当前位置:文档之家› 事故概率预测方法

事故概率预测方法

事故概率预测方法
事故概率预测方法

事故概率预测方法

附录3.1 类比法1

以下以船舶溢油事故为例说明类比法的应用:

在对风险概率指数(P)进行计算前,首先引入两个因素指标:货油溢油指数(O)和燃油溢油指数(F)。

对于港口、码头和装卸站,如果仅从事石油装卸和运输作业,则应用货油溢油指数(O)来表征风险概率;对于没有油类装卸和运输的港口、码头和装卸站,则可用燃油溢油指数表征风险概率;对于既有油类作业也有其它货物作业的港口、码头和装卸站则应分别考虑货油溢油指数与燃油溢油指数,两者之和为总的风险概率。

货油溢油指数(O):首先计算某区域货油溢油量在该区域石油吞吐量的比值,根据计算数据和实际的需要,对该地区的货油溢油事故风险大小划定特定区间范围,并用整数1~5表示对应的风险等级,该整数数值即为货油溢油指数(O)。表示如下:

附录表3-1 货油溢油指数(O)一览表

注:(1)∑货油溢油量:仅统计因货油泄露造成污染事故的船舶溢油总量;

(2)∑港口石油吞吐量(亿吨)=∑港口石油货物进出口数。

燃油溢油指数(F):首先计算某区域燃油溢油事故数在该区域船舶总艘次数中的比值,根据计算数据和实际的需要,对该地区的船舶燃油溢油事故风险大小划定特定区间范围,并用整数1~5表示对应的风险等级,该整数数值即为燃油溢油指数(F)。见附录表3-2:

附录表3-2 燃油溢油指数(F)一览表

注:(1)∑燃油溢油事故数:仅统计因燃油泄漏造成污染的溢油事故件数;

(2)∑进出船舶艘次:某段时间内进出某港口的船舶艘次总数。

在计算得出该地区的货油溢油指数(O)和燃油溢油指数(F)后,综合考量两种事故在总溢油事故中的权重,得出风险概率指数(P)计算公式:

P = a ×O + b ×F

a ,

b 分别为货油溢油事故和燃油溢油事故在溢油事故中的比例权重。

所得到的风险概率指数(P)即为该地区的溢油风险概率等级,并将此作为风险矩阵的纵坐标在矩阵图中予以标识。附录3.2 类比法2

利用第5章数据和第7.2.1节对船舶交通量的预测数据进行类比分析,预测时应注意:

1. 需要收集的历史数据尽可能多,原则上不少于10年,如数据量太少则没有统计规律;

货油和操作性船舶污染事故和海难性船舶污染事故,2.

燃油,不同规模溢油事故发生概率有很大的不同,应分别预测;

3. 历史数据的类比使用要和交通发展形势综合考虑。一方面,交通管理水平的提高、VTS建设、航道条件的改善,可以有效地降低事故发生概率,另一方面,船舶密度的增加、船舶大型化、20万吨以上大型原油码头的建设,又使大规模溢油事故的风险增大;

4. 可以采用半定量的方法类比预测事故发生概率,预测在某一个时间范围内发生一起事故;

5. 类比数据最好利用评价对象或项目所在区域内的历史数

据进行类比。新建码头没有历史统计数据时,也可选择与评价对象的船舶密度、船舶类型、船舶吨位、货物吞吐量、航道、管理等各方面条件比较类似的营运码头历史数据进行类比。

数据分析方法:

1. 收集进出港船艘次统计历史数据(见附表3),找出与评价对象相关的船型和数量最多的船舶吨位区间和最大吨位

船舶;

2. 收集船舶交通事故统计历史数据(见附表4),找出评价对象或项目所在区域占船舶交通事故70%以上的事故原因(例如碰撞、搁浅、触礁、触碰等),如果评价船舶发生火

灾、爆炸风险,需要统计这两类事故发生次数;

3. 收集船舶污染事故统计历史数据(见附表5)。对不同类型船舶污染事故原因、地点、污染物泄漏量进行分类统计(见附表6);

4. 计算不同类型船舶、不同规模污染事故(火灾/爆炸/泄漏)次数与进出港船舶艘次关系;

5. 根据7.2节中预测的船舶艘次,综合考虑交通发展因素,对火灾/爆炸事故发生概率和不同类型、不同规模的货油、燃油和有毒有害物质泄漏事故发生概率进行类比预测。

电子电路故障诊断与预测技术分析 王雅丽

电子电路故障诊断与预测技术分析王雅丽 发表时间:2019-07-19T10:38:10.277Z 来源:《新材料.新装饰》2019年2月下作者:王雅丽 [导读] 通过研究电力电子电路故障实例能够发现,大部分的电力电子电路故障通常表现为内部开关元件的损毁。一般来说,功率开关器件的损坏是电力电子电路故障的主要体现。电力电子电路出现故障时,由于电子器件的过载能力较小,往 (身份证号:13022619791016****) 摘要:通过研究电力电子电路故障实例能够发现,大部分的电力电子电路故障通常表现为内部开关元件的损毁。一般来说,功率开关器件的损坏是电力电子电路故障的主要体现。电力电子电路出现故障时,由于电子器件的过载能力较小,往往瞬息之间就会产生停电,为相关电力企业带来严重损失。由于电力电子电路功率极大,甚至可以达到几千千瓦,一旦发生故障,容易引发重大的事故。鉴于此,本文对电子电路故障诊断与预测技术问题进行解析,以供参考。 关键词:电子电路;故障;诊断与预测 引言 随着电子技术的不断完善,电子电路的应用范围越来越广,并显现出了较高的应用价值。电子电路稳定与否,直接关乎其在实际应用中的效果[1]。电子电路在实际应用过程中,不可避免的会出现一些故障,导致电子电路无法正常运作,降低了电子电路的安全性能,因此亟需通过科学有效地检测技术,来对其中的故障进行发现与解决,进而提升电子电路的运行水平。 1电子电路故障原理 1.1故障频率特征的诊断 在对电路出现的故障进行诊断的时候,需要按照传感器所传出的故障信号实施相应采集,然后以故障产生的频率算法对电路可能出现的故障实施鉴别,并对产生的故障进行相应判断。 1.2传统算法的弊端 对于电子的电路而言,其通常与数字以及模拟等相关电路均不相同,其相关器件所具备的过载能力一般比较小,而且受损的速度比较快,仅为10微秒之内,这种情况下,就无法对可能出现的故障进行提前获取。而传统的故障诊断主要是依据频率所输出的波形对缓变的故障进行判断,但是,无法对快速、突变的故障进行有效识别。 1.3遗传算法的故障诊断 由于专家系统应用于电力电子电路故障诊断中需要一定的计算时间,为了能够进一步提高专家系统的诊断效率,可将遗传算法应用于电力电子电路故障诊断工作中。遗传算法主要采取适者生存的进化原则,能够实现群体进化。将遗传算法与电力电子电路相结合,通过对采集信息的合理利用,能够提升电力电子电路故障诊断结果的准确性。而且借助此种算法,电力电子电路故障诊断计算时间将会明显缩减。 2电子电路的常见故障 2.1人为操作失误导致的故障 电子电路在不同领域中进行应用时,均需要通过人为操作来实现有效服务。在现实情况中,也不乏因人为操作失误而使电子电路发生故障。如具体使用过程中,操作人员的专业能力不过关或对电子电路业务不熟悉而将电源进行错误连接,不能实现电子电路中线路的有效安装与连接,无法保障电子电路的稳定性与安全性,也就谈不上安全使用。 2.2因干扰严重而出现故障 电子电路在具体服务过程中,易遭受各种因素的影响,包括设备因素及外界因素等,严重降低了电子电路的稳定性与安全性。如感应干扰、接地故障及直流电源滤波不佳等问题,使电子电路的正常运行受到严重影响。 2.3测试设备故障 测试设备出现故障的情况说明,测试设备所测试的对象—电子电路其自身不存在问题,而是测试设备具有故障,亦或是操作人员专业技能不过关,出现操作失误导致测试设备故障。例如二示波器在实际运用的过程中,没有选择正确的档级,致使档级出现问题。出现这种情况,波形的显示比正常情况波动明显,设备显示出现问题,而这个过程电子电路完全没有问题。 3电子电路故障的检测方法 3.1直观检测法 故障检测中的直观检测法,就是指工作人员利用人身体的器官直接发现故障,主要是利用眼睛、耳朵、手和鼻子。首先整设备的工能开关,同时对设备的指示灯进行观察,判断短路是否正就是用眼睛看,调产,观察设备内部,则需要注意电路板上的元器件是否存在损坏、虚焊、断裂、松动等情况;其次,用耳朵听,设备运行过程中是否存在异常声音;再次,用鼻子闻,设备内部是否存在异常的气味如烧焦等;最后,就是用手摸,感受电路以及三极管等元器件是否有过热的现象 3.2电压测量法 电压测量法则一般是通过仪器来完成,一般利用万用表对原件和电路的电压情况进行明确,从而准确的判断出其是否具有异常情况。电压测量其中还包括直流电压和交流电压。直流电压测量在静态电路测量当中具有很好的使用,主要指的是电视连接有效信号的过程。而交流电压测量则是电视在正常运行过程中接受的电视信号。在检测的过程中,一般采取关键点结合普测方式来进行。接下来则是对于部分电路元器件引脚电压进行有效的测量,从而对于每一元件的稳定情况展开有效的检查。一般情况下,技术人员从元件引脚间电压出发,能够对支路电流进行估计,对故障情况进行明确,在同一节点中焊点的对地电压也是具有差距的,点间电位差是零。我们经常使用的电子元器件在正常使用时所产生的电压,与其出现问题时所具有的电压一般都是不同的。 3.3电流测量法 此方法主要是通过对元器件以及电路的电流测量,从而判断设备故障。电流测量法主要应用在电源负载以及局部的电路工作电流情况。若是经过测量,发现测量电流与其正常电流的数值相差过大,就表明电路或者电源负载存在问题。此种方法具体分为间接测量法和直

交通事故记录信息管理系统 课程设计

目录 目录 (1) 前沿 (2) 系统分析 (2) 2、1 需求分析 (2) 2.1.1 功能需求分析 (2) 2.1.2 性能需求分析 (3) 2.2 可行性分析 (3) 2.3 系统开发的目标分析 (4) 2.4业务流程分析 (5) 2.5数据流程分析 (6) 2.6系统功能分析 (7) 系统设计 (8) 3.1、数据字典 (8) 3.1.1、数据项 (8) 3.1.2、数据结构 (8) 3.1.3、数据流 (9) 3.1.4、数据存储 (9) 3.1.5、处理过程 (9) 3.2、逻辑设计 (9) 3.2.1 关系模型 (9) 3.2.2 数据库结构设计 (9) 3.2.3 数据库设计 (10) 3.3 系统设计结构 (11) 3.3.1 系统功能设计 (11) 程序模块设计 (12) 4.1 登录系统设计 (12) 4.1.1登录页面截图 (12) 4.1.2 登录页面后台程序 (12) 4.2 信息录入的设计 (14) 4.1.1信息录入截图 (14) 4.1.2 信息录入后台程序 (14) 4.3 系统删除信息的后代程序 (16) 4.4 信息的修改程序 (17) 4.1.1信息修改截图 (17) 4.1.2 信息修改后台程序 (17) 4.5 系统的统计功能程序 (19) 4.1.1信息统计截图 (19) 4.1.2 信息统计后台程序 (20) 总结 (26) 参考文献 (26)

前沿 开发背景 当今社会,交通事故的高发已经成为全世界所关注的社会问题,惨重的交通事故后果是人们不得不对交通安全状况郁郁高度重视,并将不断进步的科学技术应用于交通安全研究工作中,是先进的交通工具更好地造福于人类。历年来,公安交通管理部门的事故的办案采用的都是完全依靠优质化办案过程,一个交通事故的处理时常会遇到信息不全的情况,往往需要从大量的案卷中调查搜集信息,办案效率低,因此需要开发一个交通事故记录与统计系统,提高质量高效率的信息,鬼法公安机关交通管理部门依法公正处理交通事故和交通事故办案程序,实现高效率办案目标,保护当事人的合法权益,减轻交通事故民警的劳动强度,确实发挥科技的力量。 系统介绍 本系统是非常实用的交通事故记录与统计信息系统,能满足绝大多数交通管理部门的需求。该系统前台界面采用https://www.doczj.com/doc/9216189514.html,和HTML制作,后台数据库采用SQL server 2008开发。该系统模块清楚并易于操作,除了必要的数据录入、修改、删除、查询外,还能根据各项指标(如某段时间发生的交通事故起数,交通事故多发地点,交通事故多发的肇事者等)对交通事故进行统计和分析,便于交警掌握事故的详细状况,大大提高了其工作的效率。同时,交警还能以记录的信息为依据,对已经发生的交通事故进行分析,找出事故发生的原因或者规律,从而采取有效的措施,减少交通事故发生的频率。 系统分析 2、1 需求分析 2.1.1 功能需求分析 (1)、建立一个完善的道路交通事故信息数据库。该数据库中的信息主要包括肇事者信息和事故详细信息。其中肇事者信息包括:肇事者姓名,肇事者身份证件号、肇事者驾驶证号、车牌号等信息;事故信息包括事故时间、事故地点、事故等级、事故造成的死亡人数、对事故的具体描述等。 (2)、具有事故的基本信息的录入、修改、查询和删除功能。 (3)、具有事故信息的统计功能,主要功能包括:某段时间发生的交通事故起数,交通事故多发地点,交通事故多发的肇事者等。 (4)、具有安全措施。用户登录系统需要输入用户名和密码,防止事故数据的篡改和删除

智能故障诊断技术知识总结

智能故障诊断技术知识总结 一、绪论 □智能: ■智能的概念 智能是指能随、外部条件的变化,具有运用知识解决问题和确定正确行为的能力。 ■低级智能和高级智能的概念 低级智能——感知环境、做出决策和控制行为 高级智能——不仅具有感知能力,更重要的是具有学习、分析、比较和推理能力, 能根据复杂环境变化做出正确决策和适应环境变化 ■智能的三要素及其含义 三个基本要素:推理、学习、联想 推理——从一个或几个已知的判断(前提),逻辑地推断出一个新判断(结论)的思维形式 学习——根据环境变化,动态地改变知识结构 联想——通过与其它知识的联系,能正确地认识客观事物和解决实际问题 □故障: ■故障的概念 故障是指设备在规定条件下不能完成其规定功能的一种状态。可分为以下几种情况: 1.设备在规定的条件下丧失功能; 2.设备的某些性能参数达不到设计要求,超出允许围; 3.设备的某些零部件发生磨损、断裂、损坏等,致使设备不能正常工作; 4.设备工作失灵,或发生结构性破坏,导致严重事故甚至灾难性事故。 ■故障的性质及其理解 1层次性——系统是有层次的,故障的产生对应于系统的不同层次表现出层次性。 一般可分为系统级、子系统级、部件级、元件级等多个层次;高层故 障可由低层故障引起,而低层故障必定引起高层故障。诊断时可采用 层次诊断模型和诊断策略。 2相关性——故障一般不会孤立存在,它们之间通常相互依存和相互影响,如系统 故障常常由相关联的子系统传播所致。表现为,一种故障可能对应多 种征兆,而一种征兆可能对应多种故障。这种故障与征兆间的复杂关 系导致了故障诊断的困难。 3随机性——故障的发生常常是一个与时间相关的随机过程,突发性故障的出现通 常都没有规律性,再加上某些信息的模糊性和不确定性,就构成了故 障的随机性。 4可预测性——设备大部分故障在出现之前通常有一定先兆,只要及时捕捉这些征 兆信息,就可以对故障进行预测和防。 □故障诊断: ■故障诊断的概念 故障诊断就是对设备运行状态和异常情况做出判断。具体说来,就是在设备没有发 生故障之前,要对设备的运行状态进行预测和预报;在设备发生故障之后,要对故 障的原因、部位、类型、程度等做出判断;并进行维修决策。 ■故障诊断的实质及其理解 故障诊断的实质——模式识别(分类)问题

道路交通事故预测的理论与方法

道路交通事故预测的理论与方法 摘要:道路交通事故预测是道路交通安全研究的一项重要内容,本文首先介绍了事故预测的定义、要素、程序然后分析了现有交通事故预测方法,并对这些方法进行了比较评述,以便于我们正确的选用预测方法对交通事故进行预测。 关键词:道路交通事故;预测;原理和方法 0.引言 道路交通事故作为道路交通的三大公害之一,它不仅直接威胁着道路使用者的人身安全,带来巨大的经济损失,还严重地影响着道路交通系统的正常运行。交通事故是随机事件,表面上它没有规律可循,其实,交通事故偶然性的表象,是始终受其内部的规律所支配的,这种规律已被大量的交通事故的研究结果所证实,它是客观存在的【1】。因此利用交通事故的客观发展规律,对交通事故的发展进行预测以便减少和防止交通事故的发生改善城市交通安全状况是至关重要的。 1.交通事故预测的涵义及目的 道路交通事故预测就是对交通事故未来的形势进行估计和推测。它是通过对交通事故的过去和现在状态的系统探讨,并考虑其相关因素的变化,所做出的对交通事故未来状态的描述过程[2]。具体可以定义为:以某个地区或某条道路为研究对象,通过查阅资料、调查等手段获得与道路交通事故相关的信息(历年事故指标、人口、GDP、车辆保有量、公路通车里程、道路设施、道路线形、天气等信息),根据这些信息,应用数学方法,如:模糊数学、统计学、灰色理论等,通过定性与定量相结合的方法来预测未来道路交通事故发生状况。 进行道路交通事故预测就是为了掌握未来交通事故的状况,根据交通事故预测情况有针对的采取相应的对策和决策,避免日后工作中的缺陷和不足,从而最终达到减少交通事故的目的【3】。 2.交通事故预测的类型及作用 2.1交通事故预测的类型 按照预测目标,道路交通事故预测可以分为事故率预测和事故数预测,事故率预测是用来揭示未来年事故发展趋势,事故数预测是用来揭示未来年事故发展程度 按预测范围可分为宏观预测和微观预测两类。交通事故宏观预测是指对时间较长(一年以上)或空间区域较大的交通事故进行总体性和趋势性的预测,如地区交通事故变化趋势预测等。交通事故微观预测是指短时间内或某一地点、路段交通事故变化的预测,如一年内各月交通事故预测、交叉口事故预测、某路段事故预测等【4-6】。 2.2道路交通事故预测的作用 作用主要有:(l)根据历年道路交通事故原始数据,预测未来年交通事故发

典型的故障预测方法

基于统计过程控制(SPC)的故障预测技术 统计过程控制(StatisticalPI’OCes8Control,SPC)是一种有效的数据统计方法,将SPC理论和计算机技术相结合,对机械制造、产品加工等生产过程的产品进行质量管理,以改进生产技术,提高产品质量,具有对生产过程预防和监控的能力。统计过程控制技术运用休哈特(W.A.Shewhart)的过程控制理论即控制图来判断设备是否处于稳定可靠状态,根据控制图上的特征值点分布状况,分析对象系统特性的趋势,并采取预防措施确保对象系统特性始终处于统计控制状态,从而达到改进与保证质量的目的。属于基于数据的故障预测中的一种。 预置损伤标尺方法又称为“基于保险和预警装置的方法”,是通过在实际产品中增加保险或预警装置来提供故障的早期预警。 性能状态检测方法又称为“基于故障预兆监控与推理的方法”、“数据驱动方法”,是利用可以测量的产品性能或者状态变量的变化趋势、故障征兆等进行故

障的预测。 环境应力检测方法又称为“基于失效物理模型的方法”,是基于产品的失效物理模型,对产品的环境应力和工作应力进行监测和累计损伤计算,进而推断出产品的剩余寿命。 2.3.1 基于失效寿命数据的故障预测 失效寿命数据包括失效时间、无故障数据和截尾数据。根据失效寿命数据的分类,KM 估计对三类数据的处理过程如下: ①观测到故障的失效寿命数据,在故障发生前可靠度为1,在故障发生后可靠度为0。其表达式为: ②未观测到故障的样本数据,可靠度估计恒为1,即r( t) = 1。 ③截尾数据。在截尾之前可靠度为1,截尾后采用KM 估计。其表达式为:

2.3.3 基于多输出支持向量机( SVM) 的故障预测 构造的多输出SVM 故障预测模型如图 4 所示。故障预测模型的输入为样本的性能退化数据序列( 每个样本序列均以时间先后为序排列) ,输出为对应样本的可靠度。故障预测模型的工作原理就是,通过训练多输出SVM 来拟合性能退化数据和可靠度间的非线性关系,用训练好的SVM 预测组件将来时刻的可靠度。 2)故障预测技术现有用于机电设备故障/失效预测的方法可归纳分为以下5个主要类别:传统的可靠性方法-基于事件数据(EventData)的预测;预测学(Prognostics)方法-基于状态数据(ConditionMonitoring)的预测;综合集成的方法(Integrated Ap-proaches)-基于事件数据和状态数据的预测;基于定性知识的故障预测方法;其他故障预测方法

交通事故管理系统课程设计报告 郭江涵

山东理工大学计算机学院实训报告《计算机软件开发实践》 班级软件1304 姓名郭江涵 学号13110572XXX 指导教师 二○一六年一月三日

实训任务书及成绩评定 课题名称公交驾驶员交通事故管理系统 Ⅰ、目的目的和要求: 1.1、设计目的 当今时代是飞速发展的信息时代。在各行各业中离不开信息处理,这正是计算机被广泛应用于信息管理系统的环境。计算机的最大好处在于利用它能够进行信息管理。使用计算机进行信息控制,不仅提高了工作效率,而且大大的提高了其安全性。尤其对于复杂的信息管理,计算机能够充分发挥它的优越性。计算机进行信息管理与信息管理系统的开发密切相关,系统的开发是系统管理的前提。 本系统就是为了更好管理交通事故信息而设计的。 当前,在为交通事故档案信息化过程中,有许多信息需要处理和管理。现今,有很多交通事故系统都是初步开始使用,甚至尚未使用计算机进行信息处理。根据调查得知,他们以前对信息管理的主要方式是基于文本、表格等纸介质的手工处理,对于采购过程中的很多信息都是用人工计算、手抄进行。数据信息处理工作量大,容易出错;由于数据繁多,容易丢失,且不易查找。总的来说,缺乏系统,规范的信息管理手段。 1.2、设计题目要求 (1)整站使用Java Swing组件进行窗体设计。 (2)使用SQL Server数据库存储数据。 (3)使用JDBC for SQL Server访问SQL Server数据库。 (4)使用面向对象思想设计系统功能。

1.3、系统的具体需求 该系统为公交公司驾驶员量化管理系统中的交通事故管理模块。 交通事故管理模块包括:事故列表、新增事故、修改事故、删除事故。 交通事故信息列表窗体: (1)包含一系列表单项及三个按钮(新增、修改、删除)。 (2)新增按钮点击后打开新增事故窗体。 (3)修改按钮点击后打开修改事故窗体。 (4)删除按钮和修改按钮功能相同,点击打开修改事故窗体。 (5)列表显示如下数据列:事故编号(自增)、分公司、路队、车号、姓名、事故时间、事故地点、事故类型、事故责任、事故备注。 新增交通事故窗体: (1)自行设计界面,包含以下属性对应表单项和两个按钮(保存、返回)。 (2)属性:事故编号(自增)、分公司、路队、车号、姓名、事故时间、事故地点、事故类型、事故责任、事故备注。 修改交通事故窗体: (1)包含一个搜索框、一系列表单项和三个按钮(修改、删除、返回)。 (2)根据事故编号搜索出该事故的信息并填充到表单项中(如果存在则修改按钮和删除按钮可用。如果数据不存在则弹出对话框提示用户“没有找到 符合条件的数据不存在或者已经被删除”)。 (3)修改按钮实现数据的修改功能。 (4)删除按钮实现数据的删除功能。

轴向柱塞泵故障诊断与预测

轴向柱塞泵故障诊断与预测 李启龙黄志坚 (广东工业大学机电工程学院510090) 摘要:本文主要介绍轴向柱塞泵故障诊断和预测方法。把各故障症状模糊量化作为输入,经过诊断可找出故障的原因,利用故障预测模型对轴向柱塞泵未来的状况进行预测,可减小意外故障对生产的影响。关键词:故障诊断,模糊处理,故障预测,故障症状,故障原因 Diagnosis and forecast for the fault of Axial Plunger Pump Abstract::The way of diagnosis and forecast for the fault of axial plunger pumps have been introduced in this paper. Using symptoms of fault as input by fuzzy way, the reasons of fault can be got; and by means of forecasting model, the fault of axial plunger pump in future can be forecasted, the affect of faults to producing will be lowest. Key words: diagnosis for fault, fuzzy way,forecast for fault, symptoms of fault, reasons of fault 1 轴向柱塞泵故障诊断与预测概述[1] 液压泵是整个液压系统的动力元件。它将原动机(电动机,内燃机)的机械能转换成油液的压力能,为液压系统提供有一定流量和压力的油液。轴向柱塞泵有其自身的优点,结构紧凑、径向尺寸小,惯性小,容积效率高,目前最高压力可达40.0MPa,甚至更高,因此一般用于工程机械、压力机等高压系统中在很多的场合如矿山机械,钢铁厂等。 液压泵出现故障将导致整个液压系统无法正常工作,液压泵的故障诊断对液压系统和整个生产线都有重大的意义。本文主要针对斜盘式轴向柱塞泵发生的故障进行诊断方法的一个模型建立和讨论。 对柱塞泵的智能故障诊断,一般是开发出故障诊断专家系统等方法直接诊断出故障发生的位置和发生的原因,然后利用专家的知识推理,提出故障解决的方案和措施。而很少对故障进行预测,不能有效的对柱塞泵预先检修,而有可能耽误了最佳的检修时间,影响生产,并使泵遭受不可修复的损坏,缩短泵的使用寿命。由于导致泵故障的因素多样,一个因素会导致多个故障产生,一个故障,也可能是由多个因素共同产生的,因此,在很多情况下,并不能非常准确地描述故障的情况。本文用模糊处理的方法,利用模糊数学的概念,把故障的症状进行模糊化作为诊断的依据,同时输出故障原因的模糊量。对柱塞泵的故障进行诊断,诊断出故障发生的原因和元件,并对柱塞泵故障进行预测,达到预警的目的。 2 故障诊断的方法——故障的分类[2][3] 故障的分类,是同一时间不同故障之间的相互比较,分辨出最可能发生的故障。根据故障症状的明显程度和故障原因对应的模糊关系,以及故障原因和故障源发生难易性的对应关系,两条路径综合考虑的方法来求出最后的故障发生的原因。 以某钢铁公司轧钢线PV250DF型柱塞泵为例,主要的故障症状有液压泵的压力小,压力波动大,油液温度高,内泄漏大,流量小或无流量,振动大等。

公安交通事故管理信息系统

前言 北京博瑞巨龙电脑技术有限公司研制开发的“公安交通事故管理信息系统”主要是实现对交通事故信息的流程化信息处理、过程审批、办案辅助示警/督导、文书生成管理、网上信息共享(电子调卷)、信息综合查询、综合分析多样化表现等功能。它能够满足对事故处理的实时性要求,进一步提高事故处理效率、标准化,达到数据准确、完整、保密的要求,为各级领导的决策提供强有力的参考。

一、系统结构 部颁事故汇总统计系统 事故管理信息系统的系统结构主要由四个层次构成,即数据表现层、业务逻辑服务层、业务数据服务层、数据分析服务层。系统中业务处理功能、信息查询功能主要采用业界流行的三层结构,由数据表现层、业务逻辑服务层、业务数据服务层提供支持;系统中数据分析功能主要由数据表现层、业务逻辑服务层、数据分析服务层(专用的数据分析数据库或数据仓库系统)提供服务;客户端仅需要浏览器支持,无需安装本地程序。同时,该系统通过业务数据服务层直接向公安部交管局事故汇总统计系统(98版或2003版)及时提供数据更新。 二、系统功能 利用本系统可以实现有关道路交通事故的全面处理功能。处理范围含盖交通事故一般程序处理的全过程,包括接报案立案、勘察取证、检验鉴定、责任认定、处罚、调解赔偿;同时系统支持事故处理过程中与法制有关的处理程序,包括重新认定、行政复议、处罚复核、以及与刑事办案权有关的处理过程;系统还针对大量采用快速处理、简易程序的交通事故支持信息采集,以及特定条件下转入一

般程序处理。 本系统的主要功能如下图: 具体功能如下: 1.事故流程管理 可以对事故处理环节、事故处理环节更替临界状态、事故处理环节次序关系进行定义及维护,并可预定义固定流程。 2.用户权限管理 可以利用警员卡进行用户注册,对用户基本信息、用户IP地址进行维护,对系统功能权限明细及用户角色(功能组)进行定义维护,同时具有授权管理功能(用户/角色/权限关系维护)、临时授权功能、取消临时授权功能、用户口令维护功能和系统连接加密功能。

故障预测与健康管理系统方案

故障预测与健康管理系统解决方案 1.国内数字化设备管理存在的问题 今天,随着德国“工业4.0”、美国GE“工业互联网”在全球的风靡,以及“中国制造2025”战略的如火如荼地推进,以新一代信息技术与制造业深度融合为特点的智能制造已经引发了全球性的新一轮工业革命,并成为制造业转型升级的重要抓手与核心动力。 1.1.设备管理问题依然严重 在多年的项目实施过程中深切感觉到,国内不管是大型企业还是中小企业,随着数字化脚步的加快,设备数控化率在逐年飞速的提高,数字化设备的数量与日俱增。但这些设备出现故障以后的维修周期平均在2周以上,属于主轴、丝杠等关键部件损坏所导致的故障维修时间平均在3周以上。维修期间,不仅严重影响生产进度,影响交货期,而且需要花费不菲的维修费用。国外设备厂家提供的维修服务都是从工程师离开国外住地开始计算维修费用,如果请国外工程师维修,光人工费用每次平均都在5万(人民币)以上,加上更换备件等费用,每年企业需支付昂贵的设备维修费用。 企业目前对数字化设备采用传统“事后维修”的管理方法已经严重制约了公司的智能制造发展目标。需要研究和探索,对于大量的离散制造业的设备进行预防性维护和故障预测的方案。 1.2.设备健康管理需求迫在眉睫 设备数据采集系统采集设备数据利用价值没有充分挖掘出来,给工厂决策等提供的分析数据有限。虽然在数字化工厂建设上取得了较好的效果,但是在设备数据利用方面还远远不够。设备数据采集系统经过长期的系统运行,拥有了大量的设备的运行历史数据。

3OEE、开机率、故障率报表显示70% 4报警故障信息次数和内容统计40% 5加工零件信息数量统计30% 6程序传输功能程序上传下载90% 7其它信息报表和看板展示不确定 表格1某企业数据采集利用程度表 设备数据采集系统虽然可以提供与生产效率相关的基本统计信息,但仍然倚重硬件互联的部分,对于数据,尤其是海量互联数据分析来达到机器主件衰退监测、健康状况评估、故障预测预诊断、风险评估、以及决策支持方面,仍然有提升空间: 1)现有的数控机床联网制造了大量数据,然而目前却没有很好的分析方式, 目前仅仅限于原始数据重现,应该进行价值挖掘。 2)数控机床数量多、类型多、系统多样,虽然数据互联,但对于每种不同机 型,缺少每个机台的针对性健康状态监测结果。 3)现有的生产管理系统更多是从设计角度出发,没有对设备健康状况做监测, 并且在管理时没有将生产效率与设备健康连接起来,所使用机器将因为衰 退情况的未知而对生产任务的完成造成未知风险。 4)对于设备生产产品的质量检测,目前没有实现数字化。在发现产品质量问 题时,次品已经产生。缺少提前预测产品质量缺陷手段。 5)在绿色环保方面,对于设备使用的能量没有监测或数字化管理手段。设备 能耗状况的管理相对粗放,没有能够与生产任务协调管理,使得在达到生 产效率最大化的同时实现能效最优化来节省开支,降低碳排放。 6)对于相同设备的维护管理,由于经常依赖于经验以及设备用户手册,所采 用的维护方式大都趋同。然而,根据设备所经历的不同工况,相同的设备 可能衰退的过程不尽相同。如果对于衰退不严重的设备实施了维护,那么 会造成资源浪费以及停机时间,进而影响生产效率;如果对于衰退严重的 设备延迟进行维护,则可能造成设备加速老化,甚至严重的生产安全隐患。

交通事故处理防闯入系统方案1

交通事故处理防闯入系统 一、简述: 根据公安部《全国公安装备建设“十二五”规划》重点项目建设任务书中要求每个大队配备事故处理防闯入装置2套的任务而研发。 交通事故处理防闯入系统是防止交通事故现场处理时二次事故的发生,保障现场警务人员生命安全的一道屏障。沈阳天择智能交通工程有限公司自主研发的防闯入报警设备,使用极其简单。防闯入报警器使用时,只需将报警检测圈从主设备上取下,放在事故现场的前端的锥筒上即可。当有车辆闯入事故现场时,触碰锥筒,报警检测线圈发出无线报警信号,后端主设备接收到报警信号,发出报警声音,提示现场警务人员及时避让,以免发生意外。 二、设备组成 每套交通事故处理防闯入报警设备由1个报警主机(黑色圆柱),5个报警检测圈(红色)、2个肩挂报器警组成。 三、技术特点: 1、每套防闯入报警设备由5个预警传感器、报警器主机及手持无线报警器组成。防雨、抗3米坠落,能在-20℃~+80℃环境中长期连续工作。 2、预警传感器通过陀螺仪检测车辆闯入及无线数字传输技术,对因各种原因闯入警戒区域内的人或机动车辆进行警示。 3、当有车辆闯入是能主动进行声、光、振动警示,警示人或机动车辆非法闯入,提醒现场车辆驾驶员迅速采取措施,制动车辆,避免事故发生。 4、能无线发送警示信号触发现场每一位警员随身佩带的声、光、振动手持无线报警控制器,同时触发现场无线大功率报警主机,提示其他没有佩带肩挂无线报警控制器的现场人员注意避让闯入车辆,避免因闯入机动车辆发生伤人事件。 5、户外使用,便携报警,无线组网,组网范围:无线组网≥250个。无线

传输接收和控制,通讯距离两组之间不低于200米,可中继。无限传输采用433MHz工业频段,抗干扰能力强。 6、工作方式:将预警传感器分别套在布防锥桶上,(报警主机可吸附于车顶)并打开报警主机及手持报警器电源开关后工作。LED发光预警、碰撞被动报警、警报器声音控制输出,振动报警。 7、预警传感器、报警主机、手持报警器等设备材料均采用ABS高强度材料,坚固耐用。同时预警传感器采用超强级反光条,夜间警示作用强。 8、无线报警范围:预警传感器≥1000米;报警主机≥200米;个人手持报警器≥200米。LED寿命:不低于100,000小时。 9、报警检测圈超低功耗设计连续使用时间要求:预警传感器≥10小时,报警主机≥30小时,报警手持设备≥40小时。 10、工作电源:预警传感器(红圈):360mAh可充电锂电池;报警主机(黑柱):1200mAh可充电锂电池,报警手持设备:电池容量1800mA可充电锂电池。

故障诊断习题含答案

故障诊断习题 一、故障诊断概念,诊断过程及主要内容 在机械设备不解体的情况下,对设备完成规定能力和影响因素进行判断和预测。诊断过程见右: 二、常用故障信息有哪些?1、振动;2、声波;3、温度;4、磨屑;5、零部件状态;6、红外线。 三、常见故障诊断类型有哪些? 1、定期诊断和连续监控诊断; 2、常态诊断和暂态诊断; 3、状态诊断和故障诊断; 4、零部件诊断和整机诊断; 5、仪器诊断和逻辑诊断。 四、常用诊断技术有哪些?1、振动诊断技术;2、声发射诊断技术;3、无损诊断技术;4、红外线诊断技术; 5、逻辑诊断技术; 6、故障树分析技术; 7、油液分析技术。 五、随机信号幅值特征参数有哪些?峰值、均值、 方差、 均方值、波峰因数。 x(t)——各态历经随机过程的样本记录;T ——样本记录时间。 1、峰值 2、均值 样本记录所有值的简单平均,均值反映了随机信号的静态(直流)分量。实际上,取观测时间T 为无限长的样本函数是不可能的, 常用有限的长度样本记录来代替,这样计算的均值称为估计值, 以加注 “∧” 来区分。 3、方差 方差用以描述随机信号的动态分量,其大小反映了随机变量对均值的离散程度,即代表了信号的动态(交流)分量, 其正平方根称为标准差。 4、均方值 均方值是描述了随机信号的强度或平均功率。均方值的正平方根称为均方根值(或称有效值)。 5、波峰因数 六、波峰因数在故障诊断中的应用? 七、自相关函数的定义,性质,应用。(见笔记)八、互相关函数的定义,性质,应用。(见笔记) 九、什么信号频谱? 傅立叶变换实际上是一种正交空间变换,以exp(-jwt)为基,如果学过线性代数空间正交基的概念就知道了,把时域信号变成另外一个线性空间的信号,这个线性空间就是频域。 十、什么是离散频谱和连续频谱? 连续时间信号:是指在某一指定时间内,除若干个第一类间断点外,该函数都可给出确定的函数值的信号。 由不连续的谱线构成,每一条谱线代表一个正弦分量或余弦分量的频谱,称为离散频谱. 十一、什么是自功率(互功率)谱密度? 自功率谱密度函数Sx(f)是自相关函数Rx(τ)的傅里叶积分变换。互功率谱密度函数Sxy(f)是互相关函数Rxy(τ) 的傅里叶积分变换。 十二、什么倒频谱? 倒频谱分析是一种二次分析技术,是对功率谱的对数值进行傅立叶逆变换的结果。也称二次频谱分析,包括功率倒频谱和复倒频谱。 其计算公式为: ()()[]{}f S log F t C xx 1a -= 该分析方法受传感器的测点位置及传输途径的影响小,能将原来频谱图上成族的边频带谱线简化为单根谱线,以便提取、分析原频谱图上肉眼难以识别的周期性信号。但是进行多段平均的功率谱取对数后,功率谱中与调制边频带无关的噪声和其他信号也都得到较大的权系数而放大,降低了信噪比。 十三、数字信号处理过程:预处理→A/D 转换→计算机处理→结果显示 十四、采样频率如何确定? 由采样定理可知: 对于一个频率为0~fm 的有限带宽连续信号进行采样, 只有当采样频率fs ≥2 fm 时, 其离散傅里叶变换才不发生频率混淆, 因而只有用这样采样的点才能得到离散信号的频谱, 同时也只有用这样采样的点才能够完全恢复原时域信号的连续波形x(t),不 过此时要借助右面的插值公式来求出采样点以外的其它点。 采样定理要求fs ≥2fm ,但采样频率fs 并非选得越高越好。 由N 个时域采样点进行离散傅里叶变换, 得到N 个频域点,通常称为N 条谱线,对应的频率范围为[-fs /2,fs /2],因此相邻谱线的频率增量见右 可见当采样点数N 一定时,采样频率fs 越高,频率增量大,频率分辨力越低。因此,在满足采样定理的前提下,采样频率不应选得过高, 一般取fs=(2~3)fm 就够了。 f f S R f x x d e )()(2j τπτ?∞ ∞ -=τ ττ πd e )()(2j f x x R f S -∞ ∞-?=自谱密度数学表达式 其傅里叶积分逆变换为 τ ττd e )()(j2π-f xy xy R f S ?∞∞ =互谱密度数学表达式 其傅里叶积分逆变换为 ∑ ∞-∞ =--= n T nT t T nT t nT x t x s s s s s )(π)(πsin )()(222s s s f N f f f =? ?? ??--= ?诊断 不正常 状态识别 信息采集 设备 正常 信息处理 决策 均值、方差和均方值的关系: (){}t x max E X max = 均方值与估计值: 均值与估计值: 方差与估计值: 峰值: ?∞→=T T x t t x T 0 d )(1lim μ?=T x t t x T 0d )(1?μt t x T x T x d ])([lim 0 22?-=∞ →μσt t x T x x d ])([?0 22?-=μσt t x T T x d )(1 ?0 22? =ψt t x T T T x d )(1 lim 2 2? ∞→=ψ222x x x σμψ+=

交通事故大数据挖掘分析

国外交通事故大数据挖掘分析 摘要:近年来,随着车速的提高及交通量的增长,道路交通事故每年呈上升趋势。通过对交通事故大数据挖掘分析,k-means聚类分析和Apriori关联规则分析交通事故的趋势和模式,找出事故频发的路段和引发事故的原因以及事故频发的高峰期,以数据分析结果为依据,改善交通状况,减少交通事故,提高交通系统的效率。 关键词:交通系统、k-means聚类、Apriori算法

Abstract:recent years,as the improvement of speed of vehicle and growth of traffic volume,road traffic accidents is on the rise every year.based on data mining and analysis of traffic accidents big data,K-means cluster analysis and Apriori association rules analysis traffic accident tendency and pattern.find out frequent accident sections and the cause of accident and peak hours,base on data analysis result,improve the traffic situation,reduce tarffic accident,improve the efficiency of traffic system. Key words:transportation system、k-means cluster、Apriori algorithm

高速公路交通事故概率预测方法研究

高速公路交通事故概率预测方法研究 发表时间:2014-11-20T14:45:39.500Z 来源:《价值工程》2014年第5月上旬供稿作者:王少群 [导读] 回归分析预测、灰色预测、神经网络等都是比较经典的预测方法。 Probability Forecast Method for Freeway Traffic Accidents 王少群 WANG Shao-qun;张晓明 ZHANG Xiao-ming (长安大学经济与管理学院,西安 710064) (School of Economics and Management,Chang'an University,Xi'an 710064,China) 摘要:准确的高速公路交通事故概率预测可提高高速公路行车安全。通过分析高速公路交通事故的影响因素,建立高速公路交通事故影响因素体系,构造贝叶斯网络,提出基于贝叶斯网络的高速公路交通事故概率预测方法。此方法利用数据库先验概率信息及贝叶斯预测模型,得出高速公路交通事故概率值,以此判断事故危险等级。 Abstract: Precise probability forecast for freeway traffic accidents is an important means to improve traffic safety. By analyzing the influence factors of highway traffic accidents, this paper establishes a Bayesian network, and develops the probability forecast method based on Bayesian network. This method determines the level of risk by analyzing the distribution of the accident probability values, after deriving them by using database prior probability information and Bayesian model. 关键词:高速公路;交通事故预测;概率预测;贝叶斯网络 Key words: freeway;forecast for traffic accidents;probability forecast;Bayesian network 中图分类号:U491.3 文献标识码:A 文章编号:1006-4311(2014)13-0067-02 0 引言 高速公路交通事故现已成为影响行车安全、运输效率的重要因素,而准确的事故预测和事故预防可以大大降低事故的危害性。回归分析预测、灰色预测、神经网络等都是比较经典的预测方法。回归分析方法利用解释变量和预测对象之间的因果关系建立回归分析模型,对未来发展做出预测,但是复杂对象难以确定其因果关系,从而降低了精度。灰色预测方法[1]可以弥补数据缺失的不足,同时会引起精度的下降。神经网络预测方法的非线性易形成局部极小状况,以致得不到全局最优解[2]。在短期微观事故预测方面,王莉莉[3]等基于模糊评价方法提出了事故实时预警模型,但这种方法在隶属度确定上具有较强的主观性;秦利燕等[4]基于数量化理论和最小二乘原理,提出了道路断面事故率预测方法,这种方法弱化了影响因素的非线性。本文在分析高速公路交通事故产生因素和大量历史资料的基础上,建立贝叶斯网络及预测模型,得出事故概率,为高速公路行车安全提供重要信息。 1 交通事故概率的贝叶斯推理 2 模型建立及求解 2.1 高速公路交通事故影响因素分析现在公共舆论与交通管理机构的官方统计都简单的认为事故的最主要因素是驾驶员的粗心、错误以及汽车的机械问题。这说明在以往研究中忽视了道路条件等因素的影响。而实际上,作为交通基础设施和车辆行驶基本条件,道路条件对交通事故的作用不可忽视。本文以信息可获取性为基本原则,分析了道路条件各种因素对高速公路交通事故的影响。 2.1.1 道路基本情况 2.1.1.1 道路平曲线及纵坡适当半径的道路曲线路段可以使行驶者摆脱道路的单调感,减少困倦,但若速度控制不当,容易导致翻车或车辆侧滑等事故。纵坡坡度过大使车辆难以维持合理速度以及连贯状态,下坡时易形成车辆高速行驶,制动距离加长,上坡时易形成爬坡吃力,引发追尾等事故。 2.1.1.2 道路设计限速道路设计限速会给驾驶员一种暗示,只要在限速内行车都是安全的,从而行驶速度会比较接近限速值。因此限速值大的道路上车辆行驶速度会更高。随着车速的提高,驾驶员可支配时间变少,使得驾驶员获取行车信息不全面、判断不准确等,导致操作失误,从而引发交通事故。而且车速与事故严重性成正比,高车速会导致更严重的后果。 2.1.1.3 立交、收费站、服务区处进入立交、收费站和服务区,部分车辆需要减速、变道,导致形成复杂的交通状态和相对低速的交通流,大大增加了交通事故发生率。 2.1.1.4 隧道在驶入或驶出隧道时,由于光线强度变化较大,容易对驾驶员视觉造成不利影响,从而做出错误判断,导致不当操作,引发交通事故。另外,秋冬季节,隧道口处易结冰,对行车安全也有不利影响。 2.1.2 外部环境影响 2.1.2.1 天气状况不同天气状况对道路造成不同影响,主要表现在对路表和能见度的影响上。一般在雨雪天气时,路表会较湿润,摩

电子系统故障预测方法综述

故障预测方法综述 1.前言 故障预测与健康状态管理(Prognostics and Health Management, PHM) 技术的提出,对现代复杂装备维修保障能力提出了更高的要求。PHM技术是一种全面故障检测、隔离和预测,以及健康状态管理的技术。它的引入不是为了直接消除故障,而是为了了解和预报故障何时可能发生,或在出现始料未及的故障时触发一种简单的维修活动,从而实现自助式保障,降低使用和保障费用的目标。 故障预测技术是PHM的核心技术之一,它是比故障诊断更高级的维修保障形式,它利用监测参数、实验数据等各种信息,借助相关推理技术评估部件或系统的未来健康状态或剩余使用寿命。故障预测使得设备维护人员能够提前预知设备的健康状态和故障的发生,从而有效地降低故障风险、节约保障资源、减少经济损失。在航天、核能等对可靠性要求较高的领域有着广阔的应用前景,是实现武器装备视情维修、自主式保障、感知与响应后勤的关键技术。 2.目前广泛使用的故障预测方法 目前,故障预测方法可以分为基于模型和数据驱动两类。基于模型的故障预测方法,如卡尔曼滤波器、粒子滤波器等。虽然预测过程简单,但是如果假设的模型与实际不符则性能就较差。 人工神经网络具有模仿连续非线性函数的能力,并且能够从样本进行学习,因而在故障预测中得到了广泛的应用。人工神经网络通过样本的学习可以掌握系统规律,无需对测量信号作模型假设。由于神经网络具有很强的自适应性学习能力和非线性映射能力,适合于实现预测器的设计。但是神经网络训练时需要大量数据样本,且存在收敛速度慢、局部极小点、网络结构难以确定等不足。 灰色预测按灰色系统理论建立预测模型,根据系统的普遍发展规律,建立一般性的灰色微分方程,通过对数据序列的拟合,求得微分方程的系数,从而获得灰色预测模型。灰色预测利用灰色系统理论的GM ( Grey Model ) 模型进行预测。灰色预测在处理小样本、贫信息、不确定问题上具有独特优势,但在预测精度和预测稳定性等问题上仍有待改进。 模糊神经网络吸收了模糊理论和神经网络技术的优点。模糊神经网络可以借助神经网络的逼近能力。同时具有神经网络的低层次学习、计算能力和模糊系统的高层次推理、决策能力。因而采用模糊神经网络技术可以对设备的未来状态进行比较准确的预测。 粒子滤波器是基于蒙特卡罗方法的随机滤波算法,是解决非线性问题的有效算法。粒子滤波器通过一组采样值粒子来近似概率密度函数,因而并不要求系统是线性、高斯的。粒子滤波器使用状态空间里大量的样本点近似实际状态的概率密度函数,这些样本点称为“粒子”。随着粒子数的增加,它们能够很好地近似所求的概率密度函数。粒子滤波器方法是对每个粒子赋予一个权值,许许多多不同权值的点构成的离散分布就可以逼近连续分布。能跟踪多个模式的系统行为,因此可用于估计混杂系统的连续状态和离散状态。粒子退化和对突变状态的跟踪能力差是粒子滤波在故障预测应用中存在的主要问题。 时间序列分析法是把预测对象的历史数据按一定的时间间隔进行排列,构成一个随时间变化的统计序列,建立相应的数据随时间变化的模型,并将该模型外推到未来进行预测。也可以根据己知的历史数据拟合一条曲线,使得这条曲线能反映预测对象随时间变化的趋势。

相关主题
文本预览
相关文档 最新文档