当前位置:文档之家› 清华大学本科生高等数学微积分B(1)第十二周讲课提纲(定积分的物理应用反常积分重心质心形心)

清华大学本科生高等数学微积分B(1)第十二周讲课提纲(定积分的物理应用反常积分重心质心形心)

清华大学本科生高等数学微积分B(1)第十二周讲课提纲(定积分的物理应用反常积分重心质心形心)
清华大学本科生高等数学微积分B(1)第十二周讲课提纲(定积分的物理应用反常积分重心质心形心)

关于清华大学高等数学期末考试

关于清华大学高等数学 期末考试 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

清华大学 2010-2011学年第 一 学期期末考试试卷(A 卷) 考试科目: 高等数学A (上) 考试班级: 2010级工科各班 考试方式: 闭卷 命题教师: 一. 9分 ) 1、若在), (b a 内,函数)(x f 的一阶导数0)(>'x f ,二阶导数0)(<''x f ,则函数)(x f 在此区间内单调 ,曲线是 的。 2、设?????+=+=232322t t y t t x 确定函数)(x y y =,求=22dx y d 。 3、=? dx 1cos 12 。 本大题共3小题,每小题3分,总计 9分) 1、设A x x ax x x =-+--→1 4lim 231,则必有 答( ) 2、设211)(x x f -=,则)(x f 的一个原函数为 答( ) 3、设f 为连续函数,又,?=x e x dt t f x F 3)()(则=')0(F 答( ) 2小题,每小题5分,总计10分 ) 1、求极限x e e x x x cos 12lim 0--+-→。

2、x y 2ln 1+=,求y '。 3小题,每小题8分,总计24分 ) 1、讨论?? ???=≠=0,00arctan )(2 x x x x x f ,,在0=x 处的可导性。 2、设)(x f 在]1,0[上连续,且1)(0≤≤x f ,证明:至少存在一点]1,0[∈ξ,使得 ξξ=)(f 。 3、证明不等式:当4>x 时,22x x >。 3小题,每小题8分,总计24分 ) 1、求函数x e y x cos =的极值。 2、求不定积分? x x x d cos sin 3。 3、计算积分?-+-+2222)cos 233(ln sin ππdx x x x x 。 4小题,每小题6分,总计24分 ) 1、求不定积分? +)1(10x x dx 。 2、计算积分?+πθθ4 30 2cos 1d 。 3、求抛物线221x y = 被圆822=+y x 所截下部分的长度。 4、求微分方程''-'-=++y y y x e x 2331的一个特解。

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

大一微积分期末试卷及答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( ) n 1 X cos n = 2 00000001( ) 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 二、填空题 1d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是:2+1 x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11(1)()1m lim lim 2 (1)(3)3477,6 x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 三、判断题 1、无穷多个无穷小的和是无穷小( ) 2、0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、0f"(x )=0一定为f(x)的拐点() 4、若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 1~5 FFFFT 四、计算题 1用洛必达法则求极限2 1 20lim x x x e → 解:原式=2 2 2 1 1 1 330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若34()(10),''(0)f x x f =+求 解:332233 33232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim(cos )x x x →求极限

清华大学微积分试题库完整

(3343).微分方程0cos tan =-+'x x y y 的通解为 x C x y cos )(+=。 (4455).过点)0,2 1(且满足关系式11arcsin 2 =-+ 'x y x y 的曲线方程为 21arcsin - =x x y 。 (4507).微分方程03='+''y y x 的通解为 2 2 1x C C y + =。 (4508).设)(),(),(321x y x y x y 是线性微分方程)()()(x f y x b y x a y =+'+''的三个特解,且 C x y x y x y x y ≠--) ()() ()(1312,则该微分方程的通解为 )())()((())()((1132121x y x y x y C x y x y C y +-+-=。 (3081).设x e x y x y -++=+=22213,3是某二阶线性非齐次微分方程的两个特解,且相 应齐次方程的一个解为x y =3,则该微分方程的通解为x e C x C x y -+++=212 3。 (4725).设出微分方程x e xe x y y y x x 2cos 32++=-'-''-的一个特解形式 )2sin 2cos ()(*x F x E e e D Cx x B Ax y x x +++++=-。 (4476).微分方程x e y y y =+'-''22的通解为 )sin cos 1(21x C x C e y x ++=。 (4474).微分方程x e y y 24=-''的通解为 x x e x C e C y 222141??? ? ? ++=-。 (4477).函数x C x C y 2s i n 2c o s 21+=满足的二阶线性常系数齐次微分方程为04=+''y y 。 (4532).若连续函数)(x f 满足关系式 2ln )2 ()(20 +=? x dt t f x f ,则=)(x f 2ln 2x e 。 (6808).设曲线积分 ?--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶 连续导数,且0)0(=f ,则)(x f 等于[ ] (A) )(2 1x x e e --。 (B) )(21 x x e e --。

高等数学定积分应用

第六章 定积分的应用 本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。 一、教学目标与基本要求: 使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题; 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等) 二、本章各节教学内容及学时分配: 第一节 定积分的元素法 1课时 第二节 定积分在几何学上的应用 3课时 第三节 定积分在物理学上的应用 2课时 三、本章教学内容的重点难点: 找出未知量的元素(微元)的方法。用元素法建立这些几何、物理的公式解决实际问题。运用元素法将一个量表达为定积分的分析方法 6.1定积分的微小元素法 一、内容要点 1、复习曲边梯形的面积计算方法,定积分的定义 面积A ?∑=?==→b a n i i i dx x f x f )()(lim 1 ξλ 面积元素dA =dx x f )( 2、计算面积的元素法步骤: (1)画出图形; (2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形; (3)计算出面积元素; (4)在面积元素前面添加积分号,确定上、下限。 二、教学要求与注意点 掌握用元素法解决一个实际问题所需要的条件。用元素法解决一个实际问题的步骤。 三、作业35 6.2定积分在几何中的应用

一、内容要点 1、在直角坐标系下计算平面图形的面积 方法一 面积元素dA =dx x x )]()([12??-,面积 A = x x x b a d )]()([12??-? 第一步:在D 边界方程中解出y 的两个表达式)(1x y ?=,)(2x y ?=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ?)(2x ?=解出, b x a ≤≤,)()(21x y x ??≤≤,面积S =x x x b a d )]()([12??-? 方法二 面积元素dA =dy y y )]()([12??-,面积 A = y y y d c d )]()([12??-? 第一步:在D 边界方程中解出x 的两个表达式)(1y x ?=,)(2y x ?=. 第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ?)(2y ?=解出, d y c ≤≤,)()(21y x y ??≤≤,面积S =y y y d c d )]()([12??-? 例1 求22-=x y ,12+=x y 围成的面积 解?????+=-=1 222x y x y ,1222+=-x x ,1-=x ,3=x 。当31<<-x 时1222+<-x x ,于是 面积?--=+-=--+=3 1 313223 210)331 ()]2()12[(x x x dx x x 例2 计算4,22-==x y x y 围成的面积 解 由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时 45.02+

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?=11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +?=1ln ax b C b x +-+ 6.2 d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++ 的积分 10.x C + 11.x ?=2 2(3215ax b C a -+ 12.x x ?=2223 2 (15128105a x abx b C a -+ 13.x =22 (23ax b C a - 14.2x =2223 2(34815a x abx b C a -+

15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22 d x x a -? =1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23.2 d x x ax b +? =2 1ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 2 1ln 2x C b ax b ++ 26.22d ()x x ax b +? =21d a x bx b ax b --+?

清华微积分答案

清华微积分答案

a=? f是向量值函数,可以观察,e与a平行时,f的方向导数最大,且大小a.e=||a||,称a是f的梯度场 向量值函数的切平面、微分、偏导 f(x)=(f1(x),f2(x),…,fm(x)),若所有fi在x0处可微,则称f在x0处可微,即 f(x)=f(x0)+a(x-x0)+o(||x-x0||),其中 a=(aij)m*n=?f/?x=?(f1,f2,…,fm)/?(x1,x2,…,xn)=j(f(x0)))称为f在x0处的jacobian (f的jacobian的第i行是f的fi分量的梯度, aij := ?fi/?xj) f的全微分df=adx 当m=n时,f有散度div(f)和旋度curl(f) div(f) = ?.f=?f1/?x1 +…+?fm/?xm 复合函数求导 一阶偏导: 若g=g(x)在x0可微,f=f(u) (u=g(x))在g(x0)可微,则f○g在x0处可微, j(f○g) = j(f(u)) j(g(x)) 具体地,对于多元函数f(u)=f(u1,…,um),其中u=g(x)即 ui=g(x1,…,xn) ?f/?xj = ?f/?u * ?u/?xj = sum[?f/?ui * ?ui/?xj]{for each ui in u} 高阶偏导:不要忘记偏导数还是复合函数 例:f(u):=f(u1,u2), u(x):=(u1(x1,x2),u2(x1,x2))

?2f/(?x1)2 = 数学分析教程p151 隐函数、隐向量值函数 由f(x,y)=0确定的函数y=f(x)称为隐函数 隐函数: 1. 存在定理:若n+1元函数f(x,y)在零点(x0,y0)处导数连续, 且?(f)/?(y)(x0,y0)0,则存在(x0,y0)附近的超圆柱体b=b(x0)*b(y0),使得b(x0)上的任意一点x可以确定一个y使得f(x,y)=0,即函数f 在b内确定了一个隐函数y=f(x),而且这个隐函数的一阶偏导数也连续 注:如果?(f)/?(y)=0,那么在x=x0超平面上,y在x0处取得了极值, 那么沿曲面被x=x0截的曲线从x0处向任意方向走,y都会减小,所以y 是双值函数,不是函数 ,??)处,2.偏导公式:在b内的(?? ????????/??????=???或者说 ????????/????=?????不正式的证明:f(x,y)≡0, 所以?f/?xi=0,即 sum[?f/?xj* ?xj/?xi]=0 (把y记做xn+1) 由于x的各分量都是自变量,?xj/?xi=0 (ij) 所以?f/?xi + ?f/?y * ?y/?xi=0 于是立即可得上述公式 隐向量值函数: 1.存在定理:若x∈rn,y∈rm,m维n+m元向量值函数f(x,y)=0,在p0=(x0,y0)点的某个邻域b(p0,r)内是c(1)类函数,f(p0)=0,且?f/?y

清华大学微积分A(1)期中考试样题

一元微积分期中考试答案 一. 填空题(每空3分,共15题) 1. e 1 2。21 3. 31 4。3 4 5. 1 6.第一类间断点 7。()dx x x x ln 1+ 8。 22sin(1)2cos(1)x x x e ++ 9。 0 10。11?????? ?+x e x 11.x x ne xe + 12。13 13。0 14。)1(223 +? =x y 15. 13y x =+ 二. 计算题 1. 解:,)(lim ,0)(lim 00b x f x f x x ==+?→→故0=b 。 …………………3分 a x f x f f x =?=′? →?)0()(lim )0(0 …………………3分 1)0()(lim )0(0=?=′+→+x f x f f x …………………3分 1=a 故当1=a ,0=b 时,)(x f 在),(+∞?∞内可导。 …………………1分 2. 解:=?+∞→])arctan ln[(lim ln /12x x x πx x x ln )arctan ln(lim 2?+∞→π = x x x x /1arctan ) 1/(1lim 22?+?+∞→π …………罗比达法则…………4分 =x x x x arctan )1/(lim 2+?++∞→π = )1/(1)1/()1(lim 2222x x x x ++?+∞→ = 2211lim x x x +?+∞→ = 1? ………………………4分 所以,原极限=1?e ………………………………………………………………………2分 3. 解:)'1)((''y y x f y ++= ,故 1) ('11)('1)(''?+?=+?+=y x f y x f y x f y ;……4分 3 2)]('1[)('')]('1[)'1)((''''y x f y x f y x f y y x f y +?+=+?++= …………………………………………6分 4.解:

清华大学第二学期高等数学期末考试模拟试卷及答案

清华大学第二学期期末考试模拟试卷 一.填空题(本题满分30分,共有10道小题,每道小题3分),请将合适的答案填在空中. 1. 设向量AB 的终点坐标为()7,1, 2-B ,它在x 轴、y 轴、z 轴上的投影依 次为4、4-和7,则该向量的起点A 的坐标为___________________________. 2. 设a 、b 、c 都是单位向量,且满足0 =++c b a ,则=?+?+?a c c b b a _____________________________. 3. 设()()xy xy z 2cos sin +=,则 =??y z _____________________________. 4. 设y x z =,则=???y x z 2___________________. 5. 某工厂的生产函数是),(K L f Q =,已知⑴. 当20,64==K L 时, 25000=Q ;(2)当20,64==K L 时,劳力的边际生产率和投资的边际生产率 为270='L f ,350='K f 。如果工厂计划扩大投入到24,69==K L ,则产量的近似增量为_______________ 6. 交换积分顺序,有()=?? --2 21 , y y y dx y x f dy _____________________________. 7. 设级数 ∑∞ =1 n n u 收敛,且 u u n n =∑∞ =1 ,则级数()=+∑∞ =+1 1n n n u u __________. 8. -p 级数 ∑∞ =1 1 n p n 在p 满足_____________条件下收敛. 9. 微分方程x x y sin +=''的通解为=y ______________________.

微积分期末试卷及答案

一、填空题(每小题3分,共15分) 1、已知2 )(x e x f =,x x f -=1)]([?,且0)(≥x ?,则=)(x ? . 答案:)1ln(x - 王丽君 解:x e u f u -==1)(2 ,)1ln(2x u -=,)1ln(x u -=. 2、已知a 为常数,1)12 ( lim 2=+-+∞→ax x x x ,则=a . 答案:1 孙仁斌 解:a x b a x ax x x x x x x x -=+-+=+-+==∞→∞→∞→1)11(lim )11( 1lim 1lim 022. 3、已知2)1(='f ,则=+-+→x x f x f x ) 1()31(lim . 答案:4 俞诗秋 解:4)] 1()1([)]1()31([lim 0=-+--+→x f x f f x f x

4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 答案:2 俞诗秋 解:)(x f '有3个零点321,,ξξξ:4321321<<<<<<ξξξ, )(x f ''有2个零点21,ηη:4132211<<<<<<ξηξηξ, ))((12)(21ηη--=''x x x f ,显然)(x f ''符号是:+,-,+,故有2个拐点. 5、=? x x dx 22cos sin . 答案:C x x +-cot tan 张军好 解:C x x x dx x dx dx x x x x x x dx +-=+=+=????cot tan sin cos cos sin sin cos cos sin 22222222 . 二、选择题(每小题3分,共15分) 答案: 1、 2、 3、 4、 5、 。 1、设)(x f 为偶函数,)(x ?为奇函数,且)]([x f ?有意义,则)]([x f ?是 (A) 偶函数; (B) 奇函数; (C) 非奇非偶函数; (D) 可能奇函数也可能偶函数. 答案:A 王丽君 2、0=x 是函数??? ??=≠-=.0 ,0 ,0 ,cos 1)(2x x x x x f 的 (A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点. 答案:D 俞诗秋

高等数学定积分复习题

1. 求 dx e x ?-2ln 01。5.解:设t e x =-1,即)1ln(2+=t x ,有dt t t dx 122+= 当0=x 时,0=t ;当2ln =x 时,1=t 。 dt t dt t t dx e x )111(21211021 0222ln 0???+-=+=- 22)1arctan 1(2)arctan (210π- =-=-=x t . 2. 求由两条曲线2x y =与2y x =围成的平面区域的面积。 .解:两条曲线的交点是)0,0(与)1,1(,则此区域的面积 31)3132()(1 0323210=-=-=?x x dx x x S 3. 求反常积分 ?+∞-+222x x dx 。 解:dx x x x x dx x x dx b b b b )2111(lim 3 12lim 222222+--=-+=-+???+∞→+∞→+∞ 4ln 3 1)4ln 21(ln lim 31)21ln(lim 312=++-=+-=+∞→+∞→b b x x b b b 5、 4. 设???≤<≤≤-+=20,02,13)(32x x x x x f ,求?-22)(dx x f 解:原式=??-+0 22 0)()(dx x f dx x f ---------5分 =14 ----------5分 6. 求由曲线32,2+==x y x y 所围成的区域绕x 轴旋转而得的旋转体体积。 解:两曲线交点为(-1,1)(3,9)-------2分 面积?--+=3122)32(dx x x S π ---------5分 =17 256 7. 计算定积分2 2π π -? 8. 设()f x 在区间[,]a b 上连续,且()1b a f x dx =?,求() b a f a b x dx +-?。 答案:解:令u a b x =+-,则当x a =时,u b =;当x b =时,u a =,且d x d u =-, 故 ()b a f a b x dx +-?=()a b f u du -? =()1b a f x dx =?。

关于清华大学高等数学期末考试

关于清华大学高等数学期 末考试 This manuscript was revised on November 28, 2020

清华大学 2010-2011学年第 一 学期期末考试试卷(A 卷) 考试科目: 高等数学A (上) 考试班级: 2010级工科各班 考试方式: 闭卷 命题教师: 一. 9分 ) 1、若在) ,(b a 内,函数)(x f 的一阶导数0)(>'x f ,二阶导数0)(<''x f ,则函数)(x f 在此区间内单调 ,曲线是 的。 2、设?????+=+=232322t t y t t x 确定函数)(x y y =,求=22dx y d 。 3、=? dx 1cos 12 。 本大题共3小题,每小题3分,总计 9分) 1、设A x x ax x x =-+--→1 4lim 231,则必有 答( ) 2、设211)(x x f -=,则)(x f 的一个原函数为 答( ) 3、设f 为连续函数,又,?=x e x dt t f x F 3)()(则=')0(F 答( ) 2小题,每小题5分,总计10分 ) 1、求极限x e e x x x cos 12lim 0--+-→。

2、x y 2ln 1+=,求y '。 3小题,每小题8分,总计24分 ) 1、讨论?? ???=≠=0,00arctan )(2 x x x x x f ,,在0=x 处的可导性。 2、设)(x f 在]1,0[上连续,且1)(0≤≤x f ,证明:至少存在一点]1,0[∈ξ,使得 ξξ=)(f 。 3、证明不等式:当4>x 时,22x x >。 3小题,每小题8分,总计24分 ) 1、求函数x e y x cos =的极值。 2、求不定积分? x x x d cos sin 3。 3、计算积分?-+-+2222)cos 233(ln sin ππdx x x x x 。 4小题,每小题6分,总计24分 ) 1、求不定积分? +)1(10x x dx 。 2、计算积分?+πθθ4 30 2cos 1d 。 3、求抛物线221x y = 被圆822=+y x 所截下部分的长度。 4、求微分方程''-'-=++y y y x e x 2331的一个特解。

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积 (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. 第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量 注: (1) ∑ =?n i i i x f 1 )(ξ与区间的分割法x i 和取点法 i 有关; 而 ? b a dx x f )(与x i 和 i 无 关. (2) ? b a dx x f )(与a 、b 、f 有关,与x 无关,即: [][]???? ===b a b a b a b a d f du u f dt t f dx x f )()()()( 2.定积分存在定理 定理 若)(x f 在[a , b ]上有界且只有有限个间断点,则)(x f 在[a , b ]上可积. 推论 若)(x f 在[a , b ]上连续,则)(x f 在[a , b ]上可积. 例1. 求 ?1 xdx

清华大学一元微积分期末考题 答案

一.填空题(每空3分,共15空)(请将答案直接填写在横线上!) 1. =-?dx x x 2)1(ln 答案:C x x x x +--+-ln |1|ln 1ln 2. ? =+x dx 2cos 1 。 答案: C x +?? ? ??tan 21arctan 21 3. =? +∞ 1 2 arctan dx x x 解: 22 ln 4)1(arctan arctan 121 1 2+=++-=?? ∞++∞ ∞+πx x dx x x dx x x 4.C x dx x xf +=?arctan )(,则 =? dx x f ) (1 。 答案:C x x ++4 24 2 5. =++?-dx x x x 2 22sin 1cos )1(π π 。 答案: 2 π 6. =?? ? ???22x x t dt e dx d 。 答案:2 4 2x x e xe - 7. 设)(x f 为连续函数,0)0(≠f ,? =x dt t f t x F 0 2 )()(,当0→x 时,)(x F 与k x 是同阶无穷小,则=k 。 答案:3 8. 将22 (3)1x y -+=绕y 轴转一圈,则所得图形围成的体积为 。 答案:2 6π 9. 设0>m ,且广义积分? +∞ +0 m x x dx 收敛,则m 的范围为 答案:1>m

10.幂级数∑∞ =-+1 2)5(2n n n n x 的收敛域为 。 答案:)5,5(- 11. 级数 ∑ ∞ +=-1 1 sin )1(n p n n n 条件收敛,则参数p 的范围为 。 答案:01≤<-p 12.在00=x 点,函数 ? -x t dt e 0 2 的幂级数展开为 答案:∑+∞ =++-0 1 2)12(!)1(n n n n n x ,?∈x 13.'x x y y e e ++=,的通解是 。 答案:ln 1y y x e e e C =++ 14.0)2(=-+dx y x xdy 满足0)1(=y 的解为 。 答案:2 x x y -= 15. 初值问题()? ??='=='+''0)0(,1)0(0 22y y y x y 的解为 。 答案:1=y 二.计算题(每题10分,共40分) 1.求p 的范围,使得1sin ln p dx x x π∞?收敛 解:???∞+∞+=2211ln sin ln sin ln sin x dx x x dx x x dx x p p p πππ, 1x =附近,p p x x x x )1(1 11~ln 1sin -?? ? ??-ππ ,所以仅当20p ->时?21ln sin x dx x p π收敛 ……………………………………………….5分 x x x x x p p ln ~ln 1sin ,π π +∞→对任意的p 成立,所以只需要考虑广义积分2ln p dx x x π∞?

清华大学 2016-2017学年第2 学期 高等数学A期末考试试卷

清华大学高等数学A 期末考试试卷 2016~2017学年第2 学期 考试科目:高等数学A 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、填空题(本大题共5小题,每小题3分,共15分) 1.二元函数2ln(21)z y x =-+的定义域为 。 2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。 3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。 4.设yz u x =,则du = 。 5.级数11 (1)n p n n ∞ =-∑,当p 满足 条件时级数条件收敛。 二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y +=的通解是 ( ) A .2x y Ce = B .22x y Ce = C .22y y e Cx = D .2y e Cxy = 2.求极限 (,)(0,0)lim x y →= ( ) A . 14 B .12- C .1 4 - D .12 3 .直线: 327 x y z L ==-和平面:327 80x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上

C .直线L 垂直于平面π D .直线L 与平面π斜交 4.D 是闭区域2222{(,)|}x y a x y b ≤+≤, 则D σ= ( ) A .33()2 b a π - B .332()3b a π- C .334()3b a π- D .333()2b a π- 5.下列级数收敛的是 ( ) A .11(1)(4)n n n ∞ =++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D .1 n ∞ = 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。 2. 计算二重积分22 D x y dxdy x y ++?? ,其中22{(,)1,1}D x y x y x y =+≤+≥。 3.设(,)z z x y =为方程2sin(23)43x y z x y z +-=-+确定的隐函数,求z z x y ??+??。

清华大学微积分学期中考试试卷

2006级微积分(二)期中考试试卷 院系_________ 班级_____________ 姓名____________ 学号__________ 一、填空题(每小题4分,共24分) 1.同时垂直于矢量{}1,2,1和矢量{}1,2,1-的单位矢量为 _____________。 2.用参数方程?????+=+-==t z t y x 2311 表示的直线L 的点向式方程为_________________。 3.曲线:L ???=+=01 2x y z 绕z 轴旋转的旋转曲面在点P )3,1,1(处的切平面方程为 (化简为一般方程) 。 4.函数32),,(z xy z y x f =在点)1,1,1(P 处的微分P df =________________。 5.设 y x x y e x z xy arctan )2(sin 5-+?=π 。则函数),(y x z 在点)1,2(P 的 偏导数=??P x z 。 6.逐次积分 ??2 0104x xdy dx 的值 = 。 二、选择题(每小题4分,共16分) 7.关于函数),(y x f 在点),(b a P 的性态,下列结论中不对的是( ) A . 在点),(b a P 的偏导数),(b a f x '存在推不出沿方向{}0,1的方向导数存在; B . 在点),(b a P 沿方向{}0,1的方向导数存在推不出偏导数),(b a f x '存在; C . 在点),(b a P 的两个偏导数存在推不出在点),(b a P 连续;

D . 在点),(b a P 连续推不出在点),(b a P 的两个偏导数存在。 8.在空间直角坐标系中,方程 053=+y x 表示的几何对象为( ) A .通过原点的直线; B .Oxy 平面上的直线; C .垂直于Oz 轴的平面; D .包含Oz 轴的平面。 9.函数3xy z =在原点处的函数值( ) A .是极小值; B .是极大值; C .不是极值 D .无法判定是否为极值。 10.关于函数),(y x f z = 在约束条件0),(=y x g (),(y x f ,),(y x g 处处可微)下的极值点),(00y x P 的可能范围,合理的描述为( ) A . 完全包含在曲线0),(=y x g 与等值线c y x f =),(相切的切点集合中; B . 完全包含在曲线0),(=y x f 与等值线c y x g =),(相切的切点集合中; C . 完全包含在使得偏导数),(),,(y x f y x f y x 都为零的驻点集合中; D . 以上三个结论都不对。 三、计算下列各题(每小题6分,总分48分) 11.设)()3,(xy y y x x f z ?++=,?,f 具有二阶连续导数,求y x z ???2

清华大学高等数学期末考试

... 清华大学 2010- 2011 学年第一学期期末考试试卷( A 卷)考试科目:高等数学A(上)考试班级:2010 级工科各班 考试方式:闭卷命题教师: 大题一二三四五六总分 得分 得分评卷人 一 . 填空题(将正确答案填在横线上。本大题共 3 小题,每小题 3 分,总计 9 分) 1、若在( a, b)内,函数f ( x)的一阶导数 f (x)0 ,二阶导数 f ( x) 0 ,则函数 f (x) 在此区间内单调,曲线是的。 x t 22t 2确定函数 y d 2 y 2、设 2t 3 3t y(x) ,求2。 y dx 3、12cos 1 dx。 x x 得分评卷人 二. 单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号 中。本大题共 3 小题,每小题 3 分,总计 9 分)

... x 3 ax 2 x 4 1、设 lim x 1 A ,则必有 x 1 ( A)a 2, A 5 ; (B)a 4, A 10 ; (C )a 4, A 6 ; (D ) a 4,A 10 . 答 ( ) 2、设 f ( x) 1 ,则 f (x) 的一个原函数为 2 1 x ( A) arcsin x (B) arctanx 1 1 x 1 1 x (C ) ln 1 x (D) ln x 2 2 1 答 ( ) e x 3、设 f 为连续函数,又, F ( x) x 3 f (t) dt 则 F (0) ( A) e (B) f (1) (C)0 (D ) f (1) f (0) 答 ( ) 得分 评卷人 三 . 解答下列各题(本大题共 2 小题,每小题 5分,总计 10分) 1、求极限 lim e x e x 2 。 x 0 1 cos x 2、 y 1 ln 2 x , 求 y 。

相关主题
文本预览
相关文档 最新文档