当前位置:文档之家› 碱性介质中对苯二胺在铂微电极上的电化学聚合研究

碱性介质中对苯二胺在铂微电极上的电化学聚合研究

碱性介质中对苯二胺在铂微电极上的电化学聚合研究
碱性介质中对苯二胺在铂微电极上的电化学聚合研究

碱性介质中对苯二胺在铂微电极上的电化学聚合研究

滕凯玲,葛小芳*

(绍兴市环境监测中心站,绍兴,312000)

摘要:采用循环伏安法,比较了酸性、中性和碱性介质下对苯二胺(p-PD)在铂微电极上的电化学聚合的异同,并探讨扫描速度、底物浓度等因素对p-PD在碱性体系下的电化学聚合行为的影响。结果表明,只有碱性介质才能得到吸附于电极的高分子膜;铂电极上p-PD 的氧化反应为不可逆过程;在20~100 mV/s的扫描速率范围内,阳极峰电流与扫描速度的1/2次方成线性关系,表明该电极反应受扩散控制。

关键词:碱性介质;电化学聚合;循环伏安法;对苯二胺

Electrochemical Polymerization of p-Phenylenediamine on Pt

Microelectrode in Alkali Medium

Te kailing, Ge Xiaofang

(Shaoxing Environmental Monitoring Center Station, Shaoxing, 312000) Abstract:The electrochemical behavior of p-phenylenediamine (p-PD) on Pt microelectrode in different aqueous medium was studied by cyclic voltammetry technique, and the effects of scan rate and reactant concentration on electrochemical characteristics of p-phenylenediamine in alkaline medium were investigated systematically. The results showed that p-PD could be electrochemically polymerized in alkaline aqueous solution. The oxidation of p-PD on Pt microelectrode was an irreversible process, and anodic peak currents depended linearly on the square root of scan rate over the range of 20~100 mV/s, which suggested that the process of the electrode reaction was controlled by the diffusion.

Key words:Alkali medium, Electrochemical polymerization, Cyclic voltammetry, p-Phenylenediamine

作者简介:葛小芳(1978-),女,浙江诸暨人,助理工程师,硕士,主要从事环境监测和环境管理工作。

1 前言

聚苯二胺类电活性高分子由于其在防腐、电致变色器件[1]、电催化[2]、分子印迹型化学[3]、生物传感器[4]等领域潜在的应用,引起人们的极大兴趣。苯二胺具有双活性氨基官能团的单体, 其聚合过程和聚合链结构相当复杂,可以得到不同结构的高分子[5-8]。相对化学氧化聚合而言,电化学合成聚苯二胺具有与电极的附着性好,厚度均匀,可直接进行酶修饰催化、pH检测研究等优点,尤其吸引研究者的注意。尽管苯二胺的三个异构体结构类似,其电化学性质却有极大的不同。酸性介质下,邻苯二胺和间苯二胺经多次扫描能够在电极表面合成一层黄色的电导率较低的薄膜;而对苯二胺(p-PD)则只出现三对氧化还原峰,同时形成预聚体[9],而没有高分子膜出现。上述得到的聚苯二胺在酸性水溶液中具有一定的电活性,但在中性和碱性条件下没有电活性,这可能与质子化而脱掺杂有关。由于电活性差,中性和碱性条件下p-PD的电化学聚合研究没能引起大家的注意。

中性和碱性介质下芳香族胺类的电化学聚合研究非常有限。谢青季等[10]比较了酸性介质和碱性介质下邻苯二胺电化学聚合产物中线形和梯形结构的比例与相互转化。研究发现碱性介质中得到的聚苯二胺线型类聚苯胺链结构占19%,多次扫描后可全部转化为吩嗪环链结构,而逆转化则比较难。Dai Yiqing等[11]在pH=7的磷酸缓冲溶液中对三种苯二胺单体进行电化学聚合,发现循环扫描60周后均可以得到高分子膜;并比较不同物种的渗透性和选择渗透性,结果表明各类聚苯二胺均具有对H2O2的快速电响应和良好的抗干扰性。

作为苯胺的简单衍生物,苯二胺有着更多的电活性聚合位置,p-PD电化学聚合研究在苯二胺三种单体中相对较少,所以研究p-PD在不同支持电解质中的电化学聚合具有十分重要的理论意义和实际应用价值。本文比较了酸性、中性和碱性介质下的p-PD电化学聚合的异同,并着重研究了p-PD在碱性介质下电化学聚合行为。

2实验部分

2.1试剂

对苯二胺(国药集团化学试剂有限公司),盐酸、氢氧化钠和氯化钾均为分析纯,蒸馏水则为实验室自制。

2.2电化学测试

电化学测试所用的仪器为CHI660C型电化学工作站。测试在三电极体系中进行。以铂丝为工作电极(直径0.5 mm),铂片为辅助电极,银/氯化银电极为参比电极。如无特殊说明,实验测试在(298±0.1)K下进行,扫描速率为50 mV/s。在测试之前电解液先鼓N2 30 min,以除去电解液中的溶解氧。

3 结果与讨论

3.1 对苯二胺在不同介质下的循环伏安行为

实验发现介质对电化学聚合反应有重要的影响。图1为0.5 mol/L氢氧化钠溶液中0.05 mol/L对苯二胺(p-PD)溶液在铂电极上的循环伏安曲线。由图1可见,氢氧化钠介质中,电位从-0.2 V扫描到1.2 V时,在-0.07 V和1.18 V出现两个氧化峰,当电位从1.2 V回扫到-0.2 V时,于-0.13 V处出现一个还原峰。氧化峰与还原峰的峰电位差约60 mV;随着扫描次数的增加,氧化峰逐渐向高压处偏移,同时峰电流逐渐下降。这是由于p-PD在铂电极上发生阳极氧化,生成一层吸附性能良好、不导电的铜色聚合物薄膜,从而阻碍电极反应的进行。还原峰电流也随着扫描次数的增加逐渐下降,说明形成的聚合物膜电还原活性较差。图2为0.5 mol/L氯化钾溶液中0.05 mol/L p-PD溶液在铂电极上的循环伏安曲线。由图2可见,在中性介质氯化钾中,p-PD在铂电极上第一周循环伏安曲线在0.16 V和0.5 V处产生两个氧化峰,并在电极上迅速沉积黑色的粉末,而第二周开始没有氧化峰的出现,表明该黑色沉积物的电导率极低,且没有电化学活性。

与上述底物不同,p-PD在酸性介质中循环伏安行为比较特别。图3为0.5 mol/L盐酸溶液中0.05 mol/L p-PD溶液在铂电极上的循环伏安曲线。由图3可见,p-PD在酸性介质下循环扫描并没有发生聚合反应,只有在0.6 V处有一个氧化峰,同时产生棕色絮状预聚体并可溶于水中。

比较在三类介质中p-PD的氧化还原行为,碱性介质的氧化电位低于中性介质;而中性介质的氧化电位又低于酸性介质。氧化峰的偏移揭示电化学聚合机理是对苯二胺首先氧化成自由基阳离子。因为对苯二胺在酸性介质下是质子化的,氧化脱电子需要克服H+的库仑作用,高电位产生的高电场足够克服H+的库仑作用;而中性介质中没有H+的库仑作用,碱性介质下由于OH—的存在使得电氧化

更易进行。

i /A

图1

i /A

图2 中性介质中0.05 mol/L 对苯二胺在Pt 电极上的循环伏安曲线

i /A E(vs.Ag/AgCl)/V

图3 酸性介质中0.05 mol/L 对苯二胺在Pt 电极上的循环伏安曲线

3.2 碱性介质中不同对苯二胺浓度下的循环伏安行为

反应物浓度是决定化学反应速度的一个重要因素。图4为在-0.3~1.2 V 电势

扫描范围内,0.02、0.03、0.04、0.05 mol/L 对p -PD 在0.5 mol/L 氢氧化钠溶液中

的循环伏安曲线。从图4可以看到,随着底物浓度的增大,峰电流增大。图5

为第一个氧化峰电流与底物浓度的关系曲线,两者拟合的线性回归方程为:

-0.30.00.30.60.9 1.2

0.0000

0.0005

0.00100.0015

0.0020

D

C

B

i /A E(vs.Ag/AgCl)/V A

图4 不同对苯二胺浓度下循环伏安曲线

浓度(mol/L): (A )0.02(B )0.03(C )0.04(D )0.05

I p =-7.68?10-7C-3.41?10-7,相关系数r=0.997

由上式可见,p -PD 氧化峰电流与底物浓度呈良好的线性关系,因为底物浓

度增大时,扩散层和本体溶液的浓度增大,反应速度随之增大,峰电流也增大。

i /A

C/mol/L

图5 不同对苯二胺浓度下峰电流的拟合曲线

3.3 碱性介质中不同扫描速率下的循环伏安行为

图6为0.05 mol/L 对p -PD 在氢氧化钠溶液中不同扫速下的循环伏安曲线。

随着扫描速度的加快,峰电流增大,氧化峰电位正移。图7为p-PD 的第一个氧

化峰电流与扫描速度的1/2次方的关系曲线,在20~100 mV/s 的扫描范围内,I p

与υ1/2成良好的线性关系,其线性方程为:

I p =6.96?10-5-1.42?104υ1/2,相关系数r=0.997

这表明p -PD 在电极界面的传质为线性扩散,电极过程是由p -PD 向电极/溶液界

面的扩散所控制。在相同电位下,电流随扫描速度加快而增大,这是因为电极过

程为扩散控制时,扫描速度加快达到同样的电位所需要的时间越短,扩散层越薄,

扩散流量越大,所以电流越大。

-0.30.00.30.60.9 1.2

0.0000

0.00050.00100.00150.0020

E

D

C

B

i /A

E(vs.Ag/AgCl)/V

A

图5 0.05 mol/L p-PD 在不同扫描速率下循环伏安曲线

扫速(mV/s):(A )20(B

)40(C )60(D )80(E )100

i /A

v 1/2/(V s -1)1/2

图6 不同扫描速率下氧化峰电流的拟合曲线

4 结论

本文采用循环伏安法,在碱性介质中研究了对苯二胺在铂电极上的电化学聚合行为。实验表明,该反应属于动力学完全不可逆过程,电极反应的控制步骤可能是液相传质步骤。

参考文献:

[1] Kobayashi T., Yoneyama H., Tamura H. Polyaniline film-coated electrodes as electrochromic display devices[J], J. Electroanal. Chem., 1984, 161: 419-423.

[2]Boyapati Choudary, Moumita R oy, Sarabindu Roy, et al. Preparation, Characterization and Catalytic Properties of Polyaniline-Supported Metal Complexes[J], Advanced Synthesis and Catalysis, 2006, 348: 1734-1742

[3] Liu Xingyuan,Chunya Li.The preparation of molecularly imprinted poly (O-phenylenedi -amine) membranes for the specific O,O-dimethyl-α-hydroxylphenyl phosphonate sensor and its characterization by AC impedance and cyclic voltammetry Journal of Applied Polymer Science[J], 2004, 101: 2222-2227.

[4] Zhou Haihui, Chen Hong, Luo Shenglian, et al. Preparation and bioelectrochemical responses of the poly(m-phenylenediamine) glucose oxidase electrode[J], Sensors and Actuators B, 2004, 101: 224-230.

[5] Li Xingui, Huang Meirong, Yang Y uliang. Synthesis and characterization of o-phenylenedi -amine and xylidine copolymers[J], Polymer, 2001, 42: 4099-4107.

[6]Li X.G., Huang M.R., Duan W., Yang, Y.L.Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations[J], Chem. Rev., 2002,102: 2925-3030.

[7] Li Xingui, Duan Wei, Huang Meirong. Preparation and solubility of a partial ladder copolymer from p-phenylenediamine and o-phenetidine[J], Polymer, 2003, 44: 6273–6285.

[8] Huang Meirong, Li Xingui, Yang Yuliang, et al. Oxidative polymerization of o-phenylenedi -amine and pyrimidylamine[J], Polymer Degradation and Stability, 2001, 71: 31-38.

[9] Li Xingui, Duan Wei, Huang Meirong, et al. A soluble ladder copolymer from m-phenylenedi -amine and ethoxyaniline[J], Polymer, 2003, 44: 5579-5595.

[10] 涂新满, 谢青季, 王美玲等,压电反射光谱电化学研究聚邻苯二胺中梯形与线型链结构间的相互转化[J], 科学通报, 2005, 50(8): 760-765.

[11] Dai Yiqing, Zhou Dongmei. Permeability and permselectivity of polyphenylenediamine films synthesized at a palladium disk electrode[J], Electrochimica Acta, 2006, 52: 297-303.

导电高分子材料

导电高分子材料 高分子材料自问世至今,已经有一百多年的历史。1856年硝化纤维作为第一个塑料专利问世,20世纪60年代;许多性能优良的工程塑料相继投入工业化生产;20世纪80年代,材料科学已渗透各个领域,可以说已经进入高分子时代。 大多数高分子材料都是不导电的,因而高分子材料被广泛地作为绝缘材料使用。1862年,英国Letheby在硫酸中电解苯胺而得到少量导电性物质;1954年,米兰工学院G.Natta用 Et3Al-Ti(OBu)4为催化剂制得聚乙炔;1970年,科学家发现类金属的无机聚合物聚硫氰(SN)x具有超导性,有机高分子与无机高分子导电聚合物的开发研究合在一起开始了探寻之旅。1974年日本筑波大学H.Shirakawa在合成聚乙炔的实验中,偶然地投入过量1000倍的催化剂,合成出令人兴奋的有铜色的顺式聚乙炔薄膜与银白色光泽的反式聚乙炔。1980年,英国Durham大学的W.Feast得到更大密度的聚乙炔。1983年,加州理工学院的H.Grubbs以烷基钛配合物为催化剂将环辛四烯转换了聚乙炔,其导电率达到35000S/m,但是难以加工且不稳定。1987年,德国康采思巴斯夫公司BASF科学家N.Theophiou对聚乙炔合成方法进行了改良,得到的聚乙炔电导率与铜在同一数量级,达到107S/m。导电高分子材料的研究和发展开始逐渐走向成熟,并且亟待着可以走向应用领域,导电高分子材料已经在功能高分子材料及导电体中占有重要的地位。 一.导电高分子的定义与导电机理 导电高分子又称为导电聚合物,是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。导电高分子材料是一类兼具高分子特性及导电体特征的高分子材料。按结构和制备方法不同,可将导电高分子材料(CPs)分为复合型与本征(结构)型两大类。结构性导电高分子本身具有“固有”的导电性,由聚合物结构提供导电载流子(包括电子、离子或空穴)。这类聚合物经掺杂后,电导率可大幅度提高,其中有些甚至可达到金属的导电水平。复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑、金属粉、箔等,通过分散复合、层积复合、表面复合等方法构成的复合材料。 根据电荷载流子的种类,导电聚合物被分为电子导电聚合物和离子导电聚合物:以自由电子或空穴为载流子的导电聚合物称为电子导电聚合物,电子导电型聚合物的共同特征是分子内含有大的线性共轭π电子体系。以正、负离子为载流子的导电聚合物被称为离子导电聚合物。离子导电聚合物的分子具有亲水性、柔性好,允许体积较大的正、负离子在电场作用下在聚合物中迁移的特性。

实验讲义- 计时电流、电化学聚合

电位分析 实验七计时电流法 一、实验目的 1、了解计时电流法的特点和基本实验技术; 2.、掌握极限扩散电流的基本理论; 3.、了解采样电流伏安法的原理。 二、基本原理 计时电流法是极谱法和伏安法的基础。它是记录当电极电位从初始电位阶跃到某一指定电位时,电流随时间的变化曲线。计时电流法又分为单电位阶跃,双电位阶跃及多电位阶跃等。计时电流法是研究极限扩散电流的工具,同时它又是常用的电化学暂态分析方法之一。当电流电位从初始电位阶跃至极限电极电位时,不管电极反应是否可逆,电流与时间的关系式均可以表示为Cottrell公式: i d(t)=nFAD o1/2C o*/(лt)1/2 (1) (1)式中i d(t)为极限扩散电流,n为电极反应的电子交换数,F为法拉第常数,A为电极的有效面积,Do为电极反应物(氧化态)的扩散系数,Co*为电极反应物的本体浓度,t为反应时间。当电极的有效面积不变时,(1)式可以简化为: i d(t)=kt-1/2(2) 即极限扩散电流随t-1/2衰减。对(1)式进行积分,得到 Q(t)=∫t0 i d(t)dt=2nFAD o1/2C o*t1/2/л1/2=k’t1/2 (3) 即Q(t) 与t1/2成正比。如果记录Q(t)—t曲线,称为计时电量法。另外,由(1)式可知: i d(t)∝C o*(4) 即极限扩散电流与溶液的本体浓度成正比这也是极谱法定量分析的依据。 三、仪器与试剂 仪器LK98BⅡ型电化学工作站(天津市兰力科公司);三电极系统:玻碳电极为工作电极,Ag/AgCl电极(或饱和甘汞电极)为参比电极,铂电极为对极(铂丝、铂片、铂柱电极均可); 试剂 1.0×10-3mol/L K3[Fe(CN)6]-K4[Fe(CN)6] (铁氰化钾)溶液(含0.2mol/L KNO3)。

聚噻吩类导电聚合物的研究进展

聚噻吩类导电聚合物的研究进展 姓名:丁泽 班级:材化12-3 学号:1209020302

摘要 π-共轭聚合物被认为是很有发展前景的材料,因为它拥有独特的光电特性,可以被广泛的应用于太阳能电池(PSCs),电致变色器件,传感器,聚合物发光二极管(PLEDs)等各种领域。这些电活性与光活性聚合物通常是基于噻吩,吡咯,苯,芴或咔唑等芳环、芳杂环等单元的聚合物。在大量的电致变色材料中,噻吩类聚合物由于它们的高电子导电性和好的氧化还原特性,以及在可见与红外区域,快的响应时间,显著地稳定性和高的对比率而成为一类重要的电致变色共轭聚合物。更重要的是,通过聚合物链结构改动,噻吩类聚合物拥有容易的禁带可调性,可展示不同的电致变色特性。 关键词:π-共轭聚合物;电化学聚合;共聚;导电聚合物;

一、导电聚合物简介 1.1导电聚合物的分类 导电高分子材料包括结构型导电高分子材料和复合型导电高分子材料两大类型。 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。该类材料通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 结构型(又称作本征型)导电聚合物是指聚合物本身具有导电性或经掺杂处理后具有导电性的聚合物材料。这种高分子材料本身具有“固有”的导电性,由其结构提供载流子,一经掺杂,电导率可大幅度提高,甚至可达到金属的导电水平。如聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚对苯撑等均属于结构型导电高分子材料(如图1-1)[1]。结构型导电聚合物是目前导电聚合物研究领域的重点。

电极反应式和总反应式的书写规范

电极反应式和总反应式的书写规 关于高中化学的电化学部分一直是高中化学容中重要的基本概念和基础理论之一,特别是电极反应式和总反应式的书写问题。虽说现行新课程对这部分的要求不高,但是,这部分的容一直是高考和竞赛的要点和难点。再加上现行教材中对这部分的容书写也不是很规,这样更加加大了教师和学生教与学的难度。本文旨在唤起广大师生的共识,力求规和准确书写电极反应式和总反应式。 一、电极反应式和总反应式的一般概念 电极反应式是指在电化学反应中,原电池放电时的正、负极(或电解池电解时的阴、阳极)发生的还原、氧化反应得失电子的离子反应式(包括极区溶液中的微粒参加的反应在)。其实质均是将氧化还原反应分割成氧化和还原两个半反应的反应式,并且伴随着电子的得失和转移。 总反应式则有两个层次的含义。广义的总反应式是指原电池放电(或电解池电解)时装置中所发生的所有相关化学变化并反映各物质之间的化学计量关系的总反应式(既包括两极反应又包括两极反应的产物在溶液中的相关反应)。而狭义的总反应式仅是指两电极反应式之和,不包括两极的电极反应产物在溶液中相遇或混匀溶液时发生的反应。

例如:普通的锌锰干电池的电极反应式和总反应式如下: 正极:2NH4+ + 2e- + 2MnO2 = 2NH3 + Mn2O3 + H2O (包括极区反应H2+2MnO2=Mn2O3+H2O,教材此处已在试用版的基础上得到修正) 负极:Zn - 2e- = Zn2+ 该电池总反应式为(狭义):Zn + 2NH4+ + 2MnO2 = Zn2+ + 2NH3 + Mn2O3 + H2O(一般常用此式表示) 若还包括两极各自产物Zn2+和NH3在溶液中的络合反应{ Zn2+ + 4NH3 = [Zn (NH3)4]2+},则该电池反应的总反应式(广义)即为:2Zn + 4NH4+ + 4MnO2 = Zn2+ +[Zn(NH3)4]2+ + 2Mn2O3 +2 H2O。 二、电极反应式和总反应式的书写规则 1、电极反应式的书写规则 (1)原电池放电时的正、负极(或电解池电解时的阴、阳极)的电极反应式中各微粒的化学式均严格按照离子方程式的书写规则进行书写(即除了易溶且易电离的物质才可拆成离子形式,其它物质一律只写成化学式)。 (2)电极反应式不仅写出被氧化和被还原的物质及其产物外,还须包括该极区周围电解质溶液中参加了离子反应的微粒在。(注意:由于盐类的水解程度一般很小,因此可不考虑某些离子的水解反应) (3)原电池放电时的正、负极(或电解池电解时的阴、阳极)的电极反

电化学电极方程式书写专题训练

电化学电极方程式书写专题训练(△标注的为提高题) 方法指导 一、电解池电极方程式的书写 1、先看电极。阳极若为活性电极阳极本身参与电极反应失电子,被氧化,阴极按放电顺序。 2、再判断溶液中的离子放电顺序。若阳极为惰性电极,对阴阳离子分别判断其放电顺序(即阴离子的失电子能力、阳离子的得电子能力),按优先放电离子先反应,书写电极反应。 3、最后阴阳相加得总反应。①若阴阳极参与反应的离子均来自溶质是,两极方程式直接相加得到总方程式,②若阴、阳极有水电离的H+或OH-参加反应,则应把H+或OH-还原成水的形式后在相加(即“各回各家,各找各妈”)③若阳极为电极本身参加反应,则应用电极材料与参加阴极反应的阳离子或水相加做反应物,再根据两个电极书写产物。 二、电池中电极方程式的书写 1、简单原电池及普通化学电源 ①先看总方程式:简单原电池的的总反应多为负极材料与电解质溶液间的反应,可直接书写。但也有负极不能与电解质溶液反应的原电池,如Fe-C氯化钠溶液构成的原电池,相当于金属的吸氧腐蚀。化学电源的总反应比较复杂,题中都会有相关信息,可以直接应用。 ②再写负极反应:基本上都是负极金属失电子的反应,但要注意溶液环境对负极氧化所得阳离子的影响,若有阴离子能与其结合生成沉淀或络合物如Al(OH)4-,电极反应物中应该有相应的阴离子参与。 ③最后写正极反应:总反应-负极反应。(简单原电池或者金属吸氧腐蚀可以直接写出) 2、燃料电池 ①先写总反应。应参考燃烧产物书写总反应。但要注意溶液酸碱性对(燃烧)产物的影响,如碱性溶液中若燃烧产物有CO2生成,则写电池反应式应将燃烧式和反应式CO2+2OH-=CO32-+H2O相加(相加是注意要赔平两个反应使得CO2的系数相等)做为总电池反应。 ②再写正极反应,一定是O2被还原,要注意溶液环境对其还原产物的影响;另应配平使O2的系数与总方程式中的系数相等。 ③最后写负极反应:总反应-正极反应。注意负极反应式中一定没有氧气参与。 实战演练 一、电解池电极方程式的书写

电化学中电极反应式的书写技巧1

几种常见的“燃料电池”的电极反应式的书写 几种常见的“燃料电池”的电极反应式的书写 江西黎川一中朱印聪 燃料电池是原电池中一种比较特殊的电池,它与原电池形成条件有一点相悖,就是不一定两极是两根活动性不同的电极,也可以用相同的两根电极。燃料电池有很多,下面主要介绍几种常见的燃料电池,希望达到举一反三的目的。 一、氢氧燃料电池 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H 2 , 正极通入 O 2, 总反应为:2H 2 + O 2 === 2H 2 O 电极反应特别要注意电解质,有下列三种情况:1.电解质是KOH溶液(碱性电解质) 负极发生的反应为:H 2+ 2e- === 2H+ ,2H+ + 2OH- === 2H 2 O,所以: 负极的电极反应式为:H 2– 2e- + 2OH- === 2H 2 O; 正极是O 2得到电子,即:O 2 + 4e- === 2O2-,O2- 在碱性条件下不能单独存 在,只能结合H 2O生成OH-即:2O2- + 2H 2 O === 4OH-,因此, 正极的电极反应式为:O 2 + H 2 O + 4e- === 4OH-。 2.电解质是H 2SO 4 溶液(酸性电解质) 负极的电极反应式为:H 2 +2e- === 2H+ 正极是O 2得到电子,即:O 2 + 4e- === 2O2-,O2- 在酸性条件下不能单独存 在,只能结合H+生成H 2O即:O2- + 2 H+ === H 2 O,因此 正极的电极反应式为:O 2+ 4H++ 4e-=== 2H 2 O(O 2 + 4e- === 2O2-,2O2- + 4H+ === 2H 2 O) 3. 电解质是NaCl溶液(中性电解质) 负极的电极反应式为:H 2 +2e- === 2H+ 正极的电极反应式为:O 2 + H 2 O + 4e- === 4OH- 说明:1.碱性溶液反应物、生成物中均无H+ 2.酸性溶液反应物、生成物中均无OH- 3.中性溶液反应物中无H+ 和OH- 4.水溶液中不能出现O2-

电化学电极方程式书写基本思路

原电池电极方程式的书写 对原电池而言,书写电极方程式时对电极的分析很重要。一般情况下,电极会有以下几种情况: (1)两电极均为活泼金属,电解质溶液为两种活泼金属中的一种或两种与之可以反应的物质: a.例如:两电极分别为Mg、Al,电解质溶液为硫酸溶液(也可以是CuSO4溶液等),针对这一种情形,判断电极的正负一般就依靠金属活动顺序,这个例子中,Al的活泼性要比Mg差,因此Mg为负极,失去电子,发生氧化反应,Al为正极,由溶液中可以得到电子的物质得到电子,发生还原反应。 故: 负极反应为:Mg-2e=Mg2+ 正极反应为:2H++2e=H2↑ 总反应为:Mg+2H+=Mg2++H2↑ 说明:刚才说溶液中可以得到电子的物质得到电子,有时溶液中可能存在多种可以得到电子的离子,这是就需要分析哪一种先得到电子,例如这个例子中,如果硫酸溶液中还含有Cu2+的话,则Cu2+先得到电子,变成Cu单质。金属活动性越弱,对应的金属离子得到电子的能力就越强其顺序可以这么记忆:Hg2+>Cu2+>H+>Pb2+>Sn2+>Fe2+>Zn2+>Al3+>Mg2+。 b.同a的电极一样,还是为Mg、Al,但是电解质为NaOH溶液,这时,因为电解质溶液的特殊性,所以电极的正负得重新分析。由于Mg不可以和NaoH溶液反应,而Al可以,这样一来,Al则成为了负极失去电子发生氧化反应,而Mg则成了正极,溶液中的阳离子得到电子而发生还原反应。 故: 负极反应为:Al-3e=Al3+ 正极反应为:2H++2e=H2↑ 总反应为:2Al+6H+=Al3++3H2↑ 上述的这电极反应和总反应是理想话的反应,是没有考虑到电解质溶液而写出来的。在NaOH 溶液中,负极生成的Al3+是不可能以Al3+存在,因为Al3+会与溶液中大量的OH-反应生成AlO2-,所以负极反应应该为: Al-3e=Al3+ Al3++4OH-=AlO2-+2H2O 总的负极反应应为:Al-3e+4OH-=AlO2-+2H2O(实际反应) 正极的氢离子实则是水电离出来的氢离子,故正极极的反应为: H2O=H++OH- 2H++2e=H2↑ 总正极反应为:2H2O+2e=H2↑+2OH- 总反应2Al+2OH-+2H2O=2AlO2-+3H2↑ (2)其中一电极为活泼金属电极,另一电极为可导电的非金属(即碳棒)。这种情况下,就主要看活泼金属电极能否与电解质溶液发生氧化还原反应,如果可以,那活泼金属电极为负极,活泼金属失去电子发生氧化反应,碳棒为正极,溶液中的阳离子得到电子发生还原反应。那这一类电极的方程式书写就与第一类是一样的思路和方法。 (3)两电极均为碳棒或惰性金属电极(出现的基本上是金属铂Pt),那这一类的一般来说是用于燃料电池的应用。现在以H2、CH4与O2构成的燃料电池来描述,其中电极均为碳棒或铂,以硫酸和NaOH溶液为电解质分别讨论介绍方法。 首先我们知道2H2+O2=2H2O、CH4+2O2=CO2+2H2O这两个反应,氧气都是得到电子,氢气

导电高分子材料的应用、研究状况及发展趋势(精)

导电高分子材料的应用、研究状况及发展趋势 熊伟 武汉纺织大学化工学院 摘要:与传统导电材料相比较 , 导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键字:导电高分子分类制备现状 Abstract : Compared with conventional conductive materials, conductive polymer material has many unique properties. Conducting polymers can be us ed as radar absorbing materials, electromagnetic shielding materials, antistatic materials. Describes the structure of conductive polymer materials, types and conducting mechanism, synthesis methods, the application of conductive poly mer materials, research status and development trend. Keywords : conductive polymer categories preparation status 1 导电高分子的结构、种类 按照材料结构和制备方法的不同可将导电高分子材料分为两大类 :一类是结构型 (或本征型导电高分子材料,另一类是复合型导电高分子材料 [3]。 结构型导电高分子材料是指高分子本身或少量掺杂后具有导电性质的高分子材料。 根据加入基体聚合物中导电成分的不同 , 复合型导电高分子材料可分为两类 :填充复合型导电高分子材料和共混复合型导电高分子材料 [5]。

电化学法处理生活污水的性能研究

洛阳理工学院毕业设计(论文) 题目电化学法处理生活污水的性能研究 姓名杨振宇 系(部)环境工程与化学系 专业环境工程 指导教师吴长航 2013 年 6 月 2 日

电化学法处理生活污水性能的研究 摘要 鉴于生活污水处理存在设备复杂、残留物浓度过高等问题,采用电化学法对生活污水进行试验研究,分析了电化学法在水处理中的反应原理,以及其具有操作简单、自动化性强、环境兼容性好等优点。实验以IrO2 - Pt / Ti惰性电极为阳极,铜片为阴极,分别考察了电流密度、极板间距、氯离子浓度对污水中氨氮去除率的影响。实验得出当电流密度为30 mA/cm2,极板间距为2 cm,氯离子浓度为200mg/L时为最佳去除工况,这时氨氮的去除率最高,达到了国家要求的生活污水二级排放标准。同时提出了电化学法处理生活污水还需要解决能耗大、工业化应用等问题。 关键词:电化学法,生活污水,去除率,氨氮

The Research on Electrochemical Treatment of Sewage ABSTRACT According to the problem that the sewage treatment equipment complex and residue concentration is too high, experimental study of the sewage by electrochemical method, and analyzes the principle of electrochemical reaction in water treatment, and it has simple operation, automatic strong sex, as well as good environmental compatibility. As IrO2-Pt / Ti inert electrode is for anode, copper cathode, respectively investigates the current density, plate spacing, the chloride ion concentration of ammonia nitrogen removal rate in wastewater. Experiment when the current density of 30 mA/cm2, plate spacing is 2 cm, the chloride ion concentration of 200 mg/L when is the best working condition of removing, then ammonia nitrogen removal rate is highest, up to the national request of sewage secondary emission standards. Proposed the electrochemical method deal with sewage also need to solve the problem of large energy consumption, industrial application, etc. KEY WORDS: Electrochemical method, Sewage, Removal, NH4-N

电化学中电极反应式的书写技巧

电化学中电极反应式的书写技巧 电化学中电极反应式的书写不仅是电化学教学的重点和难点,更是高考的热点题型之一,其中,燃料电池电极反应式以及可充电电池电极反应式的书写又是电极反应式书写中的难点。下面笔者就如何正确书写电极反应式进行了较为详尽的归纳,旨在“抛砖引玉”。 一、原电池中电极反应式的书写 1、先确定原电池的正负极,列出正负极上的反应物质,并标出相同数目电子的得失。 2、注意负极反应生成的阳离子与电解质溶液中的阴离子是否共存。若不共存,则该电解质溶液中的阴离子应写入负极反应式;若正极上的反应物质是O2,且电解质溶液为中性或碱性,则水必须写入正极反应式中,且O2生成OH-,若电解质溶液为酸性,则H+必须写入正极反应式中,O2生成水。 3、正负极反应式相加得到电池反应的总反应式。若已知电池反应的总反应式,可先写出较易书写的书写电极反应式,然后在电子守恒的基础上,总反应式减去较易写出的书写电极反应式,即得到较难写出的书写电极反应式。 例1、有人设计以Pt和Zn为电极材料,埋入人体内作为作为某种心脏病人的心脏起搏器的能源。它依靠跟人体内体液中含有一定浓度的溶解氧、H+和Zn2+进行工作,试写出该电池的两极反应式。 解析:金属铂是相对惰性的,金属锌是相对活泼的,所以锌是负极,Zn失电子成为Zn2+,而不是ZnO或Zn(OH)2,因为题目已告诉H+参与作用。正极上O2得电子成为负二价氧,在H+作用下肯定不是O2-、OH-等形式,而只能是产物水,体液内的H+得电子生成H2似乎不可能。故发生以下电极反应: 负极:2Zn-4e-= 2Zn2+,正极:O2 + 4H+ + 4e- = 2H2O 。 例2、用金属铂片插入KOH溶液中作电极,在两极上分别通入甲烷和氧气,形成甲烷—氧气燃料电池,该电池反应的离子方程式为:CH4+2O2+2OH-=CO32-+3H2O,试写出该电池的两极反应式。解析:从总反应式看,O2得电子参与正极反应,在碱性性溶液中,O2得电子生成OH-,故正极反应式为:2O2+4H2O+8e- =8OH-。负极上的反应式则可用总反应式减去正极反应式(电子守恒)得CH4+10OH--8e-= CO32-+7H2O。 二、电解池中电极反应式的书写 1、首先看阳极材料,如果阳极是活泼电极(金属活动顺序表Ag以前),则应是阳极失电子,阳极不断溶解,溶液中的阴离子不能失电子。

8种电化学水处理方法

8种电化学水处理方法 电化学水处理- 世间万物,都是有一利就有一弊。社会的进步和人们生活水平的提高,也不可避免地对环境产生污染。废水就是其中之一。随着石化、印染、造纸、农药、医药卫生、冶金、食品等行业的迅速发展,世界各国的废水排放总量急剧增加,且由于废水中含有较多的高浓度、高毒性、高盐度、高色度的成分,使其难以降解和处理,往往会造成非常严重的水环境污染。 为了处理每天大量排出的工业废水,人们也是蛮拼的。物、化、生齐用,力、声、光、电、磁结合。今天笔者为您总结用电’ 来处理废水的电化学水处理技术。 电化学水处理技术,是指在电极或外加电场的作用下,在特定的电化学反应器内,通过一定的化学反应、电化学过程或物理过程,对废水中的污染物进行降解的过程。电化学系统设备相对简单,占地面积小,操作维护费用较低,能有效避免二次污染,而且反应可控程度高,便于实现工业自动化,被称为环境友好’ 技术。 电化学水处理的发展历程 1799 年 Valta制成Cu-Zn原电池,这是世界上第一个将化学能转化为电能的化学电源 1833 年 建立电流和化学反应关系的法拉第定律。 19世纪70年代 Helmholtz提出双电层概念。任何两个不同的物相接触都会在两相间产生电势,这是因电荷分离引起的。两相各有过剩的电荷,电量相等,正负号相反,相互吸引,形成双电层。 1887 年 Arrhenius提出电离学说。 1889 年 Nernst提出电极电位与电极反应组分浓度关系的能斯特方程。 1903 年 Morse 和Pierce 把两根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去。 1905年 提出Tafel 公式,揭示电流密度和氢过电位之间的关系。 1906年

电化学电极方程式书写专题训练

电化学电极方程式书写专题训练 |登封实验高中高一化学11假期作业(2014/9/28)班级名称 电化学电极方程写作专题训练(△标记改善问题) 方法指导 1,电解槽电极方程写作 1,先看电极|如果阳极是活性电极,阳极本身参与电极反应,失去电子并被氧化,阴极依次放电 2,再次判断溶液中的离子放电顺序如果阳极是惰性电极,则分别判断阴离子和阳离子的放电顺序(即阴离子的电子损失能力和阳离子的电子获得能力),根据优先放电离子进行第一次反应,并写入电极反应。 3,最终阴阳总反应(1)如果参与反应的阴极和阳极的离子都来自溶质,则直接将两极方程相加,得到总的 方程;(2)如果阴极和阳极有氢+或氢氧化物从水中分离出来参与反应,氢+或氢氧化物应还原成水的形式,然后再加入(即“返回每间房子,分别找到每一个母亲”);(3)如果阳极是参与反应的电极本身,则加入电极材料和参与阴极反应的阳离子或水相作为反应物,并根据两个电极写入产物2.在电池1中写入电极方程。简单一次电池和普通化学电源 ①先看一般方程:简单一次电池的一般反应主要是负极材料和电解液之间的反应,可以直接写出然而,也有负电极不能与电解质溶液反应的原电池,例如由铁-碳氯化钠溶液组成的原电池,这相当于金属

的氧吸收腐蚀。化学电源的总反应比较复杂,问题中会有相关信息,可以直接应用。 ②重写负极反应:基本上是负极金属失去电子的反应,但应注意溶液环境对负极氧化得到的阳离子 -离子的影响。如果阴离子可以与它们结合形成沉淀或络合物,如氢氧化铝,相应的阴离子应该包含在电极反应物中。 ③最后写出阳性反应:总反应-阴性反应(简单原电池或金属氧吸收腐蚀可直接写入)2。燃料电池 ①先写总反应总反应应参照燃烧产物来写然而,应注意溶液的酸性和碱性对(燃烧)产物的影响。例如,如果CO2是从 -2- 碱性溶液中的燃烧产物产生的,则在写入电池反应类型时,燃烧类型和反应类型CO2+2OH = CO3+H2O应被添加为总电池反应(添加是为了补偿两个反应,使得CO2的系数相等) ②再次写阳性反应时,必须降低O2。应注意溶液环境对其还原产物的影响。此外,O2的系数应平衡至等于总方程中的系数。 ③最后写阴性反应:总反应-阳性反应注意,在负反应式中必须没有氧实战练习 1,写电解池电极方程式 电极材料惰性电极惰性电极铜电极铜电极铜电极铝电极电解质氯化钠溶液硫酸铜溶液阳极反应阴极反应一般反应方程式熔化氯化镁熔化氧化铝H2O硫酸溶液氢氧化钠溶液H2SO4溶液氢氧化钠溶液登封

导电高分子材料的简介

导电高分子材料的简介、应用和发展前景 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键词:导电高分子制备方法导电机理性能应用发展趋势 1.简介 高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料。导电高分子又称导电聚合物,自从1976年,美国宾夕法尼亚大学的化学家Mac Diarmid领导的研究小组首次发现掺杂后的聚乙炔(Poly acetylene,简称PA)具有类似金属的导电性(导电高分子的导电性如图);1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。人们对共轭聚合物的结构和认识不断深入。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。 现有的研究成果表明,发展导电高分子兼具有机高分子材料的性能及半导体和金属的电性能, 具有密度小,易加工成各种复杂的形状,耐腐蚀,可大面积成膜及可在十多个数量级的范围内进行调节等特点,因此高分子导电材料不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。 1.1导电高分子材料的分类 按结构和制备方法不同将导电高分子材料分为复合型与结构型两大类。复合型导电材料是由高分子和导电剂(导电填料)通过不同的复合工艺而构成的材料。结构型结构型导电高分子又称本征型导电高分子(Intrinsically conducting polymer,简称ICP),是指高分子材料本身或经过少量掺杂处理而具有导电性能的材料,其电导率可达半导体甚至金属导体的范围。 1.2 高分子导电材料的制备方法 复合型导电高分子所采用的复合方法主要有两种:一种是将亲水性聚合物或结构型导电高分子进行混合,另一种则是将各种导电填料填充到基体高分子中。结构型导电聚合物一般用电子高度离域的共轭聚合物经过适当电子给体或受体进行掺杂后制得。 1.3 导电机理

电化学中电极反应式的书写技巧.doc

电化学中电极反应式的书写技巧

电化学中电极反应式的书写技巧电化学中电极反应式的书写不仅是电化学教学的重点和难点,更是高考的热点题型之一,其中,燃料电池电极反应式以及可充电电池电极反应式的书写又是电极反应式书写中的难点。下面笔者就如何正确书写电极反应式进行了较为详尽的归纳,旨在“抛砖引玉”。 一、原电池中电极反应式的书写 1、先确定原电池的正负极,列出正负极上的反应物质,并标出相同数目电子的得失。 2、注意负极反应生成的阳离子与电解质溶液中的阴离子是否共存。若不共存,则该电解质溶液中的阴离子应写入负极反应式;若正极上的反应物质是O2,且电解质溶液为中性或碱性,则水必须写入正极反应式中,且O2生成OH-,若电解质溶液为酸性,则H+必须写入正极反应式中,O2生成水。 3、正负极反应式相加得到电池反应的总反应式。若已知电池反应的总反应式,可先写出较易书写的书写电极反应式,然后在电子守恒的基础上,总反应式减去较易写出的书写电极反应式,即得到较难写出的书写电极反应式。 例1、有人设计以Pt和Zn为电极材料,埋入人体内作为作为某种心脏病人的心脏起搏器的能源。它依靠跟人体内体液中含有一定浓度的溶解氧、H+和Zn2+进行工作,试写出该电池的两极反应式。 解析:金属铂是相对惰性的,金属锌是相对活泼的,所以锌是负极,Zn失电子成为Zn2+,而不是ZnO或Zn(OH)2,因为题目已告诉H+参与作用。正极上O2得电子成为负二价氧,在H+作用下肯定不是O2-、OH-等形式,而只能是产物水,体液内的H+得电子生成H2似乎不可能。故发生以下电极反应:负极:2Zn-4e-= 2Zn2+,正极:O2 + 4H+ + 4e- = 2H2O 。 例2、用金属铂片插入KOH溶液中作电极,在两极上分别通入甲烷和氧气,形成甲烷—氧气燃料电池,该电池反应的离子方程式为:CH4+2O2+2OH-=CO32-+3H2O,试写出该电池的两极反应式。 解析:从总反应式看,O2得电子参与正极反应,在碱性性溶液中,O2得电子生成OH-,故正极反应式为:2O2+4H2O+8e- =8OH-。负极上的反应式则可用总反应式减去正极反应式(电子守恒)得CH4+10OH--8e-= CO32-+7H2O。 二、电解池中电极反应式的书写

电化学中电极反应式的书写技巧

电化学中电极反应式的书写不仅是电化学教学的重点和难点,更是高考的热点题型之一,下面就如何正确书写电极反应式进行了较为详尽的归纳总结,旨在“抛砖引玉”。 一、原电池中电极反应式的书写 1、先确定原电池的正负极,列出正负极上的反应物质,并标出相同数目电子的得失。 2、注意负极反应生成的阳离子与电解质溶液中的阴离子是否共存。若不共存,则该电解质溶液中的阴离子应写入负极反应式,如Al-Cu-NaHCO3溶液构成的原电池中,因Al失去电子生成的Al3+能与HCO3-反应: Al3+ +3HCO3-=Al(OH)3↓+3CO2↑,故铝件(负极)上发生的反应为: Al-3e-+3HCO3-=Al(OH)3↓+3CO2↑,而不是仅仅写为: Al-3e-=Al3+。 3、若正极上的反应物质是O2,且电解质溶液为中性或碱性,电极反应式中不能出现H+,且水必须写入正极反应式中,与O2结合生成OH-,若电解质溶液为酸性,电极反应式中不能出现OH-,且H+必须写入正极反应式中,与O2结合生成水。如例 1、例2。 4、正负极反应式相加(电子守恒)得到电池反应的总反应式。若已知电池反应的总反应式,可先写出较易书写的电极反应式,然后在电子守恒的基础上,总反应式减去较易写出的电极反应式,即得到较难写出的电极反应式。如例2。 例1、有人设计以Pt和Zn为电极材料,埋入人体内作为某种心脏病人的心脏起搏器的能源。它依靠跟人体内体液中含有一定浓度的溶解氧、H+和Zn2+进行工作,试写出该电池的两极反应式。 解析:

金属铂是相对惰性的,金属锌是相对活泼的,所以锌是负极,Zn失电子成为Zn2+,而不是ZnO或Zn(OH)2,因为题目已告诉H+参与作用。正极上O2得电子成为负二价氧,在H+作用下肯定不是O2-、OH-等形式,而只能是产物水。故发生以下电极反应: 负极:2Zn-4e-= 2Zn2+,正极: O2 + 4H++ 4e-= 2H2O。 例2、用金属铂片插入KOH溶液中作电极,在两极上分别通入甲烷和氧气,形成甲烷—氧气燃料电池,该电池反应的离子方程式为: CH4+2O2+2OH-=CO32-+3H2O,试写出该电池的两极反应式。 解析: 从总反应式看,O2得电子参与正极反应,在强碱性溶液中,O2得电子与H2O结合生成OH-,故正极反应式为:2O2+4H2O+8e-=8OH-。负极上的反应式则可用总反应式减去正极反应式(电子守恒)得CH4+10OH--8e-=CO32-+7H2O。 二、电解池中电极反应式的书写 1、首先看阳极材料,如果阳极是活泼电极(金属活动顺序表Ag以前),则应是阳极失电子,阳极不断溶解,溶液中的阴离子不能失电子。 2、如果阳极是惰性电极(Pt、Au、石墨),则应是电解质溶液中的离子放电,应根据离子的放电顺序进行书写电极反应式。阳极(惰性电极)发生氧化反应,阴离子失去电子被氧化的顺序为: S2->SO32->I->Br ->Cl->OH->水电离的OH->含氧酸根离子>F-。阴极发生还原反应,阳离子得到电子被还原的顺序为: Ag+>Hg2+>Fe3+>Cu2+>(酸电离出的H+)>Pb2+>Sn2+>Fe2+>Zn2+>(水电离出的H+)>Al3+>Mg2+>Na+>Ca2+>K+。(注:

导电高分子材料综述

课题名称:导电高分子材料的研究进展及发展趋势 检索主题词:导电高分子材料 检索工具:万方数据知识服务平台 检索途径及步骤:登录学校图书馆网站,从“中文资源”分类中找到“万方数据资源(主网站)”,选择“高级检索”,规定好想要检索的文献类型,出版时间,主题等进行检索。 导电高分子材料的研究进展及发展趋势综述 高材1208 2012012247 曹凯 摘要:介绍了导电高分子材料的类型,分析了导电材料的导电机理,对其在实际中的应用进行了研究和总结,并且在此基础上展望了导电高分子材料的未来发展趋势。 关键词:导电;高分子材料;机理;应用;发展 引言: 近年来, 导电高分子的研究取得了较大的进展, 科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究, 已成为一门相对独立的学科。按导电性质的不同,导电高分子材料分为复合型和结构型两种。前者是利用向高分子材料中加人各种导电填料来实现导电,而后者是通过改变高分子结构来实现导电。在社会的发展中,需要这种材料的地方有很多,这也使得对进行加工和应用的研究受到了人们着重地关注。 1导电高分子材料分类 按照材料的结构与组成,可将导电高分子材料分为两大类。一类是复合型导电高分子材料,另一类是结构型(或本征型)导电高分子材料。 1.1复合型导电高分子材料 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的材料。几乎所有的聚合物都可制成复合型导电高分子材料。其一般的制备方法是填充高效导电粒子或导电纤维,如填充各类金属粉末、金属化玻璃纤维、碳纤维、铝纤维、不锈钢纤维及锰、镍、铬、镁等金属纤维。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势,用量最大最为普及的是炭黑填充型和金属填充型。 1.2结构型导电高分子材料 结构型(又称作本征型)导电高分子是指那些高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料本身具有“固有”的导电性,由其结构提供导电载流子,一旦经掺杂后,电导率可大幅度提高,甚至可达到金属的导电水平。从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。离子型导电高分子通常又称为高分子固体电解质,它们导电时的载流子主要是离子。电子型导电高分子指的是以共轭高分子为主体的导电高分子材料。导电时的载流子是电子(或空穴),这类材料是目前世界导电高分子中研究开发的重点。 2电高分子材料的导电机理 2.1复合型高分子材料导电机理 复合型导电高分子材料导电性主要取决于填料的分散状态”J。根据渗流理论,原来孤立分散的填料微粒在体积分散达到某一临界含量以后,就会形成连续的导电通路。这时离子

电化学中电极反应式的书写全解析

电化学中电极反应式的书写技巧全析 电化学中电极反应式的书写不仅是电化学教学的重点和难点,更是高考的热点题型之一,其中,燃料电池电极反应式以及可充电电池电极反应式的书写又是电极反应式书写中的难点。下面就如何正确书写电极反应式进行了较为详尽的归纳,旨在“抛砖引玉”。 一、原电池中电极反应式的书写 1、先确定原电池的正负极,列出正负极上的反应物质,并标出相同数目电子的得失。 2、注意负极反应生成的阳离子与电解质溶液中的阴离子是否共存。若不共存,则该电解质溶液中的阴离子应写入负极反应式;若正极上的反应物质是O2,且电解质溶液为中性或碱性,则水必须写入正极反应式中,且O2生成OH-,若电解质溶液为酸性,则H+必须写入正极反应式中,O2生成水。 3、正负极反应式相加得到电池反应的总反应式。若已知电池反应的总反应式,可先写出较易书写的书写电极反应式,然后在电子守恒的基础上,总反应式减去较易写出的书写电极反应式,即得到较难写出的书写电极反应式。 例1、有人设计以Pt和Zn为电极材料,埋入人体内作为作为某种心脏病人的心脏起搏器的能源。它依靠跟人体内体液中含有一定浓度的溶解氧、H+和Zn2+进行工作,试写出该电池的两极反应式。 解析:金属铂是相对惰性的,金属锌是相对活泼的,所以锌是负极,Zn 失电子成为Zn2+,而不是ZnO或Zn(OH)2,因为题目已告诉H+参与作用。正极上O2得电子成为负二价氧,在H+作用下肯定不是O2-、OH-等形式,而只能是产物水,体液内的H+得电子生成H2似乎不可能。故发生以下电极反应: 负极:2Zn-4e-= 2Zn2+,正极:O2 + 4H+ + 4e- = 2H2O 。 例2、用金属铂片插入KOH溶液中作电极,在两极上分别通入甲烷和氧气,形成甲烷—氧气燃料电池,该电池反应的离子方程式为:

电化学专题——电极反应方程式的书写

电化学专题—电极反应方程式的书写 一、原电池与电解池的判断 指出下列装置哪些为原电池哪些为电解池 ⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽ ⑾ 原电池 电解池 定 义 将化学能转变成电能的装置 将电能转变成化学能的装置 形成条件 ①活动性不同的两电极(连接) ②电解质溶液(电极插入其中并与电极自发反应) ③形成闭合回路 ①两电极接直流电源 ②两电极插入电解质溶液 ③形成闭合回路 电极名称 负极 较活泼金属(电子流出的极) 正极 较不活泼金属或能导电的非金属(电子流入的极) 阴极 与电源泉负极相连的极 阳极 与电源正极相连的极 电极反应 负极 氧化反应;金属或还原性气体失电子 正极 还原反应;溶液中的阳离子得电子或者氧化性气体得电子(吸氧腐蚀) 阳极 氧化反应;溶液中的阴离子失电子,或电极金属失电子 阴极 还原反应;溶液中的阳离子得电子 电子流向 能量转变 化学能转变为电能 电能转化为化学能 装置特点 无外接直流电源 有外接直流电源 相似之处 均能发生氧化还原反应,且同一装置中两个电极在反应过程中转移电子总数相等。 举 例 ⑴铜锌原电池;⑵氢氧燃烧电池 ⑴氯碱工业装置;⑵电解精炼铜

三、原电池的电极反应和总反应式书写方法 1、仅有一电极材料参与反应方法: 规律:参与反应的金属电极本身为负极,另一电极往往为正极,负极是参与反应的金属失电子,正极是介质溶液中的微粒得电子(反应一般为析氢、吸氧、析Cu、Ag等) (1)酸性较强介质:正极一般是析氢反应。 例:图1电极反应:负极:Zn-2e=Zn2+正极:2H++2e=H2↑ (2)接近中性介质:正极一般是吸氧反应。 例:图2电极反应:负极:2Fe-4e=2Fe2+正极:O2+4e+2H2O=4OH- 练习1.我国首创的以铝—空气—海水电池为能源的新型海水标志灯,它以海水为电解质溶液,利用空气中的氧使铝不断氧化产生电流,写出这种电池的电极材料、电极反应式及总反应式。答:负极(Al):4Al-12e-=4Al3+ 正极(C):3O2+12e-+6H2O=12OH- 总反应式:4Al+6H2O+3O2=4Al(OH)3 分析:负极本身参加反应被氧化,正极必须能导电而本身不参加反应。电源负极材料为:铝; 电源正极材料为:石墨等能导电的惰性材料。负极反应为:4Al-12e-=4Al3+;正极反应为:3O2+6H2O+12e-=12OH- (3)碱性介质:正极一般也是吸氧反应。 例:图3电极反应:负极:2Fe-4e=2Fe2+正极:O2+4e+2H2O=4OH- (4)含不活泼金属的盐溶液为介质:正极析出不活泼金属(Cu、Ag等)。 例:图4电极反应:负极:Fe-2e=Fe2+正极:Cu2++2e=Cu 2、两电极材料均参与反应(常见于蓄电池式或纽扣式电池) 规律:两电极材料通常由金属和金属化合物构成,金属作负极。电子得失均由两电极本身发生。在书写电极反应式时,应考虑电解质对电极的影响(如生成难溶物、弱电解质等)。介质为酸性溶液时,反应式两边不能出现OH-离子;碱性溶液为介质时,反应式两边不能出现H+离子。 (1)酸性介质例:实验室用铅蓄电池作电源电解饱和食盐水制氯气,已知铅蓄电池工作时

相关主题
文本预览
相关文档 最新文档