当前位置:文档之家› 蜗轮蜗杆减速机传动原理及使用范围

蜗轮蜗杆减速机传动原理及使用范围

蜗轮蜗杆减速机传动原理及使用范围
蜗轮蜗杆减速机传动原理及使用范围

蜗轮蜗杆减速机传动原理及使用范围

一、蜗轮减速机基本参数:

模数m、压力角、蜗杆直径系数q、导程角、蜗杆头数、蜗轮齿数、齿顶高系数(取1)及顶隙系数(取0.2)。其中,模数m和压力角是指蜗杆轴面的模数和压力角,亦即蜗轮轴面的模数和压力角,且均为标准值;蜗杆直径系数q为蜗杆分度圆直径与其模数m的比值,

二、几何尺寸计算与圆柱齿轮基本相同,需注意的几个问题是:

蜗杆导程角()是蜗杆分度圆柱上螺旋线的切线与蜗杆端面之间的夹角,与螺杆螺旋角的关系为,蜗轮的螺旋角,大则传动效率高,当小於啮合齿间当量摩擦角时,机构自锁。

引入蜗杆直径系数q是为了限制蜗轮滚刀的数目,使蜗杆分度圆直径进行了标准化m一定时,q大则大,蜗杆轴的刚度及强度相应增大;一定时,q小则导程角增大,传动效率相应提高。

蜗杆头数推荐值为1、2、4、6,当取小值时,其传动比大,且具有自锁性;当取大值时,传动效率高。

与圆柱齿轮传动不同,蜗杆蜗轮机构传动比不等於,而是,蜗杆蜗轮机构的中心距不等於,而是。

蜗杆蜗轮传动中蜗轮转向的判定方法,可根据啮合点K处方向、方向(平行於螺旋线的切线)及应垂直於蜗轮轴线画速度矢量三角形来判定;也可用「右旋蜗杆左手握,左旋蜗杆右手握,四指拇指」来判定。

三、蜗轮蜗杆正确啮合的条件

1、中间平面内蜗杆与蜗轮的模数和压力角分别相等,即蜗轮的端面模数等於蜗杆的轴面模数且为标准值;蜗轮的端面压力角应等於蜗杆的轴面压力角且为标准值,即==m,==

2、当蜗轮蜗杆的交错角为时,还需保证,而且蜗轮与蜗杆螺旋线旋向必须相同。

四、蜗轮及蜗杆机构的特点可以得到很大的传动比,比交错轴斜齿轮机构紧凑

两轮啮合齿面间为线接触,其承载能力大大高於交错轴斜齿轮机构

蜗杆传动相当於螺旋传动,为多齿啮合传动,故传动平稳、噪音很小

具有自锁性。当蜗杆的导程角小於啮合轮齿间的当量摩擦角时,机构具有自锁性,可实现反向自锁,即只能由蜗杆带动蜗轮,而不能由蜗轮带动蜗杆。如在其重机械中使用的自锁蜗杆机构,其反向自锁性可起安全保护作用

传动效率较低,磨损较严重。蜗轮蜗杆啮合传动时,啮合轮齿间的相对滑动速度大,故摩擦损耗大、效率低。另一方面,相对滑动速度大使齿面磨损严重、发热严重,为了散热和减小磨损,常采用价格较为昂贵的减摩性与抗磨性较好的材料及良好的润滑装置,因而成本较高蜗杆轴向力较大

五、用途:

蜗轮蜗杆机构常用来传递两交错轴之间的运动和动力。蜗轮与蜗杆在其中间平面内相当於齿轮与齿条,蜗杆又与螺杆形状相似。

罔呱鵼减速机厂家https://www.doczj.com/doc/929539272.html, .

.

. .

涡轮蜗杆减速机选型

涡轮蜗杆减速机选型 涡轮蜗杆减速机选型,涡轮蜗杆减速机在市面上型号是各种各样其选型就成了客户的忧虑,既想买好的还想买到适合自己的如果不是行家,确实是件头等难题,为了解决客户的一系列问题,天机传动台湾品牌型号做出详细的数据供大家参考,只要咨询者我们将一对一的服务为您解答。天机传动台湾品牌型号如下: 一、标准蜗轮蜗杆减速机型号: 二、1、TJ-BKA40#、TJ-BKA50#、TJ-BKA60#、TJ-BKA70#、TJ-BKA80#、TJ-BKA100#、TJ-BKA120#、TJ-BKA135#、TJ-BKA155#、TJ-BKA175#,该型标准蜗轮蜗杆减速机; 2、TJ-BKD50#、TJ-BKD60#、TJ-BKD70#、TJ-BKD80#、TJ-BKD100#、TJ-BKD120#、TJ-BKD135#、TJ-BKD155#、TJ-BKD175#、TJ-BKD200#、TJ-BKD225#、TJ-BKD250#、TJ-BKD300#、TJ-BKD350#该型标准蜗轮蜗杆减速机; 天机传动天机传动

3、TJ-BKDE60#、TJ-BKDE70#、TJ-BKDE80#、TJ-BKDE100#、TJ-BKDE120#、TJ-BKDE135#、TJ-BKDE155#,带输入法兰标准蜗轮蜗杆减速机; 4、TJ-BKAE50#、TJ-BKAE60#、TJ-BKAE70#、TJ-BKAE80#、TJ-BKAE80#、TJ-BKAE100#、TJ-BKAE120#、TJ-BKAE135#、TJ-BKAE155#、TJ-BKAE75#带输入法兰标准蜗轮蜗杆减速机; 5、TJ-BKV40#、TJ-BKV50#、TJ-BKV60#、TJ-BKV70#、TJ-BKV80#、TJ-BKV100#、TJ-BKV120#、TJ-BKV135#、TJ-BKV155#、TJ-BKV175#、TJ-BKV200#、TJ-BKV250#、TJ-BKV300#、TJ-BKV350#卧式标准蜗轮蜗杆减速机; 6、TJ-BKACS50#、TJ-BKACS60#、TJ-BKACS70#、TJ-BKACS80#、TJ-BKACS100#、TJ-BKACS120#,该型减速机附电磁离合器制动器; 传动比:1:10、1:20、1:30、1:40、1:50、1:60 特殊传动比:1:5、1:15、1:25、1:35等(需提前订做)。 天机传动天机传动

机械设计课程设计蜗轮蜗杆传动

目录 第一章总论......................................................... - 2 - 一、机械设计课程设计的容......................................... - 2 - 二、设计任务..................................................... - 2 - 三、设计要求..................................................... - 3 - 第二章机械传动装置总体设计......................................... - 3 - 一、电动机的选择................................................. - 4 - 二、传动比及其分配............................................... - 4 - 三、校核转速..................................................... - 5 - 四、传动装置各参数的计算......................................... - 5 - 第三章传动零件—蜗杆蜗轮传动的设计计算............................. - 5 - 一、蜗轮蜗杆材料及类型选择....................................... - 6 - 二、设计计算..................................................... - 6 - 第四章轴的结构设计及计算.......................................... - 10 - 一、安装蜗轮的轴设计计算........................................ - 10 - 二、蜗杆轴设计计算.............................................. - 15 - 第五章滚动轴承计算................................................ - 17 - 一、安装蜗轮的轴的轴承计算...................................... - 18 - 二、蜗杆轴轴承的校核............................................ - 18 - 第六章键的选择计算................................................ - 19 - 第七章联轴器...................................................... - 20 - 第八章润滑及密封说明.............................................. - 20 - 第九章拆装和调整的说明............................................ - 20 - 第十章减速箱体的附件说明.......................................... - 20 - 课程设计小结........................................................ - 21 - 参考文献............................................................ - 22 -

(有全套图纸)蜗轮蜗杆传动减速器设计

目录 一、课程设计任务书 (2) 二、传动方案 (3) 三、选择电动机 (3) 四、计算传动装置的总传动比及其分配各级传动比 (5) 五、传动装置的运动和动力参数 (5) 六、确定蜗杆的尺寸 (6) 七、减速器轴的设计计算 (9) 八、键联接的选择与验算 (17) 九、密封和润滑 (18) 十、铸铁减速器箱主要结构尺寸 (18) 十一、减速器附件的设计 (20) 十二、小结 (23) 十三、参考文献 (23)

一、课程设计任务书 2007—2008学年第 1 学期 机械工程学院(系、部)材料成型及控制工程专业 05-1 班级课程名称:机械设计 设计题目:蜗轮蜗杆传动减速器的设计 完成期限:自 2007年 12 月 31 日至 2008年 1 月 13 日共 2 周 指导教师(签字):年月日 系(教研室)主任(签字):年月日

二、传动方案 我选择蜗轮蜗杆传动作为转动装置,传动方案装置如下: 三、选择电动机 1、电动机的类型和结构形式 按工作要求和工作条件,选用选用笼型异步电动机,封闭式结构,电压380v, Y型。 2、电动机容量 工作机所需功率 w p KW Fv p w w 30 .1 96 .0 1000 5.2 500 1000 = ? ? = = η 根据带式运输机工作机的类型,可取工作机效率96 .0 = w η。 电动机输出功率 d p η w d p p= 传动装置的总效率 4 3 3 2 2 1 η η η η η? ? ? = 式中, 2 1 η η、…为从电动机至卷筒之间的各传动机构和轴承的效率。由表10-2 KW P w 3.1 =

蜗轮蜗杆减速机选型

蜗轮蜗杆减速机的选型 对于蜗轮蜗杆减速机的选型首先要考虑减速机本身的作用,其次是相对应使用设备上的尺寸大小,然后是蜗轮蜗杆减速机的速比,安装方式,装配形式。最后还要注意相对应的电机功率,以及电机的使用环境。 1.蜗轮蜗杆减速机的简要介绍 蜗轮蜗杆减速机是减速机行业一个涵盖很广泛的术语名词;在减速机行业的发展中可以说,蜗轮蜗杆系列减速机的发展历程中是一主要的推动力。蜗轮蜗杆减速机是一种为稳定、改变传动速度的传动设备,利用齿轮的不同速比,从而实现稳定传输、改变速度,调节电机和机床等设备的速度适合。在目前的传动设备中,减速机的使用很广泛。 人们也许并不了解减速机,但是减速机早已经被使用在人们生活中的方方面面,交通工具上的汽车、轮渡、飞机;机械生产上的传动设备更少不了减速机的身影,人们日常生活中的家电、钟表、洗衣机等,这些机械设备的使用都少不了减速机的帮助。 2.蜗轮蜗杆减速机的作用: (1)、减速机减速的同时提高输出扭矩,扭矩输出比例按电机输出乘减速比。 (2)、减速同时降低了负载的惯量,惯量的减少为减速比的平方。 蜗轮蜗杆减速机主要型号有WP系列蜗轮蜗杆减速机、WH系列蜗轮蜗杆减速机、CW系列蜗轮蜗杆减速机、RV系列蜗轮蜗杆减速机同时还包括C系列包络蜗轮蜗杆减速机、TP系列平面包络环面蜗杆减速机、ZC1型双级蜗杆及齿轮-蜗杆减速机等小系列减速机。 3. 球面蜗杆在加工的工作中,十分容易的出现如下问题: 1蜗杆的齿形的一边厚,一边薄 2蜗杆的齿形两边厚,中间薄 3蜗杆的齿形的两边薄,中间厚 4.使用铣床加工出的蜗轮,有如下优点: (一),节约刀具的费用。 (二)不用专用的设备。 其缺点是不言而喻的: (一)蜗轮轮齿的分度误差很大。 (二)蜗轮齿形角的精度无法保证。 (三)蜗轮轮齿的螺旋角误差太大。

蜗轮蜗杆的计算

蜗轮、蜗杆的计算公式: 1,传动比=蜗轮齿数÷蜗杆头数 2,中心距=(蜗轮节径+蜗杆节径)÷2 3,蜗轮吼径=(齿数+2)×模数 4,蜗轮节径=模数×齿数 5,蜗杆节径=蜗杆外径-2×模数 6,蜗杆导程=π×模数×头数 7,螺旋角(导程角)tgβ=(模数×头数)÷蜗杆节径 一.基本参数: (1)模数m和压力角α: 在中间平面中,为保证蜗杆蜗轮传动的正确啮合,蜗杆的轴向模数m a1和压力角αa1应分别相等于蜗轮的法面模数m t2和压力角αt2,即 m a1=m t2=m αa1=αt2 蜗杆轴向压力角与法向压力角的关系为: tgαa=tgαn/cosγ 式中:γ-导程角。 (2)蜗杆的分度圆直径d1和直径系数q 为了保证蜗杆与蜗轮的正确啮合,要用与蜗杆尺寸相同的蜗杆滚刀来加工蜗轮。由于相同的模数,可以有许多不同的蜗杆直径,这样就造成要配备很多的蜗轮滚刀,以适应不同的蜗杆直径。显然,这样很不经济。 为了减少蜗轮滚刀的个数和便于滚刀的标准化,就对每一标准的模数规定了一定数量的蜗杆分度圆直径d1,而把及分度圆直径和模数的比称为蜗杆直径系数q,即: q=d1/m 常用的标准模数m和蜗杆分度圆直径d1及直径系数q,见匹配表。 (3)蜗杆头数z1和蜗轮齿数z2

蜗杆头数可根据要求的传动比和效率来选择,一般取z1=1-10,推荐z1=1,2,4,6。

选择的原则是:当要求传动比较大,或要求传递大的转矩时,则z1取小值;要求传动自锁时取z1=1;要求具有高的传动效率,或高速传动时,则z1取较大值。蜗轮齿数的多少,影响运转的平稳性,并受到两个限制:最少齿数应避免发生根切与干涉,理论上应使z2min≥17,但z2<26时,啮合区显著减小,影响平稳性,而在z2≥30时,则可始终保持有两对齿以上啮合,因之通常规定z2>28。另一方面z2也不能过多,当z2>80时(对于动力传动),蜗轮直径将增大过多,在结构上相应就须增大蜗杆两支承点间的跨距,影响蜗杆轴的刚度和啮合精度;对一定直径的蜗轮,如z2取得过多,模数m就减小甚多,将影响轮齿的弯曲强度;故对于动力传动,常用的范围为z2≈28-70。对于传递运动的传动,z2可达200、300,甚至可到1000。z1和z2的推荐值见下表 (4)导程角γ 蜗杆的形成原理与螺旋相同,所以蜗杆轴向齿距p a与蜗杆导程p z的关系为p z=z

RV蜗轮蜗杆减速机

一、RV蜗轮蜗杆减速机简介 我公司生产的RV系列的蜗轮蜗杆减速器包括NMR和NRV两大类,这种产品的特点是: 1.采用ZK型锥面包络传动原理 2.先进的耐磨材料 3.性能优越、结构紧凑、体积小、效率高; 4.安装简易、易于维护检修; 5.传动比范围大、扭矩大、承受过载能力高; 6.运行平稳、噪音低、经久耐用; 7.适用性强、安全可靠性大。 二、二、RV蜗轮蜗杆减速机应用范围 1.可以在高惯性条件下运转; 2.可以用在高动态张力的情况下; 3.适用的环境温度范围-10°~60°; 3.用在环境压力超过大气压的环境中; 4.本减速器避免用于液体环境中。 三、三、RV蜗轮蜗杆减速机特点 RV系列铝合金减速机设计按照国标Q/QS1-2000技术质量标准设计制造,功率可应用0.06KW~7.5KW,减速比在7.5-100范围间调节,减速机还可以作成双级减速,减速比范围在300-3000,适合与对输出转速要求较慢的设备,减速机壳体采用的是优质铝合金材料,那么在使用的时候需要注意哪些问题呢,我们总结有以下几点: 1.RV蜗轮蜗杆减速机在安装的时候,要选择一个平整、稳定的平面,减少振动,最好 用垫圈和螺栓固定。 2.RV蜗轮蜗杆减速机如果工作环境在护外,还要注意防雨、防晒和意外碰撞。 3.RV蜗轮蜗杆减速机应使用WA460或G-N460W润滑油。 4 根据RV蜗杆减速机的设计要求,RV蜗轮蜗杆减速机请不要在超过摄氏40度的地 方使用。 5 RV蜗轮减速机应该在首次安装使用150小时后更换润滑油,以后更换润滑油的周 期约在4000小时左右。 6 RV蜗轮蜗杆减速机蜗杆的主机输入转速应小于1500r/min。 减速机的具体型号有:RV25、RV30、RV40、RV50、RV63、RV75、RV90、RV110、RV130、RV150 、NRV25、NRV30、NRV40、NRV50、NRV63、NRV75、NRV90、NRV110、NRV130、NRV150 、NMRV25、NMRV30、NMRV40、NMRV50、NMRV63、NMRV75、NMRV90、NMRV110、NMRV130、NMRV150。

减速机的选型与使用

减速机的选型与使用 一、选型指南 为了选到合适的减速电机,有必要了解该减速电机所驱动机器的详尽技术特性,就必须确定一个使用系数Fb,使用系数Fb. 减速电机的选用首先应确定一下技术参数:每天工作小时数;每小时启停次数;每小时运转周期;可靠度要求;工作机转矩T工作机;输出转速n出;载荷类型;环境温度;现场散热条件; 减速机通常是根据恒转矩、启停不频繁及常温的情况设计的,其许用输出转矩T由下式确定: T=T出X FB使用系数 T出----------减速电机输出扭矩,FB-------减速电机使用系数 传动比i i=n 入/ n出电机功率P(KW) P=T出*n出/9550*η输出转矩T出(N.m)T出=9550*P*η/n 出式中:n入—输入转速η—减速机的传动效率 在选用减速电机时,根据不同的工况,必须同时满足以下条件:1、T出≥T工作机 2、T=FB总*T工作机式中:FB总—总的使用系数,FB总=FB*FB1*KR*KW FB—载荷特性系数,KR—可靠度系数 FB1—环境问的系数; 二、减速机安装注意事项 安装减速机时,应重视传动中心轴线对中,其误差不得大于所用联轴器的使用补偿量。对中良好能延长使用寿命,并获得理想的传动效率。在输出轴上安装传动件时,不允许用锤子敲击,通常利用装配夹具和轴端的内螺纹,用螺栓将传动件压入,否则有可能造成减速机内部零件的损坏。最好不采用钢性固定式联轴器,因该类联轴器安装不当,会引起不必要的外加载荷,以致造成轴承的早期损坏,严重是甚至造成输出轴的断裂。 减速机应牢固地安装在稳定水平的基础或底座上,排油槽的油应能排除,且冷却空气循环流畅,基础不可靠,运转时会引起振动及噪音,并促使轴承及齿轮受损,当传动联件有凸出物或采用齿轮、链条传动时,应考虑加装防护装置,输出轴上承受较大的径向载荷时,应选用加强型。 按规定的安装装置保证工作人员能方便地靠近油标,通气塞、排油塞。安装就位后,应按次序全面检查安装位置的准确性,各紧固件压紧的可靠性,安装后应能灵活转动。减速机采用油池飞溅润滑,在运行前用户需将通气孔的螺栓取下,换上通气塞。按不同安装位置,并打开油位塞螺钉检查有为线的高度,从油位塞处加油至润滑油从油位塞螺孔溢出为止,拧上油位塞确定无误后,方可进行空载试运转,时间不得少于2小时。运转应平稳,无冲击、振动、杂音及渗油漏油现象,发现异常应及时排除。 经过一定时期应再检查油位,以防止机壳可能造成的泄漏,如环境温度过高或过低时,可改变润滑油的牌号。 三、轴装式减速机的安装 1、减速机与工作机的联接 减速机直接套装在工作机主轴上,当减速机运转时,作用在减速机箱体上的反力矩,又安装在减速机箱体上的反力矩支架或由其他方法来平衡,机直接相配,另一端与固定支架联接 2、反力矩支架的安装 反力矩支架安装在减速机朝向工作机的那一侧,以减小附加在工作机轴上的弯矩。 反力矩支架与固定支撑联接端的轴套使用橡胶等弹性体,以防止发生挠曲并吸收所产生的转矩波动 3、减速机与工作机的安装关系 为了避免工作机主轴挠曲及在减速机轴承上产生附加力,减速机与工作机之间的距离,在不影响正

蜗轮蜗杆传动原理

蜗轮蜗杆传动 蜗轮蜗杆传动用于两轴交叉成90度,但彼此既不平行又不相交的情况下,通常在蜗轮传动中,蜗杆是主动件,而蜗轮是被动件。 蜗轮蜗杆传动有如下特点: 1)结构紧凑、并能获得很大的传动比,一般传动比为7-80。 2) 工作平稳无噪音 3) 传动功率范围大 4)可以自锁 5)传动效率低,蜗轮常需用有色金属制造。蜗杆的螺旋有单头与多头之分。 传动比的计算如下: I=n1/n2=z/K n1-蜗杆的转速 n2-蜗轮的转速 K-蜗杆头数 Z-蜗轮的齿数 蜗轮及蜗杆机构 一、用途: 蜗轮蜗杆机构常用来传递两交错轴之间的运动和动力。蜗轮与蜗杆在其中间平面内相当於齿轮与齿条,蜗杆又与螺杆形状相似。 二、基本参数: 模数m、压力角、蜗杆直径系数q、导程角、蜗杆头数、蜗轮齿数、齿顶高系数(取1)及顶隙系数(取0.2)。其中,模数m和压力角是指蜗杆轴面的模数和压力角,亦即蜗轮轴面的模数和压力角,且均为标准值;蜗杆直径系数q为蜗杆分度圆直径与其模数m的比值, 三、蜗轮蜗杆正确啮合的条件 1 中间平面内蜗杆与蜗轮的模数和压力角分别相等,即蜗轮的端面模数等於蜗杆的轴面模数且为标准值;蜗轮的端面压力角应等於蜗杆的轴面压力角且为标准值,即 ==m ,== 2 当蜗轮蜗杆的交错角为时,还需保证,而且蜗轮与蜗杆螺旋线旋向必须相同。 四、几何尺寸计算与圆柱齿轮基本相同,需注意的几个问题是: 蜗杆导程角()是蜗杆分度圆柱上螺旋线的切线与蜗杆端面之间的夹角,与螺杆螺旋角的关系为,蜗轮的螺旋角,大则传动效率高,当小於啮合齿间当量摩擦角时,机构自锁。 引入蜗杆直径系数q是为了限制蜗轮滚刀的数目,使蜗杆分度圆直径进行了标准化m一定时,q大则大,蜗杆轴的刚度及强度相应增大;一定时,q小则导程角增大,传动效率相应提高。 蜗杆头数推荐值为1、2、4、6,当取小值时,其传动比大,且具有自锁性;当取大值时,传动效率高。 与圆柱齿轮传动不同,蜗杆蜗轮机构传动比不等於,而是,蜗杆蜗轮机构的中心距不等於,而是。 蜗杆蜗轮传动中蜗轮转向的判定方法,可根据啮合点K处方向、方向(平行於螺旋线的切线)及应垂直於蜗轮轴线画速度矢量三角形来判定;也可用「右旋蜗杆左手握,左旋蜗杆右手握,四指拇指」来判定。 五、蜗轮及蜗杆机构的特点 可以得到很大的传动比,比交错轴斜齿轮机构紧凑

机械设计课程设计蜗轮蜗杆传动..

】 目录 第一章总论......................................................... - 2 - 一、机械设计课程设计的内容....................................... - 2 - 二、设计任务..................................................... - 2 - · 三、设计要求..................................................... - 3 - 第二章机械传动装置总体设计......................................... - 3 - 一、电动机的选择................................................. - 4 - 二、传动比及其分配............................................... - 4 - 三、校核转速..................................................... - 5 - 四、传动装置各参数的计算......................................... - 5 - 第三章传动零件—蜗杆蜗轮传动的设计计算............................. - 5 - 一、蜗轮蜗杆材料及类型选择....................................... - 6 - & 二、设计计算..................................................... - 6 - 第四章轴的结构设计及计算.......................................... - 10 - 一、安装蜗轮的轴设计计算........................................ - 10 - 二、蜗杆轴设计计算.............................................. - 15 - 第五章滚动轴承计算................................................ - 17 - 一、安装蜗轮的轴的轴承计算...................................... - 18 - 二、蜗杆轴轴承的校核............................................ - 18 - 第六章键的选择计算................................................ - 19 -. 第七章联轴器...................................................... - 20 -第八章润滑及密封说明.............................................. - 20 -第九章拆装和调整的说明............................................ - 20 -第十章减速箱体的附件说明.......................................... - 20 -课程设计小结........................................................ - 21 -参考文献............................................................ - 22 - ,

西门子伺服电机_蜗轮蜗杆减速机 西门子伺服电机选型手册

西门子伺服电机_蜗轮蜗杆减速机西门子伺服电机选型手册 性能特点 1.ANRV系列采用单级蜗轮蜗杆传动,也可由两种机座号配合成双级减速传动。 2.箱体、法兰盘、端盖等零件采用优质铝合金压铸而成,外形轻巧美观、结构紧凑、体积小、重量轻,节省安装空间,且不易锈蚀。3.配套电机采用铝壳电机,散热性能好,安全可靠、效率高、传动平稳、振动小、噪音低。 4.配套动力输出及转矩输出的多种连接结构,满足各种连接需要;箱体外形设计及底脚孔设置布局适应多种安装方式,通用性强。5.箱体上设置加油孔和放油孔,润滑油定期更换,不宜损耗变质,便于维护保养。 6.由单级蜗杆减速器组合而成的双级蜗杆减速机,具有单级蜗杆减速机的一切优点,可获得较大的传动比。 7.根据用户需要可提供本样本之外的速比和结构形式。 场所条件 1.环境温度在-40℃~50℃条件下额定运行。(0℃以下启动时润滑油要加热到0℃以上) 2.海拔不超过1000m。 3.输入转速不大于1500r/min。 4.可用于正反运转,无行业限制 ANRV系列蜗轮蜗杆减速电动机型号说明 型号说明 1.ANRV—蜗轮蜗杆减速机产品代码。 2.整机结构:无代码…单级E…双级。 3.入轴连接方式:无代码…单输入轴B…双输入轴D…带电机输入法兰 DB…一端带输入轴,一端带电机输入法兰。 4.产品规格:单级以蜗轮副中心距表示,如75。 双级以两对蜗轮副中心距表示,如40/63。 5.安装型式:单级有B3、B6、B7、B8、V5、V6六种。 双级有AS1、AS2、BS1、BS2、VS1、VS2、PS1、PS2八种。 6.电机功率:配用Y2、YS系列电机,由B5、B14两种安装型式,如2.2(B14)。(如带输入法兰而没有电机,只填写电机安装型式)。 7.理论传动比:如i=20。 8.附件:A…单输出轴B…双输出轴D…防护罩 E…转矩臂F…输出法兰(ANRV40、50、63有F、FB、FL三种形式)。 型号标记

蜗轮和蜗杆

蜗杆蜗轮 蜗杆蜗轮用于两交叉轴(交叉角一般为直角)间的传动。通常蜗杆主动,蜗轮从动,用于减速,可获得较大的传动比。 蜗杆蜗轮传动中(图9-60),最常用的蜗杆为圆柱形阿基米德蜗杆。这种蜗杆的轴向齿廓是直线,轴向断面呈等腰梯形,与梯形螺纹相似。蜗杆的齿数称为头数,相当于螺纹的线数,常用单头或双头。 图9-60 蜗杆蜗轮传动 蜗轮相当于斜齿圆柱齿轮,其轮齿分布在圆环面上,使轮齿能包住蜗杆,以改善接触状况,这是蜗轮形体的一个特征。 (一)蜗杆蜗轮的主要参数与尺寸计算 1、齿距p与模数m 在包含蜗杆轴线并垂直于蜗轮轴线的中间平面内(图9-60),蜗杆的轴向齿距p x应与蜗轮的端面齿距P t相等(p x=p t=p),所以蜗杆的轴向模数m x与蜗轮的端面模数m t也相等(m x=m t=m),并规定为标准模数。蜗轮分度圆直径d2、喉圆直径d a2、齿根圆直径d f2均在中间平面内度量。 2、蜗杆直径系数q 蜗杆直径系数是蜗杆特有的一个重要参数,它等于蜗杆的分度圆直径d1与轴向模数m的比值,即 q=d1/m 或d1=mq 对应于不同的标准模数,规定了相应的q值。引入这一系数的目的,主要是为了减少加工刀具的数目。

沿蜗杆分度圆柱面展开,螺旋线展成倾斜 直线,如图9-61所示,斜线与底线间的夹角γ, 称为蜗杆的导程角。当蜗杆直径系数q和头数z1选 定后,导程角丁就惟一确定了。它们之间的关系为 tanγ=p x z1/πd1=πmz1/πm q=z1/q 一对相互啮合的蜗杆和蜗轮,除了模数和齿形 图9-61 蜗杆的导程角角必须分别相同外,蜗杆导程角γ与蜗轮螺旋角卢 应大小相等、旋向相同,即γ=β。 蜗杆与蜗轮各部分尺寸与模数m、蜗杆直径系数q、导程角γ和齿数 z1、z2有关,其具体关系见表9-15。 表9-15 标准蜗杆、蜗轮各部分尺寸计算公式

齿轮蜗轮蜗杆参数

一、蜗轮、蜗杆齿轮的功用与结构 蜗轮、蜗杆的功用主要用于传递交错轴间运动和动力,通常,轴交角∑=90°。其优点是传动比大,工作较平稳,噪声低,结构紧凑,可以自锁;缺点是当蜗杆头数较少时,传动效率低,常需要采用贵重的减摩有色金属材料,制造成本高。 蜗轮是回转形零件,蜗轮的结构特点和齿轮基本相似,直径一般大于长度,通常由外圆柱面、内环面、内孔、键槽(花键槽)、轮齿、齿槽等组成。根据结构形式的不同,齿轮上常常还有轮缘、轮毂、腹板(孔板)、轮辐等结构。按结构不同蜗轮可分为实心式、腹板式、孔板式、轮辐式等多种型式。 蜗杆的结构和轴相似,其结构特点是长度一般大于直径,通常由外圆柱面、圆锥面、螺纹及阶梯端面等所组成。蜗杆上啮合部分的轮齿呈螺旋状,有单头和多头之分,单头蜗杆的自锁性能好、易加工,但传动效率低。 二、普通圆柱蜗轮、蜗杆的测绘步骤 蜗轮、蜗杆的测绘比较复杂,要想获得准确的测绘数据,就必须具备较全面的蜗杆传动方面的知识。同时应合理选择测量工具及必要的检测仪器,掌握正确的测量方法,并对所测量的数据进行合理的分析处理,提出接近或替代原设计的方案,直接为生产服务。 测绘蜗轮、蜗杆时,主要是确定蜗杆轴向模数m a(即蜗轮端面模数m t),蜗杆的直径系数q和导程角γ(即蜗轮的螺旋角β)。下面以普通圆柱蜗轮蜗杆测绘为例,说明标准蜗轮蜗杆的基本测绘步骤。 1. 首先对要测绘的蜗轮、蜗杆进行结构和工艺分析。 2. 画出蜗轮、蜗杆的结构草图和必须的参数表,并画出所需标注尺寸的尺寸界线及尺寸线。 3. 数出蜗杆头数z1和蜗轮齿数z2。 4. 测量出蜗杆齿顶圆直径d a l、蜗轮喉径d a i和蜗轮齿顶外圆直径d ae。 5. 在箱体上测量出中心距a。 6. 确定蜗杆轴向模数m a (即涡轮端面模数m t) 7. 确定蜗杆的导程角γ(蜗轮的螺旋角β),并判定γ及β的方向。 根据计算公式tgγ= z 1m a / d1,因d1= d a1-2m a则 γ= tg -1 z1m a/ (d a1-2m a) 8. 确定蜗杆直径系数q 根据计算公式q = d 1/ m a 或q = z 1/ tg γ计算出q值,且应按标准系列选取与其相近的标 准数值。 9. 根据计算公式,计算出其它各基本尺寸,如齿根圆直径d f1、d f2,齿顶高h a1、h a2,齿根高h f1、h f2等。 10. 所得尺寸必须与实测中心距a核对,且符合计算公式: a = m a / 2 (q+z2) 11. 测量其它各部分尺寸,如毂孔直径、键槽尺寸等。 12. 根据使用要求,确定蜗轮、蜗杆的精度,一般为7~9级。 13. 用类比法或查资料确定配合处的尺寸公差和形位公差。 14. 用粗糙度量块对比或根据各部分的配合性质确定表面粗糙度。 15. 尺寸结构核对无误后,绘制零件图。 三、普通圆柱蜗杆、蜗轮的测绘 1. 几何参数的测量 (1)蜗杆头数z1〔齿数)、蜗轮齿数z2 目测确定z1,并数出z2。

伺服马达rv减速机选型手册西门子伺服马达伺服电机型

伺服马达rv减速机选型手册西门子伺服马达伺服电机型 RV系列蜗轮蜗杆减速机按Q/MD1-2000技术质量标准设计制造。产品在符合按国家标准GB10085-88蜗杆轮参数基础之上,蜗轮蜗杆减速器吸取国内外最先进科技,独具新颖一格的“方箱型”外结

RV25 RV30 RV40 RV50 RV63 RV75 RV90 RV110 RV130 RV150 NRV25 NRV30 NRV40 NRV50 NRV63 NRV75 NRV90 NRV110 NRV130 NRV150 NMRV25 NMRV30 NMRV40 NMRV50 NMRV63 NMRV75 NMRV90 NMRV110 NMRV130 产品概述: RV系列蜗轮蜗杆减速机按Q/MD1-2000技术质量标准设计制造。 产品在符合按国家标准GB10085-88蜗杆轮参数基础之上,蜗轮蜗杆减速器吸取国内外最先进科技,独具新颖一格的“方箱型”外结构,箱体外形美观,以优质铝合金压铸而成。 1.机械结构紧凑、体积轻巧、小型高效; 2.热交换性能好,散热快; 3.安装简易、灵活轻捷、性能优越、易于维护检修; 4.传动速比大、扭矩大、承受过载能力高; 5.运行平稳,噪音小,经久耐用; 6.适用性强、安全可靠性大。 RV系列蜗轮减速机目前已广泛应用于冶金、矿山、输送、水利、化工、食品、饮料、纺织、烟草、包装、环保等众多行业和领域工艺装备的机械减速装置,深受用户的好评、是目前现代工业装备实现大速比低噪音、高稳定机械减速传动控制装置的最佳选择。 技术参数: 功率:0.06KW~7.5KW 转矩:2.6N·m~2379N·m 传动比:7.5-100

涡轮蜗杆传动原理

涡轮蜗杆传动原理—天机传动 传动比大,一般为10~80,最大可达1000 重合度大,传动平衡,噪音低,环保 结构紧凑,可实现反行程自锁功能 滑动速度大,效率一般 蜗轮蜗杆的造价成本高 应用领域: 主要用于中小功率,间断工作的场合。 广泛用于机床、冶金、矿山以及起重设备中 分类: 圆柱蜗杆传动 环面蜗杆传动 锥蜗杆传动 通常情况下蜗杆的直径是比较小,所以和常和轴做一个整体,即蜗杆轴。当蜗杆的直径较大时,可以将轴与蜗杆分开制作。为了减摩的需要,蜗轮通常要用青铜制作。另一方面为了节省铜材,当蜗轮直径较大时,建议采用组合式蜗轮结构。齿圈用青铜,轮芯用铸铁或者碳素铡。 蜗轮蜗杆传动的主要失效形式是磨损与胶合两种。但目前依据胶合和磨损的强度计算缺乏可靠的方法和数据,因而通常沿用接触疲劳和弯曲席疲劳强度计算蜗轮蜗杆传动的承载能力。

由于蜗轮蜗杆齿是不断的螺旋,其材料的强度要求又很高。因此失效总是出现的蜗轮上,所以蜗轮蜗杆传动只需对蜗轮轮齿进行强度计算就可。蜗轮蜗杆传动效率与齿轮传动相似,闭式蜗轮蜗杆传动的功率损耗包括轮齿啮合摩擦损耗、轴承中摩擦损耗以及搅动箱体内润滑油的油阻损耗三种。 注意事项: 由于蜗轮蜗杆传动效率较低,且发热量较大,若不及时散热的话,极可能会引起箱体内油温升高、润滑失效,最终导致轮齿磨损加剧,甚至出现胶合。因些对连续工作的闭式蜗轮蜗杆传动要进行热平衡计算。 蜗轮蜗杆传动由蜗杆与蜗轮组成,在空间交错的两轴间传递运动和动力的一种传动,两轴线间的夹角可为任意值,常用的为90°但彼此既不平行又不相交的情况下,通常在蜗轮传动中,蜗杆是主动件,而蜗轮是被动件。 其一,它是一种特殊的交错轴斜齿轮传动,交错角为∑=90°,传动比大,且准确.通常称蜗杆的螺旋线数为螺杆的头数,若蜗杆头数为z1,蜗轮齿数为z2,则蜗杆传动的传动比为2=n1/n2=z2/z1ω1/ωi=(3-60)通常蜗杆头数很少(z1=1~4),蜗轮齿数很多(z2=30~80),所以蜗杆传动可获得很大的传动比而使机构比较紧凑.单级蜗杆传动的传动比i≤100~300;传递动力时常用i=5~83. 其二,它具有螺旋传动的某些特点,蜗杆相当于螺杆,蜗轮相当于螺母,蜗轮部分地包容蜗杆。蜗杆材料、蜗轮材料不仅要求具有足够的强度,更重要的是要具有良好的跑合性能、耐磨性能和抗胶合性能。蜗轮蜗杆减速机传动常采用青铜或铸铁作蜗轮的齿圈,与淬硬并磨

S系列斜齿轮蜗轮蜗杆减速机选型手册

S系列 斜齿轮-蜗轮减速机 选型手册

目录 选型指南 性能特点及选型方法 减速机服务系数 结构设计方案 型号与标记 安装形式 电机接线盒位置安装形式输入功率及许用转矩 减速机重量 润滑油量表 详细技术参数 选型参数表 0.18/0.25/0.37 kW 选型参数表 0.55/0.75 kW 选型参数表 1.1/1.5 kW 选型参数表 2.2/3/4/5.5/7.5 kW 选型参数表 11/15/18.5/22 kW 低转速按扭矩选型表 90-4000 Nm 详细外型安装尺寸参数 外型安装尺寸/底脚安装、空心轴安装 外型安装尺寸/扭力臂安装、小法兰安装 外型安装尺寸/法兰安装 外型安装尺寸/轴输入及S、R系列组合 外型安装尺寸/带电机连接法兰 电机参数表 S系列斜齿轮-蜗轮蜗杆减速机 ...................................................1 ...........................................1 ..............................................2 ...............................................4 .................................................5 ...................................................6 ........................................6 ..........................................6 .................................................7 .................................................7 ...............................................8 ..................................8 .....................................10 .......................................12 ................................13 ..................................15 .................................17 .......................................18 ..............................18 ............................19 .......................................20 ..............................21 ...................................22 ................................................23

蜗轮蜗杆减速机选型手册

Inhaltsübersicht Table of contents Sommaire Stirnrad-Schneckengetriebe Helical-Worm Gear Units Réducteursàroue et vis sans fin Leistungs-und Drehzahlübersicht,Stirnrad-Schneckengetriebemotoren...E2 Performances,Helical-Worm Geared Motors Tableau des puissances,Motoréducteursàroue et vis sans fin Leistungs-undübersetzungstabelle,Adapter W und IEC........E18 Table of performances and reductions,adapter W and IEC Tableau des puissances et des réductions,lanternes W et IEC Ma?bilder Stirnrad-Schneckengetriebemotoren................E30 Dimension sheets Helical-Worm Geared Motors Cotes d'encombrement Motoréducteursàroue et vis sans fin Ma?bilder Stirnrad-Schneckengetriebe,Adapter W und IEC.....E52 Dimensions sheets Helical-Worm Geared Units,adapter W and IEC Cotes d'encombrement réducteursàroue et vis sans fin,lanternes W et IEC Optionen Options Options AZ Stiftbohrungen...........................E56 Pin holes Taraudage en bout d'arbre AZH Abdeckhaube als Berührungsschutz..........E57 Cover as contact protection Arbre creux avec capot de protection

齿轮蜗轮蜗杆参数

齿轮蜗轮蜗杆参数

一、蜗轮、蜗杆齿轮的功用与结构 蜗轮、蜗杆的功用主要用于传递交错轴间运动和动力,通常,轴交角∑=90°。其优点是传动比大,工作较平稳,噪声低,结构紧凑,可以自锁;缺点是当蜗杆头数较少时,传动效率低,常需要采用贵重的减摩有色金属材料,制造成本高。 蜗轮是回转形零件,蜗轮的结构特点和齿轮基本相似,直径一般大于长度,通常由外圆柱面、内环面、内孔、键槽(花键槽)、轮齿、齿槽等组成。根据结构形式的不同,齿轮上常常还有轮缘、轮毂、腹板(孔板)、轮辐等结构。按结构不同蜗轮可分为实心式、腹板式、孔板式、轮辐式等多种型式。 蜗杆的结构和轴相似,其结构特点是长度一般大于直径,通常由外圆柱面、圆锥面、螺纹及阶梯端面等所组成。蜗杆上啮合部分的轮齿呈螺旋状,有单头和多头之分,单头蜗杆的自锁性能好、易加工,但传动效率低。 二、普通圆柱蜗轮、蜗杆的测绘步骤 蜗轮、蜗杆的测绘比较复杂,要想获得准确的测绘数据,就必须具备较全面的蜗杆传动方面的知识。同时应合理选择测量工具及必要的检测

仪器,掌握正确的测量方法,并对所测量的数据进行合理的分析处理,提出接近或替代原设计的方案,直接为生产服务。 测绘蜗轮、蜗杆时,主要是确定蜗杆轴向模数m a(即蜗轮端面模数m t),蜗杆的直径系数q 和导程角γ(即蜗轮的螺旋角β)。下面以普通圆柱蜗轮蜗杆测绘为例,说明标准蜗轮蜗杆的基本测绘步骤。 1. 首先对要测绘的蜗轮、蜗杆进行结构和工艺分析。 2. 画出蜗轮、蜗杆的结构草图和必须的参数表,并画出所需标注尺寸的尺寸界线及尺寸线。 3. 数出蜗杆头数z1和蜗轮齿数z2。 4. 测量出蜗杆齿顶圆直径d a l、蜗轮喉径d a i 和蜗轮齿顶外圆直径d ae。 5. 在箱体上测量出中心距a。 6. 确定蜗杆轴向模数m a (即涡轮端面模数m t) 7. 确定蜗杆的导程角γ(蜗轮的螺旋角β),并判定γ及β的方向。 根据计算公式tgγ= z1m a/ d1,因d1=

蜗轮蜗杆传动原理

蜗轮蜗杆传动原理 一提起传动,各位都不会生疏,首先想到的是圆柱蜗杆传动、环面包络蜗杆传动。下面我介绍别的一种蜗杆传动:锥蜗杆传动。 锥蜗杆传动在国外已经轨范化,但在海内因为设计人员接触较少,还未普及。锥蜗杆传动适用于传动比大于10的交错轴传动(可以不为90°)。锥蜗杆偏置于锥蜗轮的一侧,锥蜗杆齿面为阿基米德螺旋面,沿分度锥母线的导程相等,可以用车、铣、滚压等办法加工,精度和表面光洁度要求较高的硬齿面锥蜗杆还需磨齿。锥蜗轮由与锥蜗杆一致的锥滚刀在常见滚齿机上滚切成,外观象一个螺旋锥齿轮,精度和表面光洁度要求较高时,精滚之后在进行滚压或珩磨;产量大而精度要挨不高时,还可选用压铸、烧结、模锻等加工办法。 阿基米德锥蜗杆与阿基米德圆柱蜗杆的齿面变成原理完全相同,都属于圆柱螺旋面,差别仅在于锥蜗杆在该螺旋面上截取顶圆锥面和根圆锥面之间的部分作为齿面,因此,锥蜗杆传动保留着阿基米德圆柱蜗杆传动的完全长处,比如易于缔造和装配,锥蜗杆轴向位移不破坏齿面共轭等等。锥蜗杆传动与圆柱蜗杆传动的紧要辨别在于锥蜗杆偏置,因而同时接触齿数大幅度增加,假如正常的选择几何参数,可得到对比抱负的瞬时接触线,有利于齿面的液体动力润滑。这使得锥蜗杆传的啮合机能显著优于阿基米德圆柱蜗杆传动。 锥蜗杆传动的紧要特点可笼统如下: (1)重合度大,同时接触齿数大意为锥蜗轮齿数的10%。 (2)合速度与瞬时接触线的法线所夹锐角较小,甚至靠近零度,有利于齿面间变成液体动力润滑。 (3)通过轴向移动锥蜗杆,可以调节齿侧间隙而不破坏齿面的共轭。 (4)可以做离合器利用,结合和脱开都十分灵活,脱开时中央距维持不变。 与圆柱蜗杆对比,锥蜗杆传动平稳、承载本领大、效率高、传动对比大时结构也铰紧凑。当齿面光洁度较高,齿面接触良好,并选用极压润滑油时,还可以用渗碳淬火钢或氮化钢代替青铜做蜗轮材料。这也吻合当代齿轮行业举荐利用硬齿面的要求。由于锥蜗杆带有锥度,缔造方面比阿基米德圆柱蜗杆略为混杂一些。 与环面蜗杆对比,锥蜗杆缔造和装配都较简朴,对轴向位置偏差不敏感,在轴向力作用下锥蜗杆略有移动时仍能维持良好的接触区。 2008年5月在全国小模数齿轮缔造技艺(宁波)研讨会上,有位宁波的行家做了 相干叙述,现摘录如下: 长处: 1.重合度大。可达蜗轮齿数的9-12%,因而噪音小、平稳、承载本领大。 2.齿面润滑好。合速度与接触面法线的夹角为锐角,靠近0度。 3.摩擦力矩目标与蜗轮旋向相同,效率高。 4.可通过调节蜗杆轴向位置调节齿侧间隙,不熏陶齿面共轭。降低装备精度要求。 5.可以当离合器用。蜗轮轴向位置变动时与蜗杆的啮入啮出灵活可靠,中央距维持不变。差错: 1. 蜗杆不能回转 2. 蜗杆轴向力大,蜗杆回转若有轴向窜动会导致机构卡死。 3. 模数小时各部尺寸皆小,不易加工。此时的齿轮靠一把与蜗杆相同的滚刀加工,难度可想而知。

相关主题
文本预览
相关文档 最新文档