当前位置:文档之家› 矩阵与变换练习题

矩阵与变换练习题

矩阵与变换练习题
矩阵与变换练习题

矩阵与变换练习题

1.求矩阵A =????

32 21的逆矩阵. 解 设矩阵A 的逆矩阵为????x z y w , 则????32 21 ????x z y w =????10 01, 即??

????3x +2z 3y +2w 2x +z 2y +w =??????1

00

1. 故???

3x +2z =1,

2x +z =0,3y +2w =0,2y +w =1,

解得???

x =-1,

y =2,z =2,

w =-3.

从而A 的逆矩阵为A -1=????

-12 2-3.

2.在平面直角坐标系xOy 中,设椭圆4x 2+y 2=1在矩阵A =????

20 01对应的变换作用下得到曲线F ,求F 的方程.

解 设P (x 0,y 0)是椭圆上任意一点,点P (x 0,y 0)在矩阵A 对应的变换下变为点P ′(x ′0,y ′0)则有

????x ′0y ′0=????20 01 ????x 0y 0,即???

x ′0=2x 0y ′0=y 0∴??

?

??

x 0=x ′02,y 0=y ′0.

又∵点P 在椭圆上,故4x 20+y 2

0=1,从而x ′20+y ′20=1.

∴曲线F 的方程是x 2+y 2=1.

3.已知矩阵M =????1b a 1,N =????c 0 2d ,且MN =????2-2 00. (1)求实数a 、b 、c 、d 的值;

(2)求直线y =3x 在矩阵M 所对应的线性变换作用下的像的方程.

解 (1)由题设得:???

c +0=2,

2+ad =0,

bc +0=-2,

2b +d =0.

解得???

a =-1,

b =-1,

c =2,

d =2.

(2)∵矩阵M 对应的线性变换将直线变成直线(或点), ∴可取直线y =3x 上的两点(0,0),(1,3), 由????1

-1 -11 ????00=????00,????1-1 -11 ????13=????-22,

得点(0,0),(1,3)在矩阵M 所对应的线性变换作用下的像是点(0,0),(-2,2). 从而,直线y =3x 在矩阵M 所对应的线性变换作用下的像的方程为y =-x . 4.若点A (2,2)在矩阵M =????

cos αsin α -sin αcos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵. 解 由题意,知M ????22=????-22, 即????2cos α-2sin α2sin α+2cos α=????-22,

∴??? cos α-sin α=-1,sin α+cos α=1,解得???

cos α=0,sin α=1. ∴M =????01 -10.

由M -1M =????10 01,解得M -1=????0-1 10. 5.已知二阶矩阵A =??

??

??

a b c

d ,矩阵A 属于特征值λ1=-1的一个特征向量为a 1=?????? 1-1,属于特征值λ2=4的一个特征向量为a 2=??????

32,求矩阵A .

解 由特征值、特征向量定义可知,Aa 1=λ1a 1, 即??????a

b c

d ?????? 1-1=-1×??????

1-1,得?

??

a -

b =-1,

c -

d =1. 同理可得???

3a +2b =12,3c +2d =8.解得a =2,b =3,c =2,d =1.

因此矩阵A =??

??

??

2 32 1.

6.已知矩阵M =????3

-1 -13,求M 的特征值及属于各特征值的一个特征向量.

解 由矩阵M 的特征多项式f (λ)=????λ-3

1 1λ-3=

(λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值. 设矩阵M 的特征向量为????

??

x y ,

当λ1=2时,由M ??????x y =2??????

x y ,可得???

-x +y =0,x -y =0.

可令x =1,得y =1,

∴α1=??????

11是M 的属于λ1=2的特征向量.

当λ2=4时,由M ??????x y =4??????

x y ,可得???

x +y =0,x +y =0,

取x =1,得y =-1,

∴α2=??????

1-1是M 的属于λ2=4的特征向量.

7.求曲线C :xy =1在矩阵M =??

????

1 1-1 1 对应的变换作用下得到的曲线C 1的方程. 解 设P (x 0,y 0)为曲线C :xy =1上的任意一点, 它在矩阵M =??

????

1 1-1 1对应的变换作用下得到点Q (x ,y ) 由??

???? 1 1-1

1 ??????x 0y 0=??????x y ,得???

x 0+y 0=x ,-x 0+y 0

=y . 解得?????

x 0=x -y 2,y 0=x +y

2.

因为P (x 0,y 0)在曲线C :xy =1上,所以x 0y 0=1.

所以x -y 2×x +y

2=1,即x 2-y 2=4. 所以所求曲线C 1的方程为x 2-y 2=4.

8.已知矩阵A =??

????1

00 2,B =????

??0 -11 0,求(AB )-1. 解 AB =??

????1

00 2 ??????0 -11 0=??????0 -12 0. 设(AB )-1

=??

??

??a

b c

d , 则由(AB )·(AB )-1

=??

??

??1

00 1, 得??

????0 -12 0 ??????a

b c

d =??????1 00

1,即??????-c -d 2a 2b =????

??

1 00 1, 所以???

-c =1,

-d =0,2a =0,

2b =1,

解得?????

a =0,

b =1

2,c =-1,d =0.

故(AB )-1=????

?

??

?0 12-1 0.

9.设矩阵M =??

??

??

a 00

b (其中a >0,b >0). (1)若a =2,b =3,求矩阵M 的逆矩阵M -1;

(2)若曲线C :x 2

+y 2

=1在矩阵M 所对应的线性变换作用下得到曲线C ′:x 2

4

+y 2=1,求a 、b 的值.

解 (1)设矩阵M 的逆矩阵M -1

=??

??

??

x 1 y 1x 2 y 2, 则MM -1=??

??

??1

00

1. 又M =??

????2

00 3.∴??????2 00

3 ??????x 1 y 1x 2 y 2=????

??1 00

1. ∴2x 1=1,2y 1=0,3x 2=0,3y 2=1, 即x 1=12,y 1=0,x 2=0,y 2=1

3,

故所求的逆矩阵M -

1=?

????

???12 00 13.

(2)设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′),则??

????a

00 b ??????x y =??????x ′y ′,即?

??

ax =x ′,by =y ′,又点P ′(x ′,y ′)在曲线C ′上,

∴x ′24+y ′2

=1.则a 2x 24+b 2y 2=1为曲线C 的方程.

又已知曲线C 的方程为x 2+y 2

=1,故???

a 2=4,

b 2=1.

又a >0,b >0,∴???

a =2,

b =1.

10. 已知矩阵M =??

??

??

2

a 2 1,其中a ∈R ,若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0),求: (1)实数a 的值;

(2)矩阵M 的特征值及其对应的特征向量. 解 (1)由??

????2

a 2

1 ?????? 1-2=????

??-4 0, 所以2-2a =-4.所以a =3.

(2)由(1)知M =??

????

2 32 1,则矩阵M 的特征多项式为 f (λ)=??

????

λ-2 -3-2 λ-1=(λ-2)(λ-1)-6=λ2-3λ-4. 令f (λ)=0,得矩阵M 的特征值为-1与4. 当λ=-1时,???

(λ-2)x -3y =0,

-2x +(λ-1)y =0?x +y =0.

所以矩阵M 的属于特征值-1的一个特征向量为????

??

1-1.

当λ=4时,???

(λ-2)x -3y =0,

-2x +(λ-1)y =0?2x -3y =0.

所以矩阵M 的属于特征值4的一个特征向量为??????

32.

11.已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=??????

11,并且矩阵M

对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M ;

(2)求矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系; (3)求直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程. 解 (1)设M =??

??

??a b c

d ,则??

????a b c d ????

??11=8??????11=??????

88,

故???

a +

b =8,

c +

d =8.

因??

????a

b c d ??????-1 2=??????-2 4,故???

-a +2b =-2,

-c +2d =4.

联立以上两方程组解得a =6,b =2,c =4,d =4, 故M =??

??

??6

24

4. (2)由(1)知,矩阵M 的特征多项式为 f (λ)=(λ-6)(λ-4)-8=λ2-10λ+16, 故其另一个特征值为λ=2.

设矩阵M 的另一个特征向量是e 2=??????

x y ,

则Me 2=??

??

??6x +2y 4x +4y =2??????

x y ,解得2x +y =0. (3)设点(x ,y )是直线l 上的任一点,其在矩阵M 的变换下对应的点的坐标为(x ′,y ′),则??

????6 24 4??????x y =????

??x ′y ′, 即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程后并化简得x ′-y ′+2=0,即x -y +2=0.

12.已知矩阵A =?????? 1 a -1 b ,A 的一个特征值λ=2,其对应的特征向量是α1=??????

21.

(1)求矩阵A ;

(2)若向量β=??????

74,计算A 5β的值.

解 (1)A =??

??

?? 1

2-1

4. (2)矩阵A 的特征多项式为f (λ)=??

????λ-1 -2 1 λ-4=λ2

-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=??????

21,当λ2=3时,

得α2=????

??

11.

由β=m α1+n α2,得???

2m +n =7,

m +n =4,解得m =3,n =1.

∴A 5

β=A 5

(3α1+α2)=3(A 5

α1)+A 5

α2=3(λ51α1)+λ52α2=3×25??

????21+35??????11=????

??435339.

第三章 矩阵的初等变换与线性方程组习题.

第三章矩阵的初等变换与线性方程组 3.4 独立作业 3.4.1 基础练习 1.已知,求. 2.已知,求. 3.若矩阵满足,则(). (A (B (C (D 4.设矩阵满足关系,其中,求. 5.设矩阵,求. 6.是矩阵,齐次线性方程组有非零解的充要条件是 . 7.若非齐次线性方程组中方程个数少于未知数个数,那么( . (A 必有无穷多解; (B 必有非零解;

(C 仅有零解; (D 一定无解. 8.求解线性方程组 (1),(2) (3) 9.若方程组 有无穷多解,则 . 10.若都是线性方程组的解,则( . (A (B (C (D 3.4.2 提高练习 1.设为5阶方阵,且,则= . 2.设矩阵,以下结论正确的是( . (A时, (B 时, (C时, (D 时,

3.设是矩阵,且,而,则 . 4.设,为3阶非零矩阵,且,则 . 5.设, 问为何值,可使 (1)(2)(3). 6.设矩阵,且,则 . 7.设,试将表示为初等矩阵的乘积. 8.设阶方阵的个行元素之和均为零,且,则线性方程组的 通解为 . 9.设,,

,其中可逆,则 . 10.设阶矩阵与等价,则必有(). (A)当时,(B)当时, (C)当时,(D)当时, 11.设,若,则必有(). (A)或(B)或 (C)或(D)或 12.齐次线性方程组的系数矩阵记为,若存在三阶矩阵,使得,则(). (A)且(B)且 (C)且(D)且 13.设是三阶方阵,将的第一列与第二列交换得到,再把 的第二列加到第三列得到,则满足的可逆矩阵为().

(A)(B)(C)(D) 14.已知,为三阶非零矩阵,且,则(). (A)时,(B)时, (C)时,(D)时, 15.若线性方程组有解,则常数应满足条件 . 16.设方程组有无穷多个解,则 . 17.设阶矩阵与维列向量,若,则线性方程组(). (A)必有无穷多解(B)必有唯一解 (C)仅有零解(D)必有非零解. 18.设为矩阵,为矩阵,则线性方程组(). (A)当时仅有零解(B)当时必有非零解 (C)当时仅有零解(D)当时必有非零解

【苏教版】高中数学选修4-2《矩阵与变换》.2.4 旋转变换

选修4-2矩阵与变换 2.2.4 旋转变换 编写人: 编号:005 学习目标 1、 理解可以用矩阵来表示平面中常见的几何变换。 2、 掌握旋转变换的几何意义及其矩阵表示。 学习过程: 一、预习: (一)阅读教材,解决下列问题: 问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转 变换作用下的象。其结果为''x x y y ?=-?=-?,也可以表示为''00x x y y x y ?=-+??=?-?,即''x y ??????= 1001-????-????????y x =x y -????-??怎么算出来的? 归纳: 问题2:P (x,y )绕原点逆时针旋转300得到P ’(x ’,y ’),试完成以下任务①写出象P ’; ②写出这个旋转变换的方程组形式;③写出矩阵形式. 问题3:把问题2中的旋转300改为旋转α角,其结果又如何? 练习

1、在直角坐标系下,将每个点绕原点逆时针旋转120o 的旋转变换对应的二阶矩阵是 2、如果一种旋转变换对应的矩阵为二阶单位矩阵,则该旋转变换是 二、课堂训练: 例1.已知A(0,0),B(2,0),C(2,1),D(0,1),求矩形ABCD 绕原点逆时针旋转900后所得到的图形,并求出其顶点坐标,画出示意图. 例2、若△ABC 在矩阵M 对应的旋转变换作用下得到△A ′B ′C ′,其中A (0,0),B (1,3),C (0,2),A ′(0,0), C ′(-3,1),试求矩阵M 并求B ′的坐标. 练习: 1. 将向量?? ????=12a 绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为=______________. 2. 在某个旋转变换中,顺时针旋转 3 π所对应的变换矩阵为 ______. 三、课后巩固: 1. 曲线xy=1绕坐标原点逆时针旋转90°后得到的曲线方程是_____,变换对应的矩阵 是____.

2020高考矩阵与变换知识点基础与提高(含答案)

2020高考矩阵与变换知识点基础与提高(含答案) 主要考查二阶矩阵的基本运算,选修内容考的题目大都不难,同学们注意基本概念。 1求逆矩阵,注意2*2矩阵的乘法。 2利用矩阵求坐标式的方程。 (10上海 4)行列式6πcos 3πsin 6πsin 3π cos 的值是____________. 考点:行列式的运算法则 解析:考查行列式运算法则6πcos 3 πsin 6π sin 3πcos 02πcos 6πsin 3πsin 6πcos 3πcos ==-= 答案:0. (10福建 21)选修4-2:矩阵与变换 已知矩阵M =???? ??11b a ,??? ? ??=d c N 02,且???? ??-=0202MN , (Ⅰ)求实数a ,b ,c ,d 的值;(Ⅱ)求直线x y 3=在矩阵M 所对应的线性变换下的像的方程. 考点:矩阵的基本运算和线形变换 解析:(1)?? ????-=??????++=????????????=020*******d b bc ad c d c b a MN , 对应系数有???????-==-==????????=+-==+=1 212022022a d b c d b bc ad c ; (2)取x y 3=上一点()y x ,,设经过变换后对应点为()','y x ,则??????--=??????1111''y x ?? ????--=??????x y y x y x ,从而''x y =,所以经过变换后的图像方程为x y -=. 注意:本题相对基础,要求同学们对矩阵的基本运算方法,尤其是乘法 (09江苏 21)选修4-2:矩阵与变换 求矩阵?? ????=1223A 的逆矩阵. 考点:逆矩阵的求法,考查运算求解能力

旋转变换(一)旋转矩阵

旋转变换(一)旋转矩阵 1. 简介 计算机图形学中的应用非常广泛的变换是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移、旋转、缩放、剪切这几种。本文以及接下来的几篇文章重点介绍一下关于旋转的变换,包括二维旋转变换、三维旋转变换以及它的一些表达方式(旋转矩阵、四元数、欧拉角等)。 2. 绕原点二维旋转 首先要明确旋转在二维中是绕着某一个点进行旋转,三维中是绕着某一个轴进行旋转。二维旋转中最简单的场景是绕着坐标原点进行的旋转,如下图所示: 如图所示点v 绕原点旋转θ角,得到点v’,假设v点的坐标是(x, y) ,那么可以推导得到v’点的坐标(x’, y’)(设原点到v的距离是r,原点到v点的向量与x轴的夹角是? ) x=rcos?y=rsin? x′=rcos(θ+?)y′=rsin(θ+?) 通过三角函数展开得到 x′=rcosθcos??rsinθsin? y′=rsinθcos?+rcosθsin? 带入x和y表达式得到 x′=xcosθ?ysinθ y′=xsinθ+ycosθ 写成矩阵的形式是: 尽管图示中仅仅表示的是旋转一个锐角θ的情形,但是我们推导中使用的是三角函数的基本定义来计算坐标的,因此当旋转的角度是任意角度(例如大于180度,导致v’点进入到第四象限)结论仍然是成立的。 3. 绕任意点的二维旋转 绕原点的旋转是二维旋转最基本的情况,当我们需要进行绕任意点旋转时,我们可以把这种情况转换到绕原点的旋转,思路如下: 1. 首先将旋转点移动到原点处 2. 执行如2所描述的绕原点的旋转 3. 再将旋转点移回到原来的位置

也就是说在处理绕任意点旋转的情况下需要执行两次平移的操作。假设平移的矩阵是T(x,y),也就是说我们需要得到的坐标v’=T(x,y)*R*T(-x,-y)(我们使用的是列坐标描述点的坐标,因此是左乘,首先执行T(-x,-y)) 在计算机图形学中,为了统一将平移、旋转、缩放等用矩阵表示,需要引入齐次坐标。(假设使用2x2的矩阵,是没有办法描述平移操作的,只有引入3x3矩阵形式,才能统一描述二维中的平移、旋转、缩放操作。同理必须使用4x4的矩阵才能统一描述三维的变换)。 对于二维平移,如下图所示,P点经过x和y方向的平移到P’点,可以得到: x′=x+tx y′=y+ty 由于引入了齐次坐标,在描述二维坐标的时候,使用(x,y,w)的方式(一般w=1),于是可以写成下面矩阵的形式 按矩阵乘法展开,正好得到上面的表达式。也就是说平移矩阵是 如果平移值是(-tx,-ty)那么很明显平移矩阵式 我们可以把2中描述的旋转矩阵也扩展到3x3的方式,变为:

高考数学压轴专题人教版备战高考《矩阵与变换》知识点总复习附解析

【最新】单元《矩阵与变换》专题解析 一、15 1.已知函数cos 2()sin 2m x f x n x = 的图象过点( 12 π 和点2( ,2)3 π -. (1)求函数()f x 的最大值与最小值; (2)将函数()y f x =的图象向左平移(0)??π<<个单位后,得到函数()y g x =的图象;已知点(0,5)P ,若函数()y g x =的图象上存在点Q ,使得||3PQ =,求函数 ()y g x =图象的对称中心. 【答案】(1)()f x 的最大值为2,最小值为2-;(2)(,0)()24 k k Z ππ +∈. 【解析】 【分析】 (1)由行列式运算求出()f x ,由函数图象过两点,求出,m n ,得函数解析式,化函数式为一个角的一个三角函数式,可求得最值; (2)由图象变换写出()g x 表达式,它的最大值是2,因此要满足条件,只有(0,2)Q 在 ()g x 图象上,由此可求得?,结合余弦函数的性质可求得对称中心. 【详解】 (1)易知()sin 2cos 2f x m x n x =- ,则由条件,得sin cos 66 44sin cos 233m n m n ππππ?-=????-=-?? , 解得 1.m n = =- 故()2cos22sin(2)6 f x x x x π =+=+ . 故函数()f x 的最大值为2,最小值为 2.- (2)由(1)可知: ()()2sin(22)6 g x f x x π ??=+=++ . 于是,当且仅当(0,2)Q 在()y g x =的图象上时满足条件. (0)2sin(2)26g π?∴=+=. 由0?π<<,得.6 π ?= 故()2sin(2)2cos 22 g x x x π =+ =. 由22 x k =+ π π,得().24 k x k Z ππ = +∈ 于是,函数()y g x =图象的对称中心为:(,0)()24 k k Z ππ +∈. 【点睛】 本题考查行列式计算,考查两角和的正弦公式,图象平移变换,考查三角函数的性质,如最值、对称性等等.本题主要是考查知识点较多,但不难,本题属于中档题.

高考数学1几种特殊的矩阵变换专题1

高考数学1几种特殊的矩阵变换专题1 2020.03 1,圆22 1x y +=在矩阵10102?????? ? ?对应的变换作用下的结果为 . 2,当兔子和狐狸处于同一栖息地时,忽略其他因素,只考虑兔子数量和狐狸数量的相互影响,为了简便起见,不妨做如下假设: (1)由于自然繁殖,兔子数每年增长10%,狐狸数每年减少15%; (2)由于狐狸吃兔子,兔子数每年减少狐狸数的0.15倍,狐狸数每年增加兔子数的0.1倍; (3)第n 年时,兔子数量n R 用表示,狐狸数量用n F 表示; (4)初始时刻(即第0年),兔子数量有1000=R 只,狐狸数量有300=F 只。 请用所学知识解决如下问题: (1)列出兔子与狐狸的生态模型; (2)求出n R 、n F 关于n 的关系式; (3)讨论当n 越来越大时,兔子与狐狸的数量是否能达到一个稳定的平衡状态,说明你的理由。 3,在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命 中才能引爆成功,每次射击命中率都是3 2 .,每次命中与否互相独立. (1) 求油罐被引爆的概率. (2) 如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望 4,在空间四边形ABCD 中, AC 和BD 为对角线,G 为ABC ?的重心,E 是BD

上一点,3BE ED =,以{ },,AB AC AD u u u r u u u r u u u r 为基底,则GE =u u u r ___ 5,设M 是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的 伸压变换. 求逆矩阵1M -以及椭圆22 149x y +=在1M -的作用下的新曲线的 方程. 6,已知变换A :平面上的点P (2,-1)、Q (-1,2)分别变换成点P 1(3,-4)、 Q 1(0,5) (1)求变换矩阵A ; (2)判断变换A 是否可逆,如果可逆,求矩阵A 的逆矩阵A -1;如不可逆,说明理由. 7,两个人射击,甲射击一次中靶概率是21,乙射击一次中靶概率是31 , (Ⅰ)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少? (Ⅱ)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少? (Ⅲ)两人各射击5次,是否有99%的把握断定他们至少中靶一次? 8,如图,正方体ABCD -A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点. (Ⅰ)试确定点F 的位置,使得D 1E ⊥平面AB 1F ; (Ⅱ)当D 1E ⊥平面AB 1F 时,求二面角C 1―EF ―A 的余弦值以及BA 1与面C 1EF 所成的角的大小.

高考数学压轴专题最新备战高考《矩阵与变换》知识点总复习有解析

【高中数学】数学《矩阵与变换》高考知识点 一、15 1.已知矩阵2101M ?? =? ??? (1)求矩阵M 的特征值及特征向量; (2)若21α??=? ?-?? r ,求3M αv . 【答案】(1)特征值为2;对应的特征向量为210α?? =???? u u r (2)91????-?? 【解析】 【分析】 (1)先根据特征值得定义列出特征多项式,令()0f λ=解方程可得特征值,再由特征值列出 方程组即可解得相应的特征向量;(2)由12ααα=+u u r u u r r 可得333 12M M M ααα=+u u r u u r r ,求解即 可. 【详解】 (1)矩阵M 的特征多项式为2 1 ()0 1 f λλλ--= -(2)(1)λλ=--, 令()0f λ=,得矩阵M 的特征值为1或2, 当1λ=,时由二元一次方程0 000x y x y --=?? +=? . 得0x y +=,令1x =,则1y =-, 所以特征值1λ=对应的特征向量为111α?-? =? ??? ; 当2λ=时,由二元一次方程00 00 x y x y -=?? +=?. 得0y =,令1x =, 所以特征值2λ=对应的特征向量为210α?? =???? u u r ; (2)1221ααα??==+??-??u u r u u r r Q , 333 12M M M ααα∴=+u u r u u r r 331212αα=+u u r u u r 311210????=+????-????91??=??-?? . 【点睛】 本题考查矩阵特征值与特征向量的计算,矩阵的乘法运算,属于基础题.

《1.2.3 几类特殊的矩阵变换》教案新部编本1

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《1.2.3 几类特殊的矩阵变换》教案1 教学目标 1. 理解可以用矩阵来表示平面中常见的几何变换,掌握恒等、伸压、反射、旋转、投影、 切变变换的矩阵表示及其几何意义 2.理解二阶矩阵对应的几何变换是线性变换,了解单位矩阵 3.了解恒等、伸压、反射、旋转、投影、切变变换这六个变换之间的关系 教学重难点 了解并掌握几种特殊的矩阵变换,可以简单的运用。 教学过程 1.理解可以用矩阵来表示平面中常见的几何变换,掌握恒等、伸压、反射、旋转、投影、切变变换的矩阵表示及其几何意义 (1)一般地,对于平面向量变换T ,如果变换规则为T :?? ? ???y x →??????''y x =??????++dy cx by ax ,那么根据二阶矩阵与平面列向量在乘法规则可以改写为T :??? ???y x →??????''y x =??? ? ??d c b a ?? ????y x 的矩阵形式,反之亦然(a 、b 、c 、d ∈R) 由矩阵M确定的变换,通常记为T M ,根据变换的定义,它是平面内点集到自身的一个映射,平面内的一个图形它在T M ,的作用下得到一个新的图形. 在本节中研究的变换包括恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等六个变换. (2)由矩阵M=?? ? ???1001确定的变换T M 称为恒等变换,这时称矩阵M 为恒等变换矩 阵或单位矩阵,二阶单位矩阵一般记为E.平面是任何一点(向量)或图形,在恒等变换之下都把自己变为自己. (3)由矩阵M=??????100k 或M=?? ? ???k 001)0k (>确定的变换T M 称为(垂直)伸压变 换,这时称矩阵M=???? ??100k 或M=?? ????k 001伸压变换矩阵.

第三章 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 讲授内容§3.1 矩阵的初等变换;§3.2 初等矩阵 教学目的和要求:(1)理解矩阵的初等变换,理解初等矩阵的性质和矩阵等价的概念. (2)掌握用初等变换求逆矩阵的方法. (3)理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 教学重点:矩阵的初等变换和用矩阵的初等变换求逆矩阵的方法 教学难点:矩阵的初等变换、初等矩阵的性质. 教学方法与手段:从解线性方程组的消元法的三种重要运算入手,引出矩阵的初等变换的定义;初等矩阵与矩阵的初等变换密切相关,三种初等变换对应着三种初等矩阵;从分析初等矩阵的性质出发,推理出用矩阵的初等变换求逆矩阵的方法.传统教学,教练结合 课时安排:2课时 教学过程 §1 矩阵的初等变换 本节介绍矩阵的初等变换,它是求矩阵的逆和矩阵的秩的有利工具。 一、矩阵的初等变换 在利用行列式的性质计算行列式时,我们对其行(列)作过三种变换——“初等变换”. 定义1 对矩阵的行(列)施以下述三种变换,称为矩阵的行(列)初等变换. 初等变换 行变换 列变换 ① 对调 j i r r ? j i c c ? ② 数乘)0(≠k i r k i c k ③ 倍加 j i r k r + j i c k c + 矩阵的行初等变换与列初等变换统称为矩阵的初等变换. n m A ?经过初等变换得到n m B ?, 记作n m n m B A ??→. 定义2 等价矩阵:若n m n m B A ??→有限次 , 称n m A ?与n m B ?等价, 记作n m n m B A ???. 矩阵之间的等价关系有下列性质: (1) 自反性:A A ? (2) 对称性:n m n m B A ???n m n m A B ???? (3) 传递性:n m n m B A ???, n m n m C B ???n m n m C A ???? 定义3 在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即 是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元.若非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0,则称矩阵为行最简形矩阵.

选修4-2 矩阵与变换 第一节 线性变换与二阶矩阵

第一节 线性变换与二阶矩阵 1.矩阵的相关概念 (1)由4个数a ,b ,c ,d 排成的正方形数表?????? a b c d 称为二阶矩阵,数a ,b ,c ,d 称为矩 阵的元素.在二阶矩阵中,横的叫行,从上到下依次称为矩阵的第一行、第二行;竖的叫列,从左到右依次称为矩阵的第一列、第二列.矩阵通常用大写的英文字母A ,B ,C ,…表示. (2)二阶矩阵?? ?? ?? 00 0称为零矩阵,简记为0,矩阵?? ?? ??1 00 1称为二阶单位矩阵,记作E 2. 2.矩阵的乘法 (1)行矩阵[]a 11a 12与列矩阵?? ?? ?? b 11b 21的乘法规则:为[]a 11a 12?? ? ? ?? b 11b 21=[]a 11×b 11+a 12×b 21. (2)二阶矩阵??????a 11 a 12a 21 a 22与列向量??????x 0y 0和乘法规则:??????a 11 a 12a 21 a 22??????x 0y 0=??????a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:

??????a 11 a 12a 21 a 22??????b 11 b 12b 21 b 22=???? ??a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律 即(AB )C =A (BC ), AB ≠BA , 由AB =AC 不一定能推出B =C . 一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算. 3.线性变换的相关概念 (1)我们把形如???? ? x ′=ax +by y ′=cx +dy (*)的几何变换叫做线性变换,(*)式叫做这个线性变换的坐 标变换公式,P ′(x ′,y ′)是P (x ,y )在这个线性变换作用下的像. (2)对同一个直角坐标平面内的两个线性变换σ、ρ,如果对平面内任意一点P ,都有σ(P )=ρ(P ),则称这两个线性变换相等,简记为σ=ρ,设σ,ρ所对应的二阶矩阵分别为A ,B ,则A =B . 4.几种常见的线性变换 (1)由矩阵M =?? ?? ??1 00 1确定的变换T M 称为恒等变换, 这时称矩阵M 为恒等变换矩阵或单位矩阵,二阶单位矩阵一般记为E .平面是任何一点(向量)或图形,在恒等变换之下都把自己变为自己. (2)由矩阵M =???? ?? a 00 1或M =?? ?? ??1 00 k (k >0)确定的变换T M 称为(垂直)伸压变换,这时称矩 阵M =?? ?? ?? k 00 1或M =?? ?? ??1 00 k 伸压变换矩阵. 当M =?? ?? ??k 00 1时确定的变换将平面图形作沿x 轴方向伸长或压缩,当k >1时伸长,当 01时伸长,当 0

几类特殊线性变换及其二阶矩阵优秀教学设计

几类特殊线性变换及其二阶矩阵 【教学目标】 1.了解二阶矩阵的概念,线性变换与二阶矩阵之间的关系。 2.熟练运用旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示解决具体问题。 3.亲历几类特殊线性变换的探索过程,体验分析归纳得出其二阶矩阵,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握几类特殊线性变换及其二阶矩阵。 难点:旋转变换、反射变换、伸缩变换、投影变换、切变变换的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习几类特殊线性变换及其二阶矩阵,这节课的主要内容有旋转变换、反射变换、伸缩变换、投影变换、切变变换,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解线性变换与二阶矩阵内容,形成初步感知。 (2)首先,我们先来学习线性变换及其相关概念,它的具体内容是: 在平面直角坐标系xoy 内,很多几何变换都具有下列形式:x ax by y cx dy '=+??'=+? ③; 其中系数a ,b ,c ,d 均为常数,我们把形如③的几何变换叫做线性变换。 ③式叫做这个线性变换的坐标变换公式。 (,)P x y '''是(,)P x y 在这个线性变换作用下的像。 像这样,由4个数a ,b ,c ,d 排成的正方形表a b c d ?? ???称为二阶矩阵。数a ,b ,c ,d 称为矩阵的元素 元素全为0的二阶矩阵0000?? ???称为零矩阵,简记为0。

矩阵1001?? ??? 称为二阶单位矩阵,记为E 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换。求点(1,0)A 在这个旋转变换作用下的像A '。 解析:教师板书。 (3)接着,我们再来看下旋转变换的概念,它的具体内容是: 在直角坐标系xOy 内的每个点绕原点O 按逆时针方向旋转α角的旋转变换(通常记为n R )的坐标变换公式:cos sin sin cos x x y y x y αααα'=-??'=+?,对应的二阶矩阵为:cos sin sin cos αααα-?? ??? 。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换,写出这个旋转变化的表达式。 解析:教师板书。 (4)接着,我们再来看下反射变换内容,它的具体内容是: 一般地,我们把平面上的任意一点P 变成它关于直线l 的对称点P '的线性变换叫做关于l 的反射。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:在直角坐标系xoy 内,直线l 过原点,倾斜角为α。求关于直线l 的反射变换的坐标变换公式。 学生板书,教师纠正解答。 (5)接着,我们再来看下伸缩变换内容,它的具体内容是: 在直角坐标系xOy 内,将每个点的横坐标变为原来1k 倍,纵坐标变为原来的2k 倍,其中1k ,2k 均为非零常数,我们称这样的几何变换为伸缩变换。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:直角坐标系xOy 内,将每一点的纵坐标变为原来的2倍,横坐标保持不变。 (1)试确定该伸缩变换的坐标变换公式及其对应的二阶矩阵。 (2)求点A (1,1)-在该伸缩变换作用下的像A ' 教师请同学上讲台解答,并纠正总结。

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

【高考精品复习】选修4-2 矩阵与变换 矩阵与变换

【高考会这样考】 1.本部分高考命题的一个热点是矩阵变换与二阶矩阵的乘法运算,考题中多考查求平面图形在矩阵的对应变换作用下得到的新图形,进而研究新图形的性质. 2.本部分高考命题的另一个热点是逆矩阵,主要考查行列式的计算、逆矩阵的性质与求法以及借助矩阵解决二元一次方程组的求解问题. 【复习指导】 1.认真理解矩阵相等的概念,知道矩阵与矩阵的乘法的意义,并能熟练进行矩阵的乘法运算. 2.掌握几种常见的变换,了解其特点及矩阵表示,注意结合图形去理解和把握矩阵的几种变换. 3.熟练进行行列式的求值运算,会求矩阵的逆矩阵,并能利用逆矩阵解二元一次方程组. 基础梳理 1.乘法规则 (1)行矩阵[a 11 a 12]与列矩阵????b 11b 21 的乘法规则: [a 11 a 12]????b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵????a 11a 21 a 12a 22与列向量??? ?x 0y 0的乘法规则: ????a 11a 21 a 12a 22 ????x 0y 0=??? ?a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ????a 11a 21 a 12a 22 ??? ?b 11b 21 b 12b 22= ????a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律.即(AB )C =

矩阵知识点归纳

矩阵知识点归纳 (一)二阶矩阵与变换 1.线性变换与二阶矩阵 在平面直角坐标系xOy 中,由? ??? ? x ′=ax +by ,y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换称 为线性变换.由四个数a ,b ,c ,d 排成的正方形数表???? ? ?a b c d 称为二阶矩阵,其中a ,b ,c , d 称为矩阵的元素,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列). 2.矩阵的乘法 行矩阵[a 11a 12]与列矩阵??????b 11b 21的乘法规则为[a 11a 12]???? ??b 11b 21=[a 11b 11+a 12b 21],二阶矩阵??????a b c d 与列矩阵??????x y 的乘法规则为??????a b c d ??????x y =??????ax +by cx +dy .矩阵乘法满足结合律,不满足交换律和消去律. 3.几种常见的线性变换 (1)恒等变换矩阵M =???? ? ?1 00 1; (2)旋转变换R θ对应的矩阵是M =???? ?? cos θ -sin θsin θ cos θ; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=??????1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=???? ?? -1 0 0 1;若关于坐标原点对称,则变换对应矩阵M 3=???? ?? -1 0 0 -1; (4)伸压变换对应的二阶矩阵M =???? ??k 1 00 k 2,表示将每个点的横坐标变为原来的k 1 倍,纵 坐标变为原来的k 2倍,k 1,k 2均为非零常数; (5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =??????1 00 0; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =???? ? ?1 k 0 1, 若沿y 轴平移|kx |个单位,则对应矩阵M =???? ??1 0k 1.(其中k 为非零常数). 4.线性变换的基本性质 设向量α=??????x y ,规定实数λ与向量α的乘积λα=??????λx λy ;设向量α=??????x 1y 1,β=???? ??x 2y 2,规定向量α与β的和α+β=???? ?? x 1+x 2y 1+y 2. (1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=λMα,②M (α+β)=Mα+Mβ. (2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).

第三章知识点总结 矩阵的初等变换与线性方程组

第三章矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质 设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?= 存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?= 存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使

高中数学选修4-2矩阵与变换知识点复习课课件_苏教版

2.1.1 矩阵的概念 1.矩阵的概念,零矩阵,行矩阵,列矩阵; 2.矩阵的表示; 3.相等的矩阵; 2.1.2 二阶矩阵与平面列向量的乘法1.二阶矩阵与平面向量的乘法规则; 2.理解矩阵对应着向量集合到向量集合的映射; 3.待定系数法是由原象和象确定矩阵的常用方法. 2.1 2.1 二阶矩阵与平面向量 二阶矩阵与平面向量

1,3形如??????8090,6085??????23324m ???????的矩形数字(或字母)阵列称为矩阵.通常用大写黑体的拉丁字母A 、B 、C …表示,或者用(a ij )表示,其中i,j i,j 分别表示元素a ij ij 所在的行与列. 同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一行数(或字母)叫做矩阵的列. 组成矩阵的每一个数(或字母)称为矩阵的元素。

13?????? 80906085??????23324m ???????21矩阵×22×矩阵23矩阵×0所有元素均为的矩阵叫做0矩阵. ,. 对于两个矩阵、的行数与列数分别相等,且对应位置上的元素也分别相和时,记等才相等作A B B A A B =

[][][]111112211111121111122121,规定: 行矩阵与列矩阵的乘法法则为 =b a a b b a a a b a b b ?????? ??×+×???? 01112212200110120111221220210220.x a a b b y x a x a y a a b b y b x b y ???????????? ×+×????????????×+×?????? 二阶矩阵与列向量的乘法规则为=

第三章知识点总结矩阵的初等变换与线性方程组

第三章知识点总结矩阵的初等变换与线性方程组 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质 设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则

二阶矩阵和常见的平面变换

二阶矩阵和常见的平面变换 江苏省天一中学沈钰 一.教学目标 1.知识与技能: 通过这节课的复习,使学生进一步理解和掌握六种常见的平面变换的矩阵表示及其几何意义,及矩阵的一些相关知识,如行,列,零矩阵,会用矩阵表示一些问题 2.过程与方法: 通过以平面变换为载体的复习过程,培养学生从特殊到一般,从直观到抽象的学习过程,提高学生学习数学的能力 3.情感态度与价值观: 通过生动通俗的语言和丰富有趣的实例来循序渐进的展开教学过程,激发学生的兴趣与求知欲;通过师生互动的合作交流,营造和谐的教学氛围;通过设置思考或探究的问题,给学生创设思考与探究的空间。 二.教学手段 多媒体 三.教学过程 (一)情节创设 新的一年马上来临了,在上课之前首先播放了一段动画祝大家新年快乐。 〔问题〕:大家知道动画是运用什么知识形成的吗? 计算机动画是指用绘制程序生成的一系列景物画面,其中后一帧画面是对前一帧画面的部分修改,就是几何变换,在平面或空间中物体(图片)的移动就由相应的矩阵乘法来实现。而且每个动画过程背后都涉及数量惊人的矩阵运算,当然计算机的速度是动画的关键。不仅如此矩阵在图论、线性规划、大型工程的计算、信息安全加密等问题中都有重要的运用。为了使我们的生活更加美好,我们应该认真学习矩阵知识。 〔设计意图〕:通过贴近大家生活的动画演示,○1可以激发学生的求知欲,提高学生学习数学的兴趣,○2教师对学生的新年祝福增进了师生情感,○3让学生了解矩阵在现实生活的广泛运用,有利于增强学生的数学应用意识,○4使学生很自然的就进入了今天学习的主题。 (二)活动探究 例 1.已知变换 '32 '02 x x x y y y ???????? →= ???????? ???????? ,将它写成坐标变换的形式是 ___________________. 变式○1已知T,)(',') x y x y y x →= :(,将它写成矩阵乘法形式

相关主题
文本预览
相关文档 最新文档