当前位置:文档之家› 耗能减震结构

耗能减震结构

耗能减震结构
耗能减震结构

9.3 耗能减震结构设计

9.3.l 结构耗能减震原理与耗能减震结构特点

结构耗能减震技术是在结构物某些部位(如支撑、剪力墙、节点、连接缝或连接件、楼层空间、相邻建筑间、主附结构间等)设臵耗能(阻尼)装臵(或元件),通过耗能(阻尼)装臵产生摩擦,弯曲(或剪切、扭转)弹塑(或粘弹)性滞回变形耗能来耗散或吸收地震输人结构中的能量,以减小主体结构地震反应,从而避免结构产生破坏或倒塌,达到减震控震的目的。装有耗能(阻尼)装臵的结构称为耗能减震结构。

耗能减震的原理可以从能量的角度来描述,如图9.11结构在地震中任意时刻的能量方程为:

传统抗震结构 E in=E v+E c+E k+E h

耗能减震结构 E in=E v+E c+E k+E h+E d

式中E in——地震过程中输入结构体系的能量;

Ev ——结构体系的动能;

Ec——结构体系的粘滞阻尼耗能;

E k——结构体系的弹性应变能;

E h——结构体系的滞回耗能;

Ed——耗能(阻尼)装臵或耗能元件耗散或吸收的能量。

图 9.11 结构能量转换途径对比

a )地震输人

b )传统抗震结构

c )消能减震结构

在上述能量方程中,由于Ev 和Ek 仅仅是能量转换,不能耗

能,Ec 只占总能量的很小部分(约5%左右),可以忽略不计。在

传统的抗震结构中,主要依靠Eh 消耗输入结构的地震能量,但

因结构构件在利用其自身弹塑性变形消耗地震能量的同时,构件

本身将遭到损伤甚至破坏,某一结构构件耗能越多,则其破坏越

严重。在耗能减震结构体系中,耗能(阻尼)装臵或元件在主体

结构进入非弹性状态前率先进入耗能工作状态,充分发挥耗能作

用,耗散大量输入结构体系的地震能量,则结构本身需消耗的能

量很少,这意味着结构反应将大大减小,从而有效地保护了主体

结构,使其不再受到损伤或破坏。

一般来说,结构的损伤程度与结构的最大变形Δmax 和滞回

耗能Eh (或累积塑性变形)成正比,可以表达为:

),(max h E f D ?=

在耗能减震结构中,由于最大变形和构件的滞回耗能较之传

统抗震结构的最大变形和滞回耗能大大减少,因此结构的损伤大

大减少。

耗能减震结构具有减震机理明确,减震效果显著,安全可靠,经济合理,技术先进,适用范围广等特点。目前,已被成功用于工程结构的减震控制中。

9.3.2 耗能减震装臵的类型与性能

9.3.2.1 耗能减震装臵的类型与性能

耗能减震装臵的种类很多,根据耗能机制的不同可分为摩擦耗能器。钢弹塑性耗能器、铅挤压阻尼器、粘弹性阻尼器和粘滞阻尼器等;根据耗能器耗能的依赖性可分为速度相关型(如粘弹性阻尼器和粘滞阻尼器)和位移相关型(如摩擦耗能器、钢弹塑性耗能器和铅挤压阻尼器)等。

(1)摩擦耗能器

图 9 12 Pall型摩擦耗能器及典型滞回曲线

摩擦耗能器是根据摩擦做功而耗散能量的原理设计的。目前已有多种不同构造的摩擦耗能器,如Pall型摩擦耗能器、摩擦筒制震器、限位摩擦耗能器、摩擦滑动螺栓节点及摩擦剪切铰耗能器等。图9.12(a)(b)为Pall等设计的摩擦耗能装臵,它是一可滑动而改变形状的机构。机构带有摩擦制动板,机构的滑移受板间摩擦力控制,而摩擦力取决于板间的挤压力,可以通过松紧节点板的高强螺栓来调节。

该装置按正常使用荷载及小震作用下不发生滑动设计,而在强烈地震作用下,其主要构件尚未发生屈服,装置即产生滑移以摩擦功耗散地震能量,并改变了结构的自振频率,从而使结构在强震中改变动力特性,达到减震目的。(如何设计,如何计算)

摩擦耗能器种类很多,但都具有很好的滞回特性,滞回环呈矩形,耗能能力强,工作性能稳定等特点。图9.12(c)为典型的滞回曲线。摩擦耗能器一般安装在支撑上形成摩擦耗能支撑。

(2)钢弹塑性耗能器

软钢具有较好的屈服后性能,利用其进入弹塑性范围后的良好滞回特性,目前已研究开发了多种耗能装臵,如加劲阻尼(ADAS)装臵、锥形钢耗能器、圆环(或方框)钢耗能器、双环钢耗能器、加劲圆环耗能器。低屈服点钢耗能器等。这类耗能器具有滞回性能稳定,耗能能力大,长期可靠并不受环境与温度影

响的特点。

加劲阻尼装臵是由数块互相平行的X形或三角形钢板通过定位件组装而成的耗能减震装臵,如图9.13(a)所示。它一般安装在人字形支撑顶部和框架梁之间,在地震作用下,框架层间

相对变形引起装臵顶部相对于底部的水平运动,使钢板产生弯曲屈服,利用弹塑性滞回变形耗散地震能量。图9.13u)为8块三角形钢板组成的加劲阻尼装臵的滞回曲线。

双环钢环耗能器由两个简单的耗能圆环构成,这种耗能器既保留了圆环钢耗能器变形大、构造简单、制作方便的特点,又提高了初始的承载能力和刚度,使其耗能能力大为改善。试验研究表明,这种耗能器的滞回环为典型的纺锤形,形状饱满,具有稳定的滞变回路。

加劲圆环耗能器由耗能圆环和加劲弧板构成,即在圆环耗能器中附加弧形钢板以提高圆环钢耗能器的刚度和阻尼,改善圆环钢耗能器承载能力和初始刚度较低的缺点。试验研究表明,加劲圆环耗能器工作性能稳定,适应性好,变形能力强,耗能能力可随变形的增大而提高,而且具有多道减震防线和多重耗能特性。

低屈服点钢是一种屈服点很低、延性滞回性能很好的材料,图9.14所示为钢材型号为BT-I。YP100、宽厚比D/t为40的屈服点钢耗能器试验后的形状和滞回曲线。可以看出,该类耗能器具有较强的耗能能力,滞回曲线形状饱满,性能稳定。

(3)铅耗能器

铅是一种结晶金属,具有密度大、熔点低、塑性好、强度低等特点。发生塑性变形时晶格被拉长或错动,一部分能量将转换成热量,另一部分能量为促使再结晶而消耗,使铅的组织和性能回复至变形前的状态。铅的动态回复与再结晶过程在常温下进行,耗时短且无疲劳现象,因此具有稳定的耗能能力。图9.15为利用铅挤压产生塑性变形耗散能量的原理制成的阻尼器。图9.15(a)为收缩管型,图9.15(b)为鼓凸轮型,当中心轴相对钢管运动时,铅被挤呀压通过中心轴与壁间形成的挤压口而产生塑性变形耗散能量。铅挤压耗能器具有有“库仑摩擦”的特点,

图915 铅挤压阻尼器及典型滞回曲线

其滞回曲线基本呈矩形,如图 9.15(C),在地震作用下,挤压力和耗能能力基本上与速度无关。此外,还有利用铅产生剪切或弯剪塑性滞回变形耗能原理制成的铅剪切耗能器I形铝耗能器等。

(4)粘弹性阻尼器

粘弹性阻尼器是由粘弹性材料和约束钢板所组成。典型的粘弹性阻尼器如图9.16(a)所示,它是由两个T形约束钢板夹一

块矩形钢板所组成,T形约束钢板与中间钢板之间夹有一层粘弹性材料,在反复轴向力作用下,约束T形钢板与中间钢板产生相对运动,使粘弹性材料产生往复剪切滞回变形,以吸收和耗散能量。

图 9.16 (b)为粘弹性阻尼器的典型滞回曲线,可以看出,其滞回环呈椭圆形,具有很好的耗能性能,它能同时提供刚度和阻尼。由于粘弹性材料的性能受温度、频率和应变幅值的影响,所以粘弹性阻尼器的性能受温度、频率和应变幅值的影响,有关研究结果表明,其耗能能力随着温度的增加而降低;随着频率的增加而增加,但在高频下,随着循环次数的增加,耗能能力逐渐退化至某一平衡值。当应变幅值小于50%时,应变的影响不大,但在大应变的激励下,随着循环次数的增加,耗能能力逐渐退化至某一平衡值。

(5)粘滞阻尼器

粘滞阻尼器主要有筒式粘滞阻尼器、粘滞阻尼墙系统等。筒式粘滞阻尼器一般由缸体、活塞和粘滞流体组成。活塞上开有小

孔,并可以在充有硅油或其他粘性流体的缸内作往复运动。当活

塞与筒体间产生相对运动时,流体从活塞的小孔内通过,对两者

的相对运动产生阻尼,从而耗散能量。图9.17(a )为典型的

油阻尼器,图9.17(b)为油阻尼器的恢复力特性,形状近似为

椭圆。油阻尼器产生的阻尼力一般与速度和温度有关。

9.3.2.2 耗能器的恢复为模型

(1)速度相关型耗能器的恢复力模型

图9.18为速度相关型耗能器的恢复力-变形曲线。速度相

关型耗能器的恢复力与变形和速度的关系一般可以表示为:

d d d F k C =?+?

式中d k 和d C ——耗能器的刚度和阻尼器系数;

?和 ?

—耗能器的相对位移和相对速度。 对于粘滞阻尼器,一般Kd=0,C=C 0,阻尼力仅与速度有关,

可表示为:0d F C =?

式中C 0粘滞阻尼器的阻尼系数,可由阻尼器的产品型号给

定或由试验确定。

对于粘弹性阻尼器,刚度和阻尼系数一般由式下式确定:

()()

()

d d AG AG C K ηωωωωδδ==

式中η(ω)、G (ω)—粘弹性材料的损失因子和剪切模量,

一般与频率和速度有关,由粘弹性材料特性曲线 确定;

A 、δ——粘弹性材料层的受剪面积和厚度;

ω—结构振动的频率。

(2)滞变型耗能器的恢复力模型

软钢类耗能器具有类似的滞回性能,可采用相似的计算模

型,仅其特征参数不同。该类耗能器的最理想的数学模型可采用

Ramberg -Osgood 模型,但由于其不便于计算分析,故可采用图

9.19(a )所示的折线型弹性-应变硬化模型来描述,恢复力和变

形的关系可表示为:()101d y y F k k α=?+?-?

式中K1—— 初始刚度;

a 。——第二刚度系数;

Δy —屈服变形。

摩擦耗能器和铅耗能器的滞回曲线近似为“矩形”,具有较好的库仑特性,且基本不受荷载大小、频率、循环次数等的影响,故可采用图9.19(b )所示的刚塑性恢复力模型。

对于摩擦耗能器,恢复力可由式(9.20)计算:

()()0sgn d F F t =?

F 0-静摩擦力

对于铅挤压阻尼器,恢复力可按式(9.21)计算: 1102ln d y A F f A βσ??=+ ???

式中 β——大于1的系数;

A1——铅变形前的面积;

A2——发生塑性后的截面面积;

f0——摩擦力。

9.3.3 耗能减震结构的设计要求

(1)耗能部件的设臵

耗能减震结构应根据罕遇地震作用下的预期结构位移控制要求,设置适当的耗能部件,耗能部件可由耗能器及斜支撑、填

充墙、梁或节点等组成。

耗能减震结构中的耗能部件应沿结构的两个主轴方向分别设臵,耗能部件宜设置在层间变形较大的位置,其数量和分布应通过综合分析合理确定。

(2)耗能部件的性能要求

耗能部件应满足下列要求:

①耗能器应具有足够的吸收和耗散地震能量的能力和恰当的阻尼;耗能部件附加给结构的有效阻尼比宜大于10%,超过20%时宜按20%计算。

②耗能部件应具有足够的初始刚度,并满足下列要求: 速度线性相关型耗能器与斜撑、填充墙或梁组成耗能部件时,该部件在耗能器耗能方向的刚度应符合式(9.22)要求: 16b V k C T π??≥ ???

式中Kb —支承构件在耗能器方向的刚度;

Cv —耗能器的线性阻尼系数;

T1—耗能减震结构的基本自振周期。

位移相关型耗能器与斜撑、填充墙或梁组成耗能部件时,该部件恢复力滞回模型的参数宜符合下列要求; /2/3

0.8Py Sy p Py s sy U U k U k U ??≤?????≥ ????????

式中Kp .——耗能部件在水平方向的初始刚度;

ΔU py ——耗能部件的屈服位移;

Ks ——设臵耗能部件的结构层间刚度;

ΔU sy ——设臵耗能部件的结构层间屈服位移。

③耗能器应具有优良的耐久性能,能长期保持其初始性能; ④耗能器应构造简单,施工方便,易维护。

⑤耗能器与斜支撑、填充墙、梁或节点的连接,应符合钢构件连接或钢与钢筋混凝土构件连接的构造要求,并能承担耗能器施加给连接节点的最大作用力。

(3)耗能器附加给结构的有效阻尼比和有效刚度

当采用底部剪力法、振型分解反应谱法和静力非线性法时,耗能部件附加给结构的有效阻尼比,可按式(9.25)估算:

()/4a C S W W ζπ= (9.25)

式中ζα—耗能减震结构的附加阻尼比;

Wc ——所有耗能部件在结构预期位移下往复一周所消耗的能量;

Ws ——设臵耗能部件的结构在预期位移下的总应变能。 不考虑扭转影响时,耗能减震结构在其水平地震作用下的总应变能,可按式(9.26)估算: ()12S i i W FU =∑ (9.26)

式中Fi ——质点i 的水平地震作用标准值;

Ui ——质点i 对应与水平地震作用标准值的位移。 速度线性相关耗能器在水平地震作用下所消耗的能量Wc 可按式(9.27)估算:

()222

12/cos C j j j W T C u πθ=?∑

式中 T1———耗能减震结构的基本自振周期;

Cj ——第j 个耗能器的线性阻尼系数;

θj ——第j 个耗能器的耗能方向和水平面的夹角; Δuj ——第j 个耗能器两端的相对水平位移。

当耗能器的阻尼系数和有效刚度与结构振动周期有关时,可取相应于耗能减震结构基本自振周期的值。

位移相关型、速度非线性相关型和其他类型耗能器在水平地震作用下所消耗的能量Wc ,可按式(9.28)估算;

C j W A =∑ (9.28)

式中Aj ——第j 个耗能器的恢复力滞回环在相对水平位移为 Δuj 时的面积。

耗能器的有效刚度可取耗能器的恢复力滞回环在相对水平位移为Δuj 时的割线刚度。

当采用非线性时程分析法时,耗能器附加给结构的有效阻尼比和有效刚度宜根据耗能器的恢复力模型确定。

(4)耗能减震结构体系的抗震计算分析

耗能减震结构体系的抗震计算分析,一般情况下,宜采用静力非线性分析或非线性时程分析方法。当耗能减震体系的主要结构构件基本处于弹性工作阶段时;可采取线性分析方法作简化估算,并根据结构的变形特征和高度等,分别采用底部剪力法、振型分解反应谱法和时程分析法。

分析时,耗能减震结构的总刚度应为结构刚度和耗能部件有效刚度的总和;耗能减震结构的总阻尼比应为结构阻尼比和耗能部件附加给结构的有效阻尼比的总和;耗能部件有效刚度和有效阻尼比,应通过试验确定。

本章小结

1.隔震和耗能减震是建筑结构减轻地震灾害的新技术、新方法和新途径。隔震体系通过延长结构的自振周期减少结构的水平地震作用,已被国外强震记录所证实。耗能减震体系通过耗能器增加结构阻尼来减少结构在风作用下的位移是公认的事实,对减少结构水平和竖向的地震反应也是有效的。

2.隔震技术有多种方案,如橡胶支座隔震、摩擦滑移隔震、滚动隔震、支撑式摆动隔震和混合隔震等。但目前研究和应用最多的是橡胶支座隔震,其中尤以铅芯橡胶支座应用最为广泛,它能在竖向支承结构的同时,提供水平向柔性和恢复力,并能提供所需的滞变阻尼。隔震层的位臵宜设臵在上部结构和基础之间,即结异,隔震层以下的结构设臵计算也更复杂,需作专门研究。

3、隔震结构方案确定时应综合考虑建筑高度和层数、最大高宽比、结构类型、场地等因素,经技术与经济比较后确定。

4.隔震支座布臵时应力求使质量中心和刚度中心一致。

5.隔震结构的抗震计算一般采用时程分析法,对砌体结构及其基本周期相当的结构可采用底部剪力法。

6.隔震结构的构造措施对上部结构、下部结构、隔震支座

的放臵与连接、穿越隔震层管线的连接、隔震结构与周边防震缝及隔震结构与地面之间的水平隔离缝等作出了要求和规定。

7.耗能器根据耗能的机制和材料不同,可分为摩擦耗能器、钢弹塑性耗能器。铅耗能器、粘弹性阻尼器。

粘滞阻尼器、记忆合金耗能器、铅粘弹性阻尼器及摩擦一弹塑性耗能器等。根据耗能性能和阻尼力与位移或速度的依赖性可分为位移相关型和速度相关型。

8.耗能器具有较宽的适用范围,不同类型的结构、不同高度的结构均适用,同时,耗能器不改变结构的基本形式,因此,耗能部件外的结构设计可按普通结构类型的要求执行。设计需要解决的问题是:耗能部件在结构中的分布和数量,耗能器附加给结构的阻尼比和刚度计算,耗能减震体系在罕遇地震作用下的位移计算以及耗能部件与主体结构的连接构造等。

思考题

gi 隔震结构和传统抗震结构有何区别和联系?

92 隔震和耗能减震有何异同?

93 隔震装臵有哪些性能要求?

94 隔震结构的布臵应满足哪些要求?

95 什么是水平向减震系数?如何取值?

9.6 如何进行隔震结构在罕遇地震作用下的变形验算?

97 耗能器有哪些类型?其性能特点是什么?

9.8 耗能部件附加给耗能减震结构的有效刚度和有效阻尼比应如何取值?

建筑隔振消能减震技术探析(精)

浅析建筑隔振消能减震技术 1 地震的危害 建筑物除了承受竖向荷载外, 还要承担风和地震水平荷载的作用, 建筑物越高,这个水平荷载效应就越明显。我国 41%的国土、 50%以上的城市位于地震烈度 7度以上的地区, 面临的地震灾害形势非常严峻。地震是人类面临的最严重的突发性的自然灾害之一, 对人民的生命和财产安全造成很大的危害。 1.1 造成大量人员伤亡 1976年唐山发生的 7.8级强烈地震, 顷刻间, 百余万人口工业城市被夷为平地,造成 24.2万人死亡, 16.4万余人重伤。自 1900年有记录以来,我国死于地震的人数达 55万之多,占全球地震死亡人数的 53%。 1.2 破坏人类赖以生存的环境 自我国 1900年有记录以来,地震成灾面积达 30多万平方公里, 房屋倒塌达 700万间。 1.3 冲击人类社会的正常运行秩序和造成大量的经济损失 唐山地震的直接经济损失近百亿元,震后重建投资达百亿元。 1995年,日本阪神地震中经济损失超过 1000亿美元。随着经济的高速发展, 城市化使人口和财富高度密集, 强烈地震造成的伤亡和损失将越来越大, 地震后的修复和城市的复兴就越有难度, 对国家经济发展和社会稳定的冲击也将更为剧烈。 2 传统抗震方法 地震造成的破坏给人类留下的烙印是深刻的。而我们结构工程师 们一直没有停止过对建筑物抗震的研究。建造抗强烈地震的建筑物和构筑物成为建筑工程领域重要的课题。为了抵御地震灾害, 通常的建筑结构设计采用的是

抗震设计,强调的是“ 抗” ,即采用“ 延性结构体系” 适当控制结构物的刚度,但容许结构构件(如梁、柱、墙、节点等等在地震时,进入非弹性状态,并且具有较大的延性,以消耗地震能量,减轻地震反映,使结构物“ 裂而不倒” 。 这种体系在很多情况下是有效的,但也存在很多局限性:首先, 由于结构物的承重构件在地震时进入非弹性状态, 对某些重要的结构物是不容许的(纪念性建筑、装饰昂贵的现代化建筑、原子能发电站等 ;其次,对于一般性建筑,当遭遇超过设防烈度地震时,由于主体结构已发生严重非弹性变形, 在地震后难以修复或在强地震中严重破坏, 甚至倒塌, 其破坏程度难以控制; 再次, 随着地震强度的增大, 结构的断面和配筋都相应增大,造成经济的“ 浪费” 。 3 隔震、消能减震 3.1 隔震与消能减震原理 隔振、减震控制的基本原理是在结构构件之间或建筑物与基础之间设置隔震、减震装置,通过隔震、减震装置的耗能特性,减小振动能量向周围环境的传递,达到减小振动对周围环境影响的目的。 3.2 隔震与减震方法 3.2.1 粘弹性阻尼结构 粘弹性阻尼结构的风洞试验、地震模拟振动台试验及大量的结构分析表明,在结构中安装粘弹性阻尼器可减小风振反应和地震反应 40%~80%,可确保主体结构在强风和强震中的安全性,并使结构在 强风作用下, 结构的舒适度控制在规定的范围内。西雅图哥伦比亚中心大厦起初是因为在风振的影响下,顶部几层有明显的不舒适感,安上粘弹性阻尼器后,不再有不舒适感,效果良好。若采用加大刚度的方法来获得同样的效果, 需要把现有的柱尺寸扩大一倍, 粗算价值约 800万美元,显然采用增加刚度的办法是难以接受的,而采用粘弹性阻尼器所用的试验及安装费用仅 70万美元。在北京的银泰中心也设置了粘滞阻尼器,试验结构证明有很好的减振效果。由此可见,采用粘弹性阻尼器减小建筑的风振或地震效应在经济上是相当可观的。 3.2.2 吸能减震

消能减震技术应用综述(一)

消能减震技术应用综述(一) 摘要:从目前结构消能减震技术的角度出发,论述了在实际设计中这些方法的原理和构造方式。 关键词:基础隔振结构消能减震调谐质量阻尼器 0引言 基础隔振与结构隔振是目前消能减震技术应用的最广泛,效果最好的方法。其中基础隔振是主动减震,而结构减震是被动隔振。结构消能减震技术属于结构减震控制中的被动控制。1基础隔振技术 1.1液压质量(HMS)控制系统。系统使用适用范围是底层柔性建筑,底层柔性建筑虽然能满足底层大空间的要求,但由于在地展中,柔性底层往往变形过大而导致结构破坏,其抗震性能较差,因此,提出采用结构控制的方法来改善此类建筑的抗震性能。HMS系统主要由液压缸、活塞和管路等组成,其安装在单层框架上,见图1。由图1可知,当框架受地面运动而产生振动时,由活塞推动液体,使管路中的液体和质量块随之振动,由于框架的一部分振动能里传递给了液体和质块,从而减小了框架结构的振动。HMS系统中液体的压缩性必须考虑,并建立了考虑液体压缩性的HMS系统的“弹性”计算分析模型,由“弹性”模型可得到结构和HMS系统组成的控制抗震建筑新体系。 1.2叠层橡胶支座基础隔震。叠层橡胶支座基础隔震建筑地震反应分析的常用力学模型有层间剪切模型、层间剪弯模型、层间扭转模型及空间杆系模型等,其中应用最多的是层间剪切模型。当利用层间剪切模型分析基础隔震建筑的动力响应时,首先需要将柔性隔震层的复杂滞回特性简化为可用于数值分析的恢复力模型。 2结构的消能减震技术1] 2.1摩擦阻尼器。摩擦耗能器是一种耗能性能良好、构造简单、造价低、制作方便的减振装置。普通摩擦耗能器其构造如图2所示,通过开有狭长槽孔的中间钢板相对于上下两块铜垫板的摩擦运动而耗能,调整螺栓的紧固力可改变滑动摩擦力的大小。试验结果表明:滑动摩擦力与螺栓的紧固力成正比;其最大静摩擦力和滑动摩擦力相差较小,但滑动摩擦力的衰减较大,达到30%,其原因是由螺栓松动引起的;滞回曲线表现出良好的刚塑性性能。 由摩擦滑动节点和4根链杆组成,摩擦滑动节点由钢板通过高强螺栓连接而成,耗能器的起滑力由节点板间的摩擦力控制,可在钢板之间夹设摩擦材料或是对接触面做处理来调节摩擦系数,通过松紧节点栓来调节钢板间的摩擦力,四周的链杆起连接和协调变形的作用。当支撑外力不能克服最大静摩擦力时,耗能器不产生滑动;当外力能够克服最大静摩擦力时,耗能器产生滑动并通过摩擦做功耗能。试验结果表明:Pall摩擦耗能器的工作性能稳定,耗能能力强。 2.2软钢阻尼器。软钢阻尼器是结构被动控制中耗能减震装置的一种,在地震或风振时,通过软钢发生塑性屈服滞回变形而耗散输入结构中的能量,从而达到减震的目的。在其内核钢支撑和外包层(钢管、钢筋混凝土或钢管混凝土)之间形成无粘结滑移界面,防止内核钢支撑在压力作用下屈曲,从而获得丰满的滞回曲线。该阻尼器具有方便耐用、滞回耗能性能良好的特点,逐渐得到工程界的广泛认可。 2.3铅阻尼器。铅橡胶复合阻尼器的构造主要是由薄钢板、橡胶、铅、挤压头、连接板及保护层所组成。薄钢板、橡胶、连接板中央预先留有圆孔,并通过高温高压硫化为一体,铅在硫化后通过挤压灌入预留孔中。薄钢板可经特殊处理以提高阻尼力和屈服后刚度。

耗能减震技术在结构减震中的应用研究(文献综述)

文献综述 耗能减震技术在结构减震中的应用研究 1.前言 传统的抗震设计是利用结构本身的抗震性能抵御地震作用,以达到抗震的目的,这是“硬碰硬”式的抗震, 是一种消极被动的抗震方法。耗能减震技术[1]原理是通过附加的子结构或者耗能装置,以消耗地震传递给结构的能量为目的,以减小主体结构地震反应或减轻其破坏, 达到抗震的目的。1972 年新西兰的Kelly等人[2]首先提出金属屈服耗能器,并进行了软钢耗能器的研究和试验。为了改善地震作用下结构的工作性能,近年来国内外已开发出了各种耗能阻尼器。目前, 已开发出多种耗能减震装置, 它们可归纳为以下三类: (1) 金属阻尼器; (2)摩擦耗能减震装置; (3)粘弹性阻尼器。 因其减震效果好、构造简单、造价低廉、适用范围广、维护方便等特点,受到各国研究者和工程师的重视。加拿大、意大利、日本、墨西哥、新西兰和美国等国家已将耗能减震装置应用到建筑中以减轻建筑物的地震反应, 以及在某些情况下减轻建筑物中设备振动损害的危险性。本文总结了国内外耗能减震技术研究和工程应用的最新进展。 2.耗能能减震的概念及原理 消能减震技术属于结构减震控制中的被动控制,它是指在结构某些部位设置阻尼装置,通过阻尼装置产生摩擦,弯曲(或剪切,扭转)弹塑性滞回变形消能来消散或吸收地震能量,以减小主体结构地震反应,从而避免结构产生破坏或倒塌,达到减震抗震的目的。装有阻尼(消能)装置的结构称为耗能减震结构。 耗能减震的原理[8]可以从能量的角度来描述,如图1所示,结构在地震中任意时刻的能量方程为:

(a )地震输入;(b )传统抗震结构; (c )消能减震结构 图1 结构能量转换途径对比 传统抗震结构: in v c k h E E E E E =+++(1) 耗能减震结构: ''''in v c k h d E E E E E E =++++ (2) 式中: E in 、E in ′——地震过程中输人结构体系的能量; E v 、E v ′——结构体系的动能; E c 、E c ′——结构体系的粘滞阻尼消能; E k 、E k ′——结构体系的弹性应变能; E h 、E h ′——结构体系的滞回消能; E d ——消能(阻尼)装置或消能元件消散或吸收的能量。 在上述能量方程中,由于是E v (或E v ′)和E k (或E k ′)仅仅是能量转换,不能消能,E c 和E c ′只占总能量的很小部分(约5%左右),可以忽略不计。在传统的抗震结构中,主要依靠E h 消耗输入结构的地震能量,但因结构构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏。在消能减震结构体系中,消能(阻尼)装置或元件在主体结构进入非弹性状态前率先进入消能工作状态,充分发挥消能作用,消散大量地震能量,则主体结构需消耗的能量很少,从而有效地保护了主体结构。 3.耗能装置的减振及其在实际工程中的应用 采用各种阻尼器来控制结构的振动反应是一种典型的被动控制系统,它是通过增加结构的阻尼、耗散结构的振动能量来达到减小结构响应的目的。从能量观

耗能减震结构

9.3 耗能减震结构设计 9.3.l 结构耗能减震原理与耗能减震结构特点 结构耗能减震技术是在结构物某些部位(如支撑、剪力墙、节点、连接缝或连接件、楼层空间、相邻建筑间、主附结构间等)设臵耗能(阻尼)装臵(或元件),通过耗能(阻尼)装臵产生摩擦,弯曲(或剪切、扭转)弹塑(或粘弹)性滞回变形耗能来耗散或吸收地震输人结构中的能量,以减小主体结构地震反应,从而避免结构产生破坏或倒塌,达到减震控震的目的。装有耗能(阻尼)装臵的结构称为耗能减震结构。 耗能减震的原理可以从能量的角度来描述,如图9.11结构在地震中任意时刻的能量方程为: 传统抗震结构 E in=E v+E c+E k+E h 耗能减震结构 E in=E v+E c+E k+E h+E d 式中E in——地震过程中输入结构体系的能量; Ev ——结构体系的动能; Ec——结构体系的粘滞阻尼耗能; E k——结构体系的弹性应变能; E h——结构体系的滞回耗能; Ed——耗能(阻尼)装臵或耗能元件耗散或吸收的能量。

图 9.11 结构能量转换途径对比 a )地震输人 b )传统抗震结构 c )消能减震结构 在上述能量方程中,由于Ev 和Ek 仅仅是能量转换,不能耗 能,Ec 只占总能量的很小部分(约5%左右),可以忽略不计。在 传统的抗震结构中,主要依靠Eh 消耗输入结构的地震能量,但 因结构构件在利用其自身弹塑性变形消耗地震能量的同时,构件 本身将遭到损伤甚至破坏,某一结构构件耗能越多,则其破坏越 严重。在耗能减震结构体系中,耗能(阻尼)装臵或元件在主体 结构进入非弹性状态前率先进入耗能工作状态,充分发挥耗能作 用,耗散大量输入结构体系的地震能量,则结构本身需消耗的能 量很少,这意味着结构反应将大大减小,从而有效地保护了主体 结构,使其不再受到损伤或破坏。 一般来说,结构的损伤程度与结构的最大变形Δmax 和滞回 耗能Eh (或累积塑性变形)成正比,可以表达为: ),(max h E f D ?= 在耗能减震结构中,由于最大变形和构件的滞回耗能较之传 统抗震结构的最大变形和滞回耗能大大减少,因此结构的损伤大

耗能阻尼器的减振及其在实际工程中的应用

耗能阻尼器的减振及其在实际工程中的应用 摘要:本文介绍了多种阻尼器的力学性能和其优缺点,为不同环境下选用合适的阻尼器减震装置提供方便。 关键词:耗能减震阻尼器工程应用 从动力学观点看,耗能装置的作用相当于增大结构的阻尼,从而减小结构的反应。由于其装置简单、材料经济、减振效果好、使用范围广等特点,在实际结构控制中具有广泛的应用前景。耗能减震装置的种类繁多,其常用的主要有:金属耗能阻尼器、摩擦耗能阻尼器、粘弹性阻尼器和粘滞阻尼器。 1金属耗能阻尼器 金属耗能阻尼器是利用金属不同形式的弹性滞回变形来消耗能量。由于金属在进入塑性状态后具有良好的滞回特性,并在弹塑性滞回变形过程中吸收大量能量,因而被用来制造不同类型和构造的耗能减震器。目前已开发和利用的主要有:扭转梁耗能器、弯曲梁耗能器、U行钢板耗能器、钢棒耗能器、圆环耗能器、双圆环耗能器、加劲圆环耗能器、X型和三角形耗能器等。 金属耗能阻尼器在实际工程中的应用:金属耗能阻尼器中的无粘结支撑在日本、台湾和美国都得到推广应用【1】。低屈服点钢耗能器、蜂窝状耗能器在日本多栋建筑中得到应用【2】。台湾金华休闲购物中心。本工程采用三角形加劲耗能装置,共270组。在地震(PGA=0.39)作用下,最大层间位移也未超过规范规定的0.014rad。潮汕星河大厦。大厦为地下一层,地上原设计为22层。后来在施工过程中业主要求增加3层。为了使加层后的结构满足抗震设防要求,安装了28组耗能阻尼器。装上阻尼器后,在大震作用下,结构的顶层位移和层间位移角均满足要求。2000年建成的日本新住友医院,采用低屈服点剪切板耗能器进行结构减震控制。结构在短边方向采用低屈服点剪切板耗能器,采用附加短柱的形式布置。在加入耗能器后,结构的层间位移减小30%,控制效果明显。 2摩擦阻尼器 摩擦阻尼器是应用较早和较广泛的阻尼器之一。摩擦阻尼器是一种位移相关型的阻尼器,它是利用两块固体之间相对滑动产生的摩擦力来耗散能量。其基本理论是建立在以下假设的基础上: (1)总的摩擦力不依赖于物体接触面的面积; (2)总的摩擦力与在接触面上的总的法向力成比例;

耗能减震技术的研究、应用与发展

耗能方案 作者:szzyq 来源:本人类别:结构设计、论文日期:2002.03.07 今日/总浏览: 1/415 抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构 控制和混合控制。 制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenak 虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动

水公司技术研究所。 于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合 减震技术。 机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。 的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结LD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来以控制其风振反应。 剪力墙等)设计成耗能构件或在结构物的某些部位(节点或连接处)装设阻尼器。在风载

《隔震与耗能减振》课程作业

《结构隔震与耗能减振》 课程作业1 姓名:XXX 学号:XXXXXX

1. 作业要求 计算并绘制5%和30%阻尼比下的EI Centro(1940,NS)地震记录的的绝对加速度反应谱、伪加速度反应谱及(此次作业中暂且称之为“近似加速度 反应谱”),并比较三者的异同。 2. 建立分析模型 对于图1所示的EI Centro (1940,NS)地震波时程,采用图2所示的结构进行绝对加速度反应谱和伪加速度反应谱分析。 5 10 15 20 -4-3-2-1012 3 Time (sec) a g (m /s 2) 图1 EI Centro(1940,NS)波时程 图2 分析模型 设系统的自振频率为,阻尼比为,则此SDOF 结构的标准运动方程为: 式(1) 转化成状态方程为: 式(2) 其中, , , , ,, 在Matlab 中用函数y=lsim(A,B,C,D,u,t),即可求得系统的状态量。

3. 地震反应谱计算方法 上面分析中的分别为结构相对地面的位移、速度和加速度。 绝对加速度反应谱: 由式(1)可得结构的绝对加速度为: 其绝对加速度反应谱值为: 绝对加速度反应放大系数为; 伪加速度反应谱: 按照抗震设计规范中的结构剪力公式: 得其伪加速度反应谱值为: 伪加速度反应放大系数为: 近似加速度反应谱(): 当激励为简谐荷载时: 求两次导得到加速度反应: 所以绝对加速度谱与伪加速度谱具有如下近似关系: 4. 计算结果 根据前面分析,分别在阻尼比取为时计算得到的EI Centro (1940,NS)地震波的绝对加速度反应谱、伪加速度反应谱与近似加速度反应谱的结果如图3所示。

消能减震技术在建筑加固工程中应用

消能减震技术在建筑加固工程中应用 发表时间:2019-04-26T15:11:51.530Z 来源:《基层建设》2019年第3期作者:裴鑫 [导读] 摘要:在现代传统的抗震工艺中拥有诸多方法,其中最传统的就是房屋得上部结构和它的基础牢十分结实地连在一起,当地震来临时,地面引起的运动能量能够通过在地上实施的基础输送到房屋结构中,从而导致房屋结构产生振动和变形的现象乃至倒塌。 滕州市工程建设监理技术服务中心山东滕州 277500 摘要:在现代传统的抗震工艺中拥有诸多方法,其中最传统的就是房屋得上部结构和它的基础牢十分结实地连在一起,当地震来临时,地面引起的运动能量能够通过在地上实施的基础输送到房屋结构中,从而导致房屋结构产生振动和变形的现象乃至倒塌。本文中所阐述的“消能隔震”的指导目标在于使基础和上部房屋结构进行有效分离,将建筑物和地面基础进行隔离,从而实现地震时地面晃动但是地面上的建筑物基本不动,以期提高建筑物的安全水平。文章中以某医科大学第一附属医院综合服务楼项目为例,根据实际情况设计隔震层并采用减隔震技术,提高房屋结构的抗震水平。 关键词:消能;减隔震;施工技术 1消能减震加固原理 消能减震加固,是通过在原结构设置阻尼器等减震装置来实现抗震目标的方法。结构消能减震加固,即是在结构物的某些部位设置消能装置,通过消能装置产生摩擦、弯曲(或剪切、扭转)、弹塑(或粘弹)性滞回变形来耗散或吸收地震输入结构中的能量,以减少主体结构的地震反应。 2消能减震技术在建筑加固工程中应用 某医科大学第一附属医院综合服务楼工程总面积41308.08㎡,地下一层,地下二层为车库,地下三层为车库局部为人防地下室;地上十六层,框剪结构,使用功能为综合服务楼,本工程所在的乌鲁木齐市位于天山地震带,抗震设防烈度8°,设计基本地震加速度值为0.20g。传统的构造抗震体系允许混凝土承重结构或其余结构构件,例如梁柱节点、梁梁节点等在地震来临时出现主体结构节点损坏或混凝土承重结构构件在地震中的损坏过程,是地震产生的能量的“消能”过程,若混凝土承重结构或结构构件等严重破坏或倒塌,地震所产生的能量的消解耗尽的最终完成。所使用的主要方法是根据建筑构造本身受力结构构件的全体耗能特性和变形能力来硬性吸收地震波释放出的能量。它主要依靠曾经已有的设计经验,调整主体结构容易出现损坏的局部刚度或整体刚度,加强因地震而造成的破坏点抵抗地震波释放能量所产生的变形及损坏,使主要的结构受力构件在受到地震波影响时能够处于非弹性状态,并具备一定的延伸性,从而能够确保主体结构构件等在地震波释放能量时产生足够的延性破坏,以抵消强烈的地震波所带来的能量。上述原理即是全球范围内比较常规的传统结构抗震的基本方法,“小震不坏、中震可修、大震不倒”是这种方法的抗震设防三大基本点,虽然此类抗震设防结构应用的非常普遍,但在应用过程中也存在着非常多的不足之处,所以采用消能减震技术具有紧迫性及必要性。 2.1阻尼器的布置原则 1)减震设计控制指标:按多遇地震计算时,主体结构应该保持弹性要求,而且非结构构件也不应出现明显的破坏;按罕遇地震计算时,结构从弹性过渡到弹塑性,但阻尼器系统仍能正常工作,发挥其功能。2)在阻尼器布置时,应充分考虑建筑平面使用功能的要求,选择合适位置的隔墙,将阻尼器安置在中间,并采用防火轻质材料作为隔板,然后依据位移控制要求和水平向地震力等参数,通过计算分析来确定阻尼器的准确位置和数量。消能构件一般布置在结构的X,Y两个主轴方向,以达到增加两个方向的阻尼和刚度的目标。3)阻尼器应安置在相对速度或层间相对位移较大的楼层,通过尽可能地增加消能器两端的相对速度和相对变形,以提高阻尼器的有效减震作用。4)初步布置好阻尼器后,对结构进行整体抗震性能分析,包含多遇地震作用下的弹性分析和罕遇地震作用下的弹塑性分析,根据分析结果进行优化调整。5)截面配筋设计时,应按照各层消能部件的最大阻尼力来计算,对结构中相关梁柱节点进行强度校核,并适当对节点部位采取一些补强措施,来保证结构的安全性能。 2.2隔震层施工技术 所谓基础隔震系统的原理是,在上部主体结构与基础结构中间设置专门的隔震元件和耗能装置,产生有弹性的底层部位,作为隔震层,用来分隔上部主体结构与基础结构,把建筑物分割为上部结构、隔震层和下部结构三部分,达到提高上部结构的使用功能,以期达到避开地震的效果,解除上部结构与水平地面运动的耦连关系,并利用隔震层的高隔离性的特点,抵消地震发生时地震波的输入,使地震力的作用对上部结构大大减小,达到整体建筑结构的稳定性及安全性,在现今的隔震工程中,对结构间隔震技术的探讨和应用开始广泛开展,在工程设计过程中设计合理的隔震层,能够起到很好的减震效果,不仅在减小建筑的地震效应或风振现象作用明显,而且大大降低工程的造价成本,目前日常应用的隔震层技术主要有以下四项技术:(1)橡胶隔震支座的研发、生产技术。①通过工程设计及施工应用等大量的试验,摸索研制出1000橡胶隔震支座的材料、粘贴剂等最佳配合比设计;②通过设计理论与施工实践相结合,获得1000橡胶隔震支座的力学性能指标。(2)橡胶隔震支座安装施工技术。①在施工时,应尽可能的做到预埋的一次合格,避免对支座出进行二次注浆,提高一次施工合格率,缩短施工时间,此类施工过程不复杂,而且工作效率较高;②通过对隔震支座同一位置的螺栓孔的钢模板,对锚固筋和套筒的平面定位及标高进行精准的确定,避免产生错筋和套简在浇筑混凝士偏位现象;③为了保证支座处钢模板同支座底部混凝土接触部位粘结的更结实,在钢模板上开通气孔,确保贴合密实;④为了保证橡胶隔震支座锚固筋相对主体结构具备更好的垂直度,在支座底部焊接直径14的定位筋,以确保锚固筋避免产生水平位移现象;⑤为了更方便更换隔震支座,在隔震支座上铺贴一层3mm厚SBS改性沥青防水卷材。(3)隔震支座变形监测技术。所谓的隔震支座变形监测技术就是在支座出安装高新智能型位移设备以及自动跟踪全站仪进行全方位的监测,利用无线网络的便利,随时将位移数据输入到对应的数据库里,里面的软件可以不定期收集数据进行分析研究,并通过图表法将变化量显现出来,从而达到自动监测的效果。(4)橡胶隔震支座更换施工技术在上部主体结构的荷载作用下,隔震支座处于被压缩的状态,因此隔震支座应具备适当的压缩量,并将上下法兰板用钢板进行焊接,以避免出现上部主体结构在顶升的过程中出现自然的反弹现象,造成结构在顶升时出现向上位移的后果,造成混凝土结构构件的损坏。千斤顶加载方式:在上支墩的顶升过程中,主支墩按照100t为一级进行加载,周边支墩按照50t为一级进行加载。这种方法利用了加权平均的方法,安全性能高。 3结语 综上所述,隔震结构的变形主要集中在隔震层,隔震层以上的结构基本为整体平动,隔震装置的作用在于当该建筑结构在输入地震波时能够有效缓解地震剪力向上部结构的传递,所承受的地震动大幅减小。在多遇地震作用下,隔震结构利用其橡胶支座的特殊性能,能够

(完整word版)建筑消能减震-阻尼器

一、消能减震结构的发展与应用: 利用阻尼器来消能减震并不是什么新技术,在航天航空、军工枪炮等行业中早已得到应用。从20世纪70年代后,人们开始逐步地把这些技术专用到建筑、桥梁、铁路等工程中。 在美国,20世纪80年代开始,美国东西两个地震研究中心等单位做了大量试验研究,发表了几十篇有关论文。90年代美国科学基金会和土木工程协会组织了两次大型联合,给出了权威性的试验报告,供工程师参考。 在我国,1997年,沈阳市政府大楼的抗震加固中首次采用了摩擦耗能装置,其后北京饭店、北京火车站和北京展览馆等多座建筑中应用消能减震技术。 在日本,目前已有超过100多栋的建筑物采用消能减震技术。 现代高层建筑日益增多,结构受地震和风振影响十分明显,减小结构所受的地震和风振反应,成为结构设计的一个重要方面。消能减震阻尼器,通过增加结构阻尼,耗散结构的振动能量来达到减小结构所受振动。 (1)“阻尼”是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以此一特性的 量化表征。 (2)《高层建筑混凝土结构技术规程》JGJ3-2010中: 2.1.1 高层建筑:10层及10层以上或房屋高度大于28m的住宅 建筑和房屋高度大于24米的其他高层民用建筑。

(3)《民用建筑设计通则》GB50352-2005中: 3.1.2建筑高度大于1OOm的民用建筑为超高层建筑。 二、阻尼器耗能减震原理: 耗能减震的原理可以从能量的角度来描述。 传统结构:Ei =Er+Ed+Es 耗能结构:Ei =Er+Ed+Es+Ea Ei为地震时输入结构的总能量; Er为结构在地震过程中存储的动能和弹性应变能; Ed为结构本身阻尼消耗的能量; Es为结构产生弹塑性变形吸收的能量; Ea为耗能装置消耗的能量; (其中Er为能量转换,并不是能量的消耗。) (1)传统结构中: 构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏。 (2)在消能减震结构中: 耗能(阻尼)装置在主体结构进入耗能状态前率先进入耗能工作状态,耗散大量输入结构体系的地震、风振能量,则结构本身需消耗的能量很少,主体结构反应将大大减小,从而有效地保护了主体结构,使其不再受到损伤或破坏。 三、阻尼器的种类: 阻尼器种类繁多,我国将其分为位移相关型和速度相关型。

结构消能减震技术

结构消能减震技术 1、结构消能减震的基本概念 地震发生时地面震动引起结构物的震动反应,地面地震能量向结构物输入。结构物接收了大量的地震能量,必然要进行能量转换或消耗才能最后终止震动反应。 消能减震技术是将结构的某些构件设计成消能构件,或在结构的某些部位装设消能装置。在风或小震作用时,这些消能构件或消能装置具有足够的初始刚度,处于弹性状态,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反

应(位移、速度、加速 度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震的目的。消能部件(消能构件或消能装置及其连接件)按照不同“构件型式”分为消能支撑、消能剪力墙、消能支承或悬吊构件、消能节点、消能连接等。消能部件中的消能器(又称阻尼器)分为速度相关型如黏滞流体阻尼器、黏弹性阻尼器、黏滞阻尼墙、黏弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等,和其它类型如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。采用消能减震技术的结构体系与传统抗震结构体系相比,具有大震安全性、经济性和技术合理性。 技术指标:建筑结构消能减震设计方案,应根据建筑抗震设防类别、抗震设防

烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术、经济 可行性的对比分析后确定。采用消能减震技术结构体系的计算分析应依据《建筑抗震设计规范》GB50011 进行,设计安装做法应遵循国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合《建筑消能阻尼器》JG/T209 的规定。 适用范围:消能减震技术主要应用于高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善等。 传统抗震结构体系,容许结构及承重构件(柱、粱、节点等)在地震中出现损坏结构及承重构件地震中的损坏过程,就是

结构消能减震技术

结构消能减震技术 1、结构消能减震得基本概念 地震发生时地面震动引起结构物得震动反应,地面地震能量向结构物输入。结构物接收了大量得地震能量,必然要进行能量转换或消耗才能最后终止震动反应。 消能减震技术就是将结构得某些构件设计成消能构件,或在结构得某些部位装设消能装置。在风或小震作用时,这些消能构件或消能装置具有足够得初始刚度,处于弹性状态,结构具有足够得侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形得增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构得地震或风振能量,使主体结构避免出现明显得非弹性状态,且迅速衰减结构得地震或风振反应(位移、速度、加

速度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震得目得。消能部件(消能构件或消能装置及其连接件)按照不同“构件型式”分为消能支撑、消能剪力墙、消能支承或悬吊构件、消能节点、消能连接等。消能部件中得消能器(又称阻尼器)分为速度相关型如黏滞流体阻尼器、黏弹性阻尼器、黏滞阻尼墙、黏弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等,与其它类型如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。采用消能减震技术得结构体系与传统抗震结构体系相比,具有大震安全性、经济性与技术合理性。 技术指标:建筑结构消能减震设计方案,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案与建筑使用要求,

与采用抗震设计得设计方案进行技术、经济可行性得对比分析后确定。采用消能减震技术结构体系得计算分析应依据《建筑抗震设计规范》GB50011 进行,设计安装做法应遵循国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合《建筑消能阻尼器》JG/T209 得规定。 适用范围:消能减震技术主要应用于高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑得抗震(或抗风)性能得改善等。 传统抗震结构体系,容许结构及承重构件(柱、粱、节点等)在地震中出现损坏结构及承重构件地震中得损坏过程,就就是地震能量得“消能”过程。结构及构件得严重破坏或倒塌,就就是地震能量转换或消耗得最终完成。

第五章的思考题

第五章的思考题 1.多层和高层钢筋混凝土结构房屋主要有哪几种结构体系?各有何特点及适用范围? 2.多层和高层钢筋混凝土结构震害主要有哪表现? 3.为什么要限制各种结构体系的最大高度及高宽比? 4.框架结构、框架-剪力墙结构、剪力墙结构的布置分别应着重解决哪些问题? 5.多层和高层钢筋混凝土结构抗震等级是如何确定的? 6.如何计算框架结构的自振周结构的水平地震作用? 7.什么要进行结构的计算?框架结构的侧移计算几个方面?各如何计算? 8.框架结构在水平地震作用下摧力如何计算?在竖向荷载作用下的内力如何计算? 9.如何进行框架结构的内力组2合? 10.框架结构抗震设计的基本原则是什么? 11.如何进行框架梁、柱、节点设计? 第六章的思考题 1.多层砌体结构的类型有哪几种? 2.多层砌体结构抗震设计中,除进行抗震验算外,为何更要注意概念设计及抗震构造措施的 处理? 3.砌体结构房屋的常见震害有哪些?一般会在什么情况下发生?设计时应如何避免破坏的 发生? 4.砌体结构房屋的概念设计包括哪些方面? 5.多层砌体结构房屋的计算简图如何选取?地震作用如何确定?层间地震剪力在墙体间如 何分配? 6.墙体间抗震承载力如何验算? 7.多层砌体结构房屋的抗震构造措施包括哪些方面? 第七章的思考题 1.钢结构在地震中的破坏有何特点? 2.在高层钢结构的抗震设计中,为何宜采用多道抗震防线? 3.偏心支撑框架体系有何优缺点? 4.高层层钢结构抗震设计中所彩的反应谱与一般钢结构相比有何不同?为什么? 5.高层钢结构在第一阶段设计和第二阶段设计验算中,阻尼比有何不同?为什么? 6.高层钢结构抗震设计中,“强柱弱梁”的设计原则是如何实现的? 7.高层钢结构的构件设计,为什么要对板件的宽厚比提出更高的要求? 第八章的思考题 1.试述单层厂房结构的主要震害。 2.单层厂房结构在平面布置上有何要求?为什么?

消能减震技术

消能减震技术 9.1.1 技术内容 消能减震技术是将结构的某些构件设计成消能构件,或在结构的某些部位装设消能装置。在风或小震作用时,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反应(位移、速度、加速度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震的目的。 消能部件一般由消能器、连接支撑和其他连接构件等组成。 消能部件中的消能器(又称阻尼器)分为速度相关型如粘滞流体阻尼器、粘弹性阻尼器、粘滞阻尼墙、粘弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等和其它类型,如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。 采用消能减震技术的结构体系与传统抗震结构体系相比,具有更高安全性、经济性和技术合理性。 9.1.2 技术指标 建筑结构消能减震设计方案,应根据建筑抗震设防类

别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术和经济可行性的对比分析后确定。采用消能减震技术结构体系的设计、施工、验收和维护应按现行国家标准《建筑抗震设计规范》GB 50011和《建筑消能建筑技术规程》JGJ 297进行,设计安装做法可参考国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合现行行业标准《建筑消能阻尼器》JG/T 209的规定。 9.1.3 适用范围 消能减震技术主要应用于多高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善,文物建筑及有纪念意义的建(构)筑物的保护等。 9.1.4 工程案例 江苏省宿迁市建设大厦、北京威盛大厦等新建工程,以及北京火车站、北京展览馆、西安长乐苑招商局广场4号楼等加固改造工程。

耗能减振及阻尼减振体系发展现状

耗能减振及阻尼减振体系发展现状 摘要:随着建筑抗震技术的发展以及对抗震机理的深入认识,耗能减震成为了抗震技术的一个发展 趋势,而耗能减震结构体系的实现主要依赖于研制出简便实用的耗能减震装置-阻尼器。本文介绍耗能减震 体系的基本理论,并介绍了耗能减震的应用范围及以后的发展前景,对阻尼器在耗能减震结构中的研究与 应用进行了综述。 关键词:阻尼器;耗能减震;耗能减震结构体系;等效阻尼; 绪论 耗能减振及阻尼减振体系发展现状传统的抗震设计方法依靠构件的弹塑性变形来吸收地震能量,一方面不可避免地会给结构带来一定的损伤,甚至倒塌;另一方面随着建筑技术的发展,人们对于建筑的要求也越来越高,房屋高度越来高,结构跨度越来越大,而构件端面却越来越小,已经无法按照传统的加大构件截面或加强结构刚度的抗震方法来满足结构的抗震和抗风要求。合理有效的现代抗震途径是采取结构振动控制技术。工程结构振动控制是指在结构的特定部位安装某些特殊装置(如隔震垫等)、某种机构(如耗能支撑、耗能剪力墙等)或施加外力,以改变或调整结构的动力特性和动力作用,以调谐和减轻结构的地震反应。 自1972年J.T. RYao提出土木工程振动控制的概念开始,结构振动控制现在已经成为结构抗震领域的热点课题之一;20世纪70年代,国际土木工程界首次提出了结构振动控制的概念,由此开辟了土木工程界一个崭新的研究领域。结构振动控制 20世纪80年代初,我国土木工程界王光远院士首先引人了结构振动控制的概念,随后国内土木工程界的广大学者、研究人员深人展开了结构隔震、耗能减震、吸振减震、主动控制、半主动控制和混合控制等方向的研究,取得了一系列丰硕的成果。 结构振动控制按照控制措施是否需要外部能源,可以分为主动控制、半主动控制、被动控制及混合控制。耗能减震技术作为一种结构被动控制措施,是在结构物的某些部位(如支撑、剪力墙、节点、连接缝或连接件、楼层空间、相邻建筑间、主附置耗能装置(或元件),通过耗能装置产生摩擦,弯曲(或剪切、扭转)弹塑性(或粘弹性)滞回变形耗能来耗散或吸收地震输入结构中的能量,以减小主体结构地震反应,从而保护主体结构的安全。是一种有效、安全、经济且较为成熟的工程减震技术。 目前,在结构的合理位置合理安装阻尼器已是现今适用最广泛的耗能减震技术之一,我国现《建筑抗震设计规范》(GB5 11—2010)[ 2 ]将隔震和耗能减震设计作为重要内容专设一个章节,内容也越来越详尽,他适应我国经济发展的需要,有条件地利用耗能减震技术来减轻建筑结构的地震灾害是完全可能的,并随着建筑抗震技术的发展及对抗震机理的深入分析,耗能减震技术成为抗震技术的一个发展趋势 耗能减震结构体系的特点 (1)从动力学观点看,相当于增大结构的阻尼,使结构的响应变小; (2)从能量观点看,结构本身的振动能量是一定的,通过消能装置消

工程结构抗震习题答案 (1)

工程结构抗震习题答案一、填空题 1.地震按其成因可划分为(火山地震)、(陷落地震)、(构造地震) 和(诱发地震)四种类型。 2.地震按地震序列可划分为(孤立型地震)、(主震型地震)和(震 群型地震)。 3.地震按震源深浅不同可分为(浅源地震)、(中源地震)、(深源地 震)。 4.地震波可分为(体波)和(面波)。 5.体波包括(纵波)和(横波)。 6.纵波的传播速度比横波的传播速度(快)。 7.造成建筑物和地表的破坏主要以(面波)为主。 8.地震强度通常用(震级)和(烈度)等反映。 9.震级相差一级,能量就要相差(32)倍之多。P5 10.一般来说,离震中愈近,地震影响愈(大),地震烈度愈(高)。 11.建筑的设计特征周期应根据其所在地的(设计地震分组)和(场地类别)来确定。 12.设计地震分组共分(三)组,用以体现(震级)和(震中距)的影响。 13.抗震设防的依据是(抗震设防烈度)。 14.关于构造地震的成因主要有(断层说)和(板块构造说)。 15.地震现象表明,纵波使建筑物产生(垂直振动),剪切波使建筑物产生(水平振动),而面波使建筑物既产生(垂直振动)又产生(水平振动)。 16.面波分为(瑞雷波 R波)和(洛夫波 L波)。 17.根据建筑使用功能的重要性,按其受地震破坏时产生的后果,将建筑分为(甲类)、(乙类)、(丙类)、(丁类)四个抗震设防类别。 18.《规范》按场地上建筑物的震害轻重程度把建筑场地划分为对建筑抗震(有利)、(不利)和(危险)的地段。 19.我国《抗震规范》指出建筑场地类别应根据(等效剪切波速)和(覆盖层厚度)划分为四类。 20.饱和砂土液化的判别分分为两步进行,即(初步判别)和(标准贯入度试验判别)。 21. 可液化地基的抗震措施有(选择合适的基础埋置深度)、(调整基础底面积, 减小基础偏心)和(加强基础的整体性和刚度)。详见书P17 22.场地液化的危害程度通过(液化等级)来反映。 23.场地的液化等级根据(液化指数)来划分。 24.桩基的抗震验算包括(非液化土中低承台桩基抗震验算)和(液化土层的低承台桩基抗震验算)两大类。 25.目前,工程中求解结构地震反应的方法大致可分为两种,即(底部剪力法)和(振型分解反应谱法)。 26.工程中求解自振频率和振型的近似方法有(能量法)、(折算质量法)、(顶点位移法)、(矩阵迭代法)。 27.结构在地震作用下,引起扭转的原因主要有(地震时地面各点的运动存在

土木工程结构减震控制技术研究 王乐海

土木工程结构减震控制技术研究王乐海 发表时间:2019-11-15T15:56:30.360Z 来源:《建筑细部》2019年第12期作者:王乐海李玉琢 [导读] 文章对结构减震控制技术的内涵特征和方法进行了详细的介绍,并在充分说明土木工程中结构减震控制技术使用情况的基础上,提出了结构减震控制技术发展的建议,以期使人们对该技术有更好的理解。 王乐海李玉琢 哈尔滨华德学院黑龙江哈尔滨 150025 摘要:文章对结构减震控制技术的内涵特征和方法进行了详细的介绍,并在充分说明土木工程中结构减震控制技术使用情况的基础上,提出了结构减震控制技术发展的建议,以期使人们对该技术有更好的理解。 关键词:土木工程;工程结构;减震控制 1导言 传统土木工程中的结构减震主要借助弹塑性设计手段,依托加强结构自身的抗震性能以达到减震的目的,这种方式显然存在一定的被动、消极性特征。结构减震控制作为一门新兴学科,其旨在借助相应的控制手段,缓解及抑制结构在强风、地震等动力荷载下的动力反应,提升结构的动力稳定性,以满足结构的适用性、安全性等要求。由此可见,对土木工程结构减震控制技术开展研究,有着十分重要的现实意义。 2结构减震控制的概念及分类 准确来讲,姚治平是土木工程结构控制概念的创始人,他在1972年写了一篇论文,题目就是“结构控制的概念”,在随后的日子里,他的很多文章也阐述了结构减震控制技术的概念。在姚治平看来,结构减震控制技术使工程安全的维护有了新的一条路。自此,结构减震控制技术清晰了起来。到目前为止,国内外的学者和实践者花了二三十年的时间去研究和实践结构控制的理论、方法,做了许多的实验和工程应用,并取得了大量实打实的研究成果。根据结构减震控制的概念和定义,结构减震控制技术的作用是利用控制机构在结构中的设立,分担外力带给建筑结构的振动影响,使结构的振动反应更小,做到外界干扰很大的状况下,结构的各项反应值都不超过标准。半主动控制、主动控制和被动控制是结构减震控制中的几大分类,该分类以是否要利用外部能源输入为标准。控制力的产生不依靠能源的输入,在进行控制时,不对外界干扰信息和结构反应有过度需求,这种就属于被动控制方法。基础隔震和耗能隔震是被动控制方法的主要内容。隔震技术主要通过改变结构频率实现结构减震,成为结构减震控制技术中研究最深入、应用范围最广和最成熟的部分,在全世界范围内,有很多的隔震建筑已经建成并投入使用,桥梁和地铁工程中也能频频看到隔震技术的身影。 3结构减震控制技术在土木工程中的应用 3.1隔震控制技术的基本原理 无论是主动控制还是被动控制技术中,隔震控制技术都是关键,在具体的土木工程建设中,隔震控制代表由地震所产生的振动对建筑整体结构所带来的隔离保护作用。一般对建筑而言,工程中所设计的防震体系都在工程结构的最底部与基础工程顶面间,它能保证建筑的底部结构与上部结构相互分离,通过这一隔震体系有效隔离地震波所产生的向上冲击力影响,保证整个建筑工程结构最基本的生命周期。也就是说,通过隔震系统分担来自地震所产生的巨大能量,达到减震保护效果。 3.2被动控制在土木工程中的应用 被动控制在土木工程中的应用主要包括三种类型:基础隔震体系、耗能减震体系以及协调减震系统等。其中,基础隔震体系是选取相关隔震消设备安装于上部结构与基础之间,使地震能量向上部的输入实现降低,进而收获上部结构振动降低的成效。基础隔震土木工程中的应用,可显著缩减结构自振频率,适用于短周期的中低层建筑及刚性结构。因为隔震只可对高频地震波发挥作用,所以该项控制技术不适用于高层建筑。对于耗能减震体系而言,耗能剪力墙、耗能支撑等是较为常用的耗能元件,另外,摩擦阻尼器、金属屈服阻尼器及黏弹性阻尼器等则是较为常用的阻尼器。对于协调减震系统而言,应用相对较多的协调减震系统包括有液压质量振动控制系统、调谐质量阻尼器及协调液体阻尼器等。以调谐质量阻尼器为例,其属于一种小型的振动系统,主要由质量块、阻尼器及弹簧等组成。控制结构振动的机制为:调谐质量阻尼器置入原结构体系后,动力性能会出现转变,等到原结构在动力作用下产生距离振动后,因为调谐质量阻尼器质量块产生惯性作用,进而对原结构产生一个反作用力,如此一来,阻尼同样会产生耗能作用。 3.3半主动控制在土木工程中的应用 主动变刚度控制系统和主动变阻尼控制系统是半主动控制在土木工程中频繁出现的内容。主动变阻尼控制系统能够实现在所有的采样周期内,把受控结构的刚度和外荷载频谱特性结合起来,也就实现了能在任意刚度值之间切换的目的,从而在每一采样周期内,受控结构都能够避免陷入共振状态,实现了减震的最终目标,完成这个过程需要用到主动变刚度控制系统。相似的,主动变刚度控制系统可以在所有的采样周期内,任意切换获取的阻尼状态,完成减震目标,在这整个过程中,要用到控制装置。很明显,半主动控制技术糅合了主动控制和被动控制的优点,能够根据外界干扰和结构反应的共同反应,去调节工程结构。还需要提到的是,半主动控制技术操作控制设备的能量是来自于电池输出的能量,这就意味着,半主动控制技术避免了主动控制因地震等原因而无法获取能量的缺陷。种种优势的累积,使得可靠、实惠成为半主动控技术制应用控制设备的最大特点,也令半主动控制成为全世界土木工程结构减震控制技术中最常见的部分。 3.4主动控制在土木工程中的应用 主动控制在土木工程中的应用,主要包括两种类型:开环控制系统、闭环控制系统。对于开环控制系统而言,其是指直接结构以对环境干扰开展检测,结合检测数据分析获取控制率。对于闭环变刚度控制系统而言,其是在结构反应检测基础上有效达成的主动控制。闭环控制有着可靠的抗干扰能力,并且对系统元件精度要求不高,控制成效较为显著,因而得到了广泛推广。然而,即便主动控制研究收获了一定的成果,该项技术依旧不够完备。 4土木工程减震技术中的土木工程结构振动控制问题 土木工程减震技术中对结构振动的控制效果是基于多重因素展开分析的,例如它的结构特性、环境作用或控制算法等等。就以控制算法为例,它就涵盖了对极点的最优配置、模糊逻辑、二次型线性最优水平或对建筑发生地震后的位移速度与加速度变量观测等等。在这些

相关主题
文本预览
相关文档 最新文档