 是某些复数所组成的集合。如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有 K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素0≠∈a K a ,且。于是 K a a K a a ∈= ∈-=10, 。 进而∈?m Z 0>, K m ∈+??++=111。 最后,∈?n m ,Z 0>, K n m ∈,K n m n m ∈-=-0。这就证明了Q ?K 。证毕。 1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。 定义(集合的映射) 设A 、B 为集合。如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ). (, :a f a B A f α→ 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射。若 ,B b ∈?都存在A a ∈,使得b a f =)(,则称f 为满射。如果f 既是单射又是满射,则称f 为双射,或称一一对应。 1.1.4 求和号与求积号 1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数n a a a ,,,21Λ,我们使用如下记号:

高等代数专题研究学习辅导(三)

高等代数专题研究学习辅导(三) 多 项 式 与 环 一、 环 1.环的定义 环具有加法、乘法两个代数运算的代数体系。集合R 对于加法、乘法两个代数运算构成一个环,要求满足: (1)加法性质 有交换律、结合律,每个元素有负元素。(R 对 加法作成一个加群) (2)乘法性质 有结合律:c ab bc a )()(= (3)乘法对加法有左、右分配律: ac ab c b a +=+)(,ca ba a c b +=+)(),,(R c b a ∈? 则称对这两个代数运算作成一个环。 2.环的简单性质 (1) 在环R 中,零元素惟一; (2) 在环R 中,每个元素的负元素惟一; (3) 在环R 中,加法有消去律:c b c a b a =?+=+; (4) 在环R 中,符号法则成立: a a =--)(,a b b a b a -=-=-)()(,ab b a =--))((; (5) 在环R 中,移项法则成立:b c a c b a -=?=+; (6) 设a 是环R 中的元素,n 是正整数, 规定 个 n a a a na +???++=, 个 n a a a a n )()()()(-+???+-+-=-,00=a 。 于是,环中的元素整数倍有意义,对任意Z n m ∈,;R b a ∈,有 a n m na ma )(+=+,)( b a m mb ma +=+; ab mn nb ma ?=?)()()(

(7) 设a 是环R 中的元素,n 是正整数, 规定 个 n n a aa a ???=, 于是,环中元素的整数次幂有意义,对任意正整数n m ,有 n m n m a a a +=?,mn n m a a =)(; (8) 在环R 中广义分配律成立: n n ab ab ab b b b a +???++=+???++2121)( n a b a b a b a a a n n +???++=+???++2121)( 3.子环与理想 定义 设S 是环R 的一个子集,若S 对R 的两种运算也作成环, 则称S 是R 的一个子环,R 是S 的一个扩环。 子环的判别定理: 环R 的子集S 作成R 的子环的充分必要条件是 (1) S b a ∈, ? S b a ∈+ (2) R r ∈,S a ∈ ? S ar ra ∈, 4.整环与域 定义1. 乘法满足交换律的环称为交换环; 定义2. 设1是环R 的一个元素,对任意R a ∈有a a a ==11,则 称1 是R 的单位元素; 定义 3. 设R 是有单位元素1的环,若对R 中的元素a 有一元素 b ,使1==ba ab ,则称a 是可逆元素,b 称为a 的一个 逆元素; 定义4. 设a ,b 是环R 的两个元素,若0≠a ,0≠b ,而0=ab , 则称a 与b 是真零因子。 性质 在无真零因子的环R 中,乘法适合 左消去律 ac ab =,0≠a c b =?

含数学分析和高等代数两门课

含数学分析和高等代数两门课 数 学 分 析(I ) (1)集合与函数 实数概述,绝对值不等式,区间与邻域,有界集,确界原理,函数概念。 (2)数列极限 数列。数列极限的N -∑定义。收敛数列的性质:唯一性、有界性、保号性、不等式性质、迫敛性、有理运算。子列。数列极限存在的条件;单调有限定理、柯西收敛原理。????????????? ??+n n 11、STOLZ 定理。 (3)函数极限 函数极限概念(x x x →∞→与。瞬时函数的极限。δ-∑定义、M -∑定义)函数极限的性质:唯一性、局部有界性、局部保号性、不等式性质、迫敛性、有理运算。 函数极限存在的条件:归结原则、柯西准则。 两个重要极限:1sin lim ,)11(lim 0==+→∞→x x e x x x x 无穷小量与无穷大量及其阶的比较。 (4)函数的连续性 函数在一点的连续性。单侧连续性。间断点及其分类。在区间上连续的函数。连续函数的局部性质:有界性、保号性、连续函数的有理运算、复合函数的连续性。闭区间上连续函数的性质:有界性、取得最大最小值性、介值性、一致连续性。初等函数的连续性。 (5)极限与连续性(续) 实数完备性的基本定理:区间套定理、数列的柯西收敛准则、聚点原理、致密性定理、有限覆盖定理、实数完备性基本定理的等价性。闭区间上连续函数性质的说明。实数系。压缩映射原理。 (6)导数与微分 引入问题(切线问题与瞬时速度问题)。导数的定义。单侧导数。导函数。导数的几何意义。和、积、商的导数。反函数的导数。复合函数的导数。初等函数的导数。 微分概念。微分的几何意义。微分的运算法则。一阶微分形式的不变性。微分在近似

无穷极数中的几个典型反例

无穷极数中的几个典型反例 一、正项级数中比值判别法和根值判别法的反例 (1) 比值差别法: 例1: 1(1)3 n n ∞=+- 级数1(1)3n n ∞=+-发散,但极限1lim n n n u u +→∞并不存在 因为级数13n ∞=发散而级数1(1)3n n ∞=-∑ 收敛。所以级数1 (1)3n n ∞=+-发散。 而11n n n u u ++= 是摆动数列,故11lim n n n n n u u ++→∞=并不存在。 当然,p-级数∑∞ =11n n p 也是一个典型的反例, 1lim n n n u u +→∞=1,但当p>1时收敛; 1≤p 时,发散。 (2) 根值判别法: 例2: 1(1)3n n n ∞ =?-???∑ 级数1(1)3n n n ∞=?-???∑ 收敛,但(1)lim 3n n n →∞-=并不存在。 2(1)210 33n n n ????-≤≤ ??? ???? ? 而1 13n n ∞=?? ? ???∑收敛(公比小于1的等比级数)。 由比较判别法,1(1)3n n n ∞=?-??? ∑ (1)3n -=是摆动数列。 故(1)lim 3 n n n →∞-=不存在。 注:在正项级数的敛散性判别中,比值判别法和根值判别法使用起来非常方便,但是它成立的条件是充分而非必要的。 二、 交错级数中使用莱布尼兹差别法的反例

在交错级数的敛散性判别中,莱布尼兹判别法使用起来非常方便,但是有些情况下的交错级数不满足条件。 例3: n n ∞= n u =, 显而易见满足lim 0n n u →∞ =,而不满足。1(1,2,)n n u u n +≥= , 但作为任意项级数 (1)(1)1(1)111n n n n n u n n n ?--??===----- 由级数2(1)1n n ∞=--∑ 收敛,而级数211n n ∞=-∑ 发散知,级数n n ∞=发散。 例4: n n n n )1(1)1(2-+-∑∞ = n n n n )1(1)1(2-+-∑∞==111)1(1))1(()1(222----=----n n n n n n n n , 根据莱布尼兹判别法易知交错级数∑∞ =--221)1(n n n n 收敛,而∑∞=-2211n n 收敛,所以原级数 n n n n ) 1(1)1(2-+-∑∞=是收敛的。 注:例3与例4都是不满足n n u u <+1的情况,不能使用莱布尼兹判别法直接判定。 三、 幂级数中的反例 有些同学认为,如果幂级数∑∞=0n n n x a 的收敛半径R ≠0,那么一定有 n n n a a 1lim +∞→=L=1/R ,这是不对的,因为有可能n n n a a 1lim +∞→不存在。 例5: 求幂级数∑∞=-+1 2)1(2n n n n x 的收敛半径

北京大学高等代数7

北京大学数学学院期中试题 考试科目 高等代数I 考试时间 2012年11月8日 姓 名 学 号 一.(30分)填空题. 1.设 当λ = 时, α1 , α2 , α3不能表出β ; 当λ = 时, 表出方式不唯一. 2. 设α1 , α2是矩阵A = 的行向量, 则 α1 α1T + α2 α2 T = __ , α1T α1 + α2T α2 = ___ ; A T A =__ , A T A 的秩 =__ , A A T = __ . 3.设 若矩阵 能写成 k 1 α1 α1T + k 2 α1 α2T + k 3 α2 α1T + k 4 α2 α2T , 则 [ k 1 , k 2 , k 3 , k 4 ] =__. 4. 已知 B 是3?4矩阵, [ 2 0 1 3 ] T 是齐次线性方程组B X = 0 的一个解. 设A 是将行向量 [ 2 0 1 3 ] 添加到B 下面 得到的方阵. 若A 的 (4,1) 元的余子式为6, 则 | A | =___. 5. 对矩阵做初等行变换, 矩阵的_____ 不变(多选). A 秩 B 行空间 C 列空间 D 解空间 6. 设α = [ 1 1 2 ] T 与 β = [ 3 0 2 ] T 是3维几何空间里的向量. 则 α , β之间夹角的余弦值是__, α , β张成的三角形的面积是__, 与α , β都正交的单位向量是___. 二.(12分)已知 .11α,11α21??????-=??????=?? ????31021121.,,2320202 1211010===b b a a t b b a a b b a a ?? ????d c b a ,???? ??????-=??????????+--=??????????-+=??????????-+=1λ21β,5λ42α,45λ2α,222λα321

初试科目考试大纲-904数学分析与高等代数

浙江师范大学硕士研究生入学考试初试科目 考试大纲 科目代码、名称: 904数学分析与高等代数 适用专业: 420104学科教学(数学) 一、考试形式与试卷结构 (一)试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟。 (二)答题方式 答题方式为闭卷、笔试。 试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。 (三)试卷内容结构 各部分内容所占分值为: 数学分析约100分 高等代数约50分 (四)试卷题型结构 计算题:7大题,约100分。 分析论述题:3大题,约50分。 二、考查目标(复习要求) 全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题。 三、考查范围或考试内容概要 第一部分:数学分析 考查内容 1、数列极限 数列极限概念、收敛数列的定理、数列极限存在的条件 2、函数极限 函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量

3、函数的连续性 连续性概念、连续函数的性质 4、导数与微分 导数的概念、求导法则、微分、高阶导数与高阶微分 5、中值定理与导数应用 微分学基本定理、函数的单调性与极值 6、不定积分 不定积分概念与基本积分公式、换元法积分法与分部积分法 7、定积分 定积分概念、可积条件、定积分的性质、定积分的计算 8、定积分的应用 平面图形的面积、旋转体的侧面积 9、级数 正项级数、函数项级数、幂级数、傅里叶级数 10、多元函数微分学 偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题 第二部分:高等代数 考查内容 多项式、行列式、线性方向组、矩阵、线性空间、线性变换 参考教材或主要参考书: 华东师范大学编:《数学分析》(上、下),高等教育出版社,2001年,第三版。 北京大学编:《高等代数》,高等教育出版社,2003年,第三版。 四、样卷 见往年试卷。

高等代数在数学分析解题中的某些应用分析

高等代数在数学分析解题中的某些应用分析 摘要:作为高等教育的基础性课程,高等代数的内容会伴随整个大学时代的数学学习,但是由于它的内容比较抽象,因此它也是比较难的一门学科。通过对高等代数在数学分析题中的某些应用分析,进一步探讨高等代数不同的解题方法和思维方式,以期能够为提高学生解题能力提供建设性的意见与建议。 关键词:高等代数;数学分析;多项式 高等代数涉及多项式代数、矩阵代数、线性空间等方面,采用的是逻辑严谨的数学公理化方法,结构严密的程序化方法,很好地与古希腊教学思想结合在一起。但是,它也是学生的学习难点,也是教师较难教授的一门学科。虽然大学生较高中生而言活跃了许多,但是由于高等教育的自由度较大,老师学生几乎没有什么约束力,所以学生的听讲课率并不高,那么教学模式也仅仅局限于“教师提问,学生回答”这种言语交流活动中。当然很难锻炼学生的解题能力,也不利于学生今后的发展。 一、加强高等代数在数学分析题中应用的必要性 不同的数学解题方法会启发学生不同的思维能力会产 生不一样的教学效果。对于各种各样复杂的数学题,提倡不

同的解题方法是很有必要的。如果能够加强高等数学在数学解题分析中的应用,至少会产生以下两大好的效果。 1.有利于增强学生的主体地位 从小学以来,学生一直都是为了考试、升学而学习,变成了应试教育的工具。但是高等教育会给学生更多的自由空间,让学生有更多的权利来支配自己的时间与精力。在高等代数教学中培养学生的解题能力,在学生自主地学习、探讨过程中就能够充分展现他们的主体地位,而不再是被动地接受知识了。 2.有利于激发学生的创新思维 探索是创新的基础,只有带着问题去思考、去探索,才会有新的发现,否则便是无谓的思索。对于高等代数那种集数理性与逻辑性于一体的学科而言,教师简单地把概念性的东西传授给学生是不可以的,那样会使学生显得很被动,难以构建新的认知结构。长期以来,在应试教育的大背景下,数学教学中一直过分强调数学知识的系统性、严谨性和对学生的解题训练,却忽视了引导学生去学习了解数学思想和方法发生、发展的过程,数学课堂上缺少在现实情境中发现问题和解决问题的能力培养。这样的教学方式虽然培养了大批解题速度快、擅于解高难度题的学生,但是他们的实践能力和创新意识却不够。接受高等教育的学生即将面向社会,教学应该更加注重学生的主体意识以及所教知识的实践性。高

关于高等代数的一些解题方法总结

高等代数论文 题目:有关二次型的总结 学院:理学院 专业:信息与计算科学 姓名:王颀 学号:11271014 2011年12月30日

学习高等代数,最好的方法是多进行总结分类,将知识系统化。下面那二次型这章来进行操作。 二次型的问题来源于解析几何: 平面解析 一次曲线:Ax + By + C = 0 (直线); 二次曲线:Ax 2 + Bxy + Cy 2 + Dx + Ey = F → 经平移 变换化,旋转变换化成为Ax 2+ By 2 = d (二次齐次多项式) → 可根据二次项系数确定曲线类型(椭圆、抛物线、双曲线等); 空间解析 一次曲面: Ax + By + Cz + D = 0 (平面); 二次曲面: (平移后不含一次项)→ Ax + By + Cz + 2Dxy + 2Exz + 2Fyz = G (18-19世纪上半期表示方法) → 通过方程变形,选定主轴方向为坐标轴,可化简为 a/x/2 + b/y/2 + c/z/2 = d/ → 据二次项系数符号确定二次曲面的分类 更一般的问题: 数域P 上含n 个变量x 1,x 2,…,x n 的二次齐次多项式如何化成平方和形式,即标准型问题,是18世纪中期提出的一个课题 了解了二次型的相关背景,我们进行对课本上二次型的内容进行总结。 二次型这章内容如下 5.1 二次型及其矩阵表示 5.2 二次型的标准形 5.3 惯性定理和规范形 5.4 实二次型的正定性 在这章的学习中,我们需要学会二次型的矩阵表示,求解矩阵的秩,通过线性替换将二次型化为标准型,了解矩阵合同,规范型,掌握正定二次型的判定方法。 例1.二次型??? ? ?????? ??=21 21213201),(),(x x x x x x f 的矩阵为( 3 )。 (1)、102 3?? ??? (2)、1 22 3?? ??? (3)、1113?? ??? (4)、1 113-?? ?-?? 注意对于任意一个二次型,都唯一确定这一个对称矩阵,这个对称矩阵才叫做二次型的矩阵。二次型的秩就是矩阵的秩。 例2.将二次型2212311213233(,,)246f x x x x x x x x x x x =+-++化为标准形,并写出所用的非退化线性替换。 解:用配方法: 2 2 2 2 12311232323233 (,,)[2(2)(2)](2)6f x x x x x x x x x x x x x x =+-+---++ 2221232233(2)103x x x x x x x =+--+- 2 2 2 2 12322333 (2)(1025)22x x x x x x x x =+---++

高等代数专题研究(本科)-2020.07国家开放大学2020年春季学期期末统一考试试题及答案

试卷代号:1079 座位号 国家开放大学2 0 2 0年春季学期期末统一考试 高等代数专题研究试题 2020年7月 一、单项选择题(每小题4分,共20分) 1.下列法则是整数集Z上的代数运算的是( ). A.α。b=α+b B.α。b=αb 2 C.α。b=√2αD.α。b=1 3 2.若向量组α1,α2…,αt与β,…,β1以均线性无关,则向量组α1+β1,…,αt+βt。( ).A.一定线性无关B.一定线性相关 C.可能线性相关,也可能线性无关D.以上说法都不对 3.设咒阶方阵A可对角化,则下列结论正确的是( ). A.A有n个不同的特征值B.A是可逆矩阵 C.A有n个线性无关的特征向量D.A是实对称矩阵 4.设σ是n维欧氏空间V上的线性变换,σ在基α1,α2,…,αn。下的矩阵为对称矩阵A,则( ). A.σ为可逆变换 B.当α1,α2,…,αn为标准正交基时,σ为对称变换 C.σ为正交变换 D.σ为对称变换 5.线性空间V上的双线性函数f(α,β)在不同基下的度量矩阵( ). A.相似B.相等 C.正交相似D.相合 二、填空题(每小题4分,共20分) 6.有理数域上的不可约多项式的次数是____________次的. 7.在有限维线性空间中,任意两个基所含向量酌个数是____________的. 8.设A,B都是n阶方阵,如果存在n阶可逆矩阵T,使T?1AT=B,则称A与B__________.9.若欧几里得空间V上的线性变换A保持向量长度不变,则A是___________变换.10.设A是n阶实矩阵,当A是__________矩阵时,A T A是正定矩阵. 三、计算题(每小题15分,共45分) 11.已知α1,α2,α3是3维线性空间V的一组基,向量组β1,β2,β3满足β1+β3=α1+α2+α3,β1+β2=α2+α3,β2+β3=α1+α3求由基β1,β2,β3到基α1,α2,α3的过渡矩阵. 12.设R3的线性变换σ定义如下:σ(x1,x2,x3)=(2x1?x2,x2?x3,x2+x3),求σ在基ε1=(1,0,0),ε2=(0,1,0),ε3=(0,0,1)下的矩阵. 13.用正交线性替换化实二次型x12+2x22+3x32?4x1x2?4x2x3为标准形. 四、证明题(共15分) 14.设f(x),g(x)是数域P上的一元多项式,且(f(x),g(x))=1.

无穷极数中的几个典型反例

无穷极数中的几个典型反例 一、正项级数中比值判别法和根值判别法的反例 (1) 比值差别法: 例1: 1 (1) 3 n n ∞ =+-∑ 级数1 (1) 3 n n ∞ =+-∑ 发散,但极限1lim n n n u u +→∞ 并不存在 因为级数1 3 n ∞ =∑ 发散而级数1 (1)3 n n ∞ =-∑ 收敛。所以级数1 (1) 3 n n ∞ =+-∑ 发散。 而 11(1) n n n u u +++-= 11(1) lim lim n n n n n u u ++→∞ →∞ +-=并不存在。 当然,p-级数 ∑ ∞ =1 1n n p 也是一个典型的反例, 1lim n n n u u +→∞ =1,但当p>1时收敛; 1≤p 时,发散。 (2) 根值判别法: 例2: 1 (1)3n n n ∞ =? -??? ∑ 级数1 3n n ∞ =?? ∑ 收敛,但lim lim 3 n n →∞→∞ =并不存在。 (1)21 033n n n ? ???+-≤≤ ?? ? ???? ? 而113n n ∞ =?? ? ?? ? ∑收敛(公比小于1的等比级数)。 由比较判别法,1 (1)3n n n ∞ =?+-??? ∑ (1)3 n -= 是摆动数列。 故(1)lim lim 3 n n n →∞ →∞ -=不存在。 注:在正项级数的敛散性判别中,比值判别法和根值判别法使用起来非常方便,但是它成立的条件是充分而非必要的。 二、 交错级数中使用莱布尼兹差别法的反例

在交错级数的敛散性判别中,莱布尼兹判别法使用起来非常方便,但是有些情况下的交错级数不满足条件。 例3: 2 (1) n n ∞ =-∑ 1n u = 显而易见满足lim 0n n u →∞ =,而不满足。1(1,2,)n n u u n +≥= , 但作为任意项级数 (1)(1)1(1)111n n n n n u n n n ?---??= ==----- 由级数2 1 n n ∞ =-∑ 收敛,而级数2 11 n n ∞ =-∑ 发散知,级数2 n n ∞ =∑ 发散。 例4: n n n n ) 1(1) 1(2 -+-∑∞ = n n n n ) 1(1) 1(2 -+-∑∞ == 1 11 )1(1 ) )1(()1(2 2 2 -- --= ----n n n n n n n n , 根据莱布尼兹判别法易知交错级数∑ ∞ =--2 2 1 )1(n n n n 收敛,而∑ ∞ =-2 2 1 1n n 收敛,所以原级数 n n n n ) 1(1) 1(2 -+-∑ ∞ =是收敛的。 注:例3与例4都是不满足n n u u <+1的情况,不能使用莱布尼兹判别法直接判定。 三、 幂级数中的反例 有些同学认为,如果幂级数∑∞ =0 n n n x a 的收敛半径R ≠0,那么一定有 n n n a a 1lim +∞ →=L=1/R ,这是不对的,因为有可能n n n a a 1lim +∞ →不存在。 例5: 求幂级数∑ ∞ =-+1 2 ) 1(2n n n n x 的收敛半径

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

电大专科高等代数专题研究形成性考核册作业答案小抄

电大《高等代数专题研究》作业参考答案 高等代数专题研究作业1 一、单项选择题:1-5:BCBDB 二、填空题1、交换。2、不等价、等价。3、1212()()a a a a σσσ()=⊕,且是A 到B 的双射。 4、具有下面性质的自然数的任何集合M 满足::1;:i M ii ∈如果a M ∈,则'a M ∈。则M 含有一切自然数,即 M N =。 5、对于一个与自然数有关的命题T ,若i :若n=1时命题T 正确;ii :假设命题T 对n

相关主题
文本预览
相关文档 最新文档