当前位置:文档之家› 737-800飞机偏航阻尼故障分析

737-800飞机偏航阻尼故障分析

737-800飞机偏航阻尼故障分析
737-800飞机偏航阻尼故障分析

737-800飞机偏航阻尼故障分析

偏航阻尼系统故障在BOEING机队中属于常见的故障,也是ATA22章节中故障出现频率较高的系统,下面以某偏航阻尼系统故障为例进行讨论和分析。

一、737-800偏航阻尼系统的功用:

偏航阻尼系统的作用是防止飞机出现荷兰滚运动,从而防止由此产生的震荡问题,保持飞机在其垂直轴线的稳定性。在飞行中偏航阻尼系统计算机发出指令给方向舵,使其成比例地阻尼飞机的航向不稳定性,使飞机的航向不稳定性降低到最小,从而增强飞机的稳定性。

二、737-800偏航阻尼系统主要组成部件:

主要由两个SMYDC(SMYDC1和SMYDC2),一个偏航阻尼衔接开关,一个断开指示灯,一个偏航阻尼指示器,和在方向舵PCU上的几个相关部件组成。

三、737-800偏航阻尼系统相关联的系统部件及功用:

1、大气数据惯性组件(ADIRU):为SMYD 1提供偏航阻尼所需要的空速,姿态,转弯速率,滚转速率,横向加速度数据。

2、飞行管理计算机(FMC):为SMYD 1提供偏航计算所需要的飞机总重。

3、后缘襟翼收上电门:给SMYD1发送离散数据,用于限制方向舵的摆动范围,后缘襟翼收上时限尾方向舵摆动最大2度,保持飞机的稳定性。放下时限位3度,增加飞机的可操纵性。

4、主方向舵PCU,它涉及4个部件:①偏航阻尼电磁活门,当偏航阻尼衔接时,它给偏航阻尼系统施加液压;②电液伺伏阀,它把SYMD的电信号转变成液压作动,控制方向舵偏航阻尼作动器的摆动方向和速率;③偏航阻尼作动器,控制方向舵的移动;④偏航阻尼作动器线形位移传感器:发送偏航阻尼作动器的位置数据给SMYD,SYMD用来比较方向舵指令位置和实际位置是否一致。

5、左侧AOA传感器:为SMYD提供飞机迎角信息。

6、方式控制面板(MCP):提供自动驾驶是否有一个通道接通信号。

四、737-800偏航阻尼系统工作原理:

飞机飞行的时候受气流干扰,使其在垂直轴线产生不稳定性,为了使飞机保持航向的稳定性,飞机加装了偏航阻尼系统。飞机的SMYD计算机从ADIRU收到YAW RATE,根据YAW RATE的数据来进行是否需要偏航阻尼和方向舵的摆动幅度,SMYD 1和SMYD 2交叉通讯,两个计算机进行数据比较看是否一致,如果数据一致则发出指令给主方向舵PCU的电磁活门,电磁活门提供液压源,电液伺伏阀把SMYD计算机的指令转变成液压作动,控制偏航阻尼作动器的移动速率和摆动方向,从而使主方向舵PCU工作来带动方向舵进行偏航阻尼。如果SMYD1和SMYD2交叉通讯发现数据不一致或者SMYD任何一个故障,将会断开偏航阻尼,偏航阻尼作动器的LVDT和SMYD的指令位移不一致也会断开偏航阻尼。

五、某飞机偏航阻尼接不通的故障历史和故障现象:

2005-6-29:偏航阻尼器接不上,航后左右互串SMYD,测试正常。

2005-6-30 :在空中Y/D断开,地面检查Y/D 显示故障提示FMC DATA INVAILD,地面按手册输入飞机全重后,地面当前状态测试工作正常。

2005-8-6 :偏航阻尼器可短时接通,随即断开。清除历史故障和SMYD 自测试,做偏航阻尼测试正常。

2005-8-7 :偏航阻尼器可短时接通,随即断开。进行隔离故障,初步判定故障原因为方向舵PCU或者相关的线路有问题。8号将进行下一步排故工作。

2005-8-9 :Y/D DISENGAGAED 故障。航后测量PCU的PIN 12 PIN 11 PIN 4 PIN 9 PIN 10的线路OK,直接测量新件PCU D291插头的PIN9-PIN10电阻为102欧姆,PIN11-PIN12电阻为173欧姆,PIN4-PIN11,107欧姆,PIN4-PIN12 107欧姆,从SMYDC1的D3683B 测量PIN13-GND,110欧姆,PIN29-PIN16,108.7欧姆,PIN29-PIN30,108.9欧姆,PIN16-PIN30,173.7欧姆。此线路阻值证明LVDT传感器和激励电路OK.地面进行SERVO TEST,ZERO COMMAND 测试PASS,SWEEP TEST,RUDDER向左移动时Y/D断开,但是SMYDC计算机指令继续发出向右的指令,测试结果SERVO LOOP FAIL,也就是Y/D 静态位置可以衔接,动态性能失效,故障可能是PCU本体的LVDT传感器位置传感不准确

造成的。

2005-8-10:偏航阻尼断开。更换方向舵PCU,测试工作正常,撤保留,飞行观察。

六、偏航阻尼排故过程及分析:

737-800飞机此次故障的现象主要表现在Y/D衔接不上或者接通后断开,查阅SMYD历史故障记录显示为Y/D DISENGAE和Y/D SERVO LOOP ,Y/D NO 28VAC POWER ,根据故障信息和故障代码查阅FIM手册,可能引起故障的是:SMYD,线路问题,PCU三个方面。FIM手册对故障隔离的有一定的指导作用,但并不能对故障作出进一步的详细判断,根据FIM手册在SMYD做自测试可以判断SMYD的状态正常,但是做SERVO TEST则出现失效,测量从SMYD到方向舵PCU的线路不存在故障,由此怀疑PCU故障。但到此具体PCU那个部件问题还不能判断,根据线路图,查阅Y/D 28AC是给方向舵PCU上的LVDT 供激励电压和LVDT位置反馈电压,由于测量PCU得知确实有电压存在,可以确定电压不存在问题,但是SMYD在ZERO COMMAND测试可以PASS,SWEEP TEST则不出现失效,由以上两个条件可以确定LVDT反馈位置不准确,造成SWEEP TEST时偏航阻尼断开,(偏航阻尼作动器的LVDT和SMYD的指令位移不一致也会断开偏航阻尼)。但是LVDT 手册说明它不是一个航线可更换件,所以只能更换PCU,更换PCU故障消失。

七、维护提示:

737-800在SMYD做地面功能测试和复位故障锁存器(RESET LATCH)一定在CDU输入飞机的总重。这样才能模拟飞机系统测试状态。当出现Y/D故障时首先查看SMYD故障代码,然后参考FIM进行隔离,不要对调SMYD,因为一个故障就会断开Y/D。要敢于怀疑PCU的故障可能性,因为PCU的LVDT的故障在飞机伺服作动器经常发生。例如以前某自动驾驶接通后断开,就是由于方向舵作动器的LVDT故障造成的,在自动飞行控制系统中,LVDT和RVDT传感不正确的共同特点是,模拟系统测试时,进行动态测试会造成系统断开。

民航飞机维修故障分析和改进措施图文稿

民航飞机维修故障分析 和改进措施 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

毕业设计(论文) 民航飞机维修故障分析和改进措施 学习中 心 名称 北京科技技术进修学院 专业 名称 交通运输(民航管理工程航空维修方向专升本) 学生 姓名 王立 指导教师 闫利春 2016年 10月 20日单位代码 10006 学 号 分 类 号 密 级

独创性声明 我在此郑重申明,本人所提交的毕业设计(论文),是在导师指导下由本人独立完成的研究成果,对文中所引用他人的成果,均已进行了明确标注或得到许可。毕业设计(论文)中不包含任何其他个人或集体已经发表或撰写过的研究成果,不包含他人已申请毕业证书(学位)或其他用途使用过的成果。对本文的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示了谢意。 本人完全意识到本声明的法律结果,如有不实之处,由本人承担一切相关责任。 学生签名:王立 时间:2017年4 月20日

摘要 随着中国航空航天产业的快速发展,航空业的快速发展。因此,民航飞机的结构非常复杂,不仅有机械原理、传动原理、机电原理、通信原理、自动化原理,故障复杂、典型故障频繁发生、突发故障和预防性故障,影响民航飞机飞行质量的因素很多,如天气、维护、运行和服务理念等。其中,颇具影响力的就是维护,研究提高质量的民航飞机故障和维修企业,分析了民用航空器维修的主要原因包括飞机的复杂机制,储备不足,设备维修的基础地位,维护人员综合素质低,飞机维修企业任务安排不科学;本文总结了民航飞机的主要维护策略,包括日常维护、高新技术维修和预防性维护;民用航空器维修企业质量改进的措施,包括创新的维修技术,提高综合素质,维护工程师建立数据库,提高维护系统和程序,有效地提高了民用飞机维修企业的服务质量,使民用飞机更安全和稳定。 关键词:民航飞机;维修故障;改进措施

TB飞机起落架机轮轴承失效的原因分析及维护(doc 8页)

TB飞机起落架机轮轴承失效的原因分析及维护(doc 8页)

TB飞机起落架机轮轴承失效的原因分析及维护 B8913号TB20飞机在执行本场起落训练过程中,飞行教员发现飞机着陆滑跑,起飞滑跑及起飞以后,飞机发生剧烈的抖动甚至于越来越剧烈,造成飞机滑跑困难。几个起落以后,飞行教员果断采取措施,退出飞行训练。经机务人员检查发现:前机轮轴承由于高温而熔化咬死,带动轮轴旋转,轮轴与轮叉发生滑动干摩擦,产生的热量将轮轴和轮叉部分熔化,产生巨大的变形,机轮组件几乎从轮叉上脱落。由于飞行教员果断的抉择,才避免了一场安全事故的发生。由此可见,机轮轴承不仅用来支承机轮,引导机轮的旋转方向,减小转动过程中的摩擦,并承受机轮和轮轴之间的各种载荷。而且,轴承对飞机的工作性能、寿命、各项经济指标及可靠性都有很大影响,甚至在某些情况下也会造成飞行安全事故。 一、轴承的基本结构及受力分析 TB飞机机轮轴承为铁姆肯(Timken)公司生产的圆锥形轴承,它由四部分组成:内滚道、外滚道、圆锥滚棒和保持架。正常情况下,内滚道、外滚道和滚棒承受载荷,而保持架使滚棒相互均匀地隔开,以免互相碰撞和摩擦,并使每个滚棒均匀和轮流地承受相等的载荷。内滚道、滚棒和保持架合称为滚道组件。通常它和外滚道是可分的(外滚道固定在可分解的轮毂上的),使安装轴承比较方便。 轴承采用低碳钢,经表面渗碳处理,它使轴承有适合的硬度,抗疲劳、忍性的综合性能。正常使用情况下,轴承的最大温度范围在120-150℃,短时温度可达175℃,最大周期接触应力在2100~3100MPa,而保持架通常用低碳钢制成。 由于圆锥轴承的几何特点及设计特点,它可以承受经向和轴向的综合载荷。外滚道与轴承中心线的夹角越大,能承受的轴向推力和经向推力的比值越大,滚棒和滚道的接触线越长,那么承受载荷的能力越强。飞机处于不同的工作状态,轴承的受力情况不同: 1.飞机处于静止状态,轴承主要承受静止载荷。飞机的重力产生的停机载荷—P通过轴承的滚棒传递给外滚道,即轮毂。P可沿轴向分解为轴向力N和垂直于外滚道的力F。如图所示,P所产生的对外滚道的压力远大于P在这个轮子上的分力,对滚道施加很大的压强。 2.飞机在地面滑行时,主要也承受垂直载荷。由于地面的不绝对平整,飞机的上下震动的幅度大于飞机的重力。 3.着陆时,机轮接地的瞬间首先主要是受到巨大的静止垂直冲击载荷,继

试谈飞机故障诊断技术

1.故障是指产品丧失了规定的功能,或产品的一个或几个性能指标超过了规定的范围。它是产品的一种不合格状态。 2.故障按其对功能的影响分为两类:功能故障和潜在故障。 功能故障是指被考察的对象不能达到规定的性能指标;潜在故障又称作故障先兆,它是一种预示功能故障即将发生的可以鉴别的实际状态或事件。 3.故障按其后果分四类: 安全性后果故障:采取预防维修的方式;使用性后果故障:对使用能力有直接的不利影响,通常是在预防维修的费用低于故障的间接经济损失和直接修理费用之和时,才采用预防维修方式;非使用性后果故障:对安全性及使用性均没有直接的不利影响,只是使系统处于能工作但并非良好的状态,只有当预防维修费用低于故障后的直接维修费用时才进行预防维修,否则一般采用事后维修方式; 隐患性后果故障:通常须做预定维修工作。 4.故障按其产生原因及故障特征分类可分为早期故障、偶然故障和损耗故障。偶然故障也称随机故障,它是产品由于偶然因素引起的故障。对于偶然故障,通常预定维修是无效的。耗损故障是由于产品的老化、磨损、腐蚀、疲劳等原因引起的故障。这种故障出现在产品可用寿命期的后期,故障率随时间增长,采用定期检查和预先更换的方式是有效的。 5.故障模式或故障类型是故障发生时的具体表现形式。故障模式是由测试来判断的,测试结果显示的是故障特性。 6.故障机理是故障的内因,故障特征是故障的现象,而环境应力条件是故障的外因。 7.应力-强度模型:当施加在元件、材料上的应力超过其耐受能力时,故障便发生。这是一种材料力学模型。 8.高可靠度状态(图1.2-2(a)):应力和强度分布的标准差很小,且强度均值比应力均值高得多,安全余量Sm很大,所以可靠度很高。 图1.2-2(b)所示为强度分布的标准差较大,应力分布标准差较小的情况,采用高应力筛选法,让质量差的产品出现故障,以使母体强度分布截去低强度范围的一段,使强度与应力密度曲线下重叠区域大大减小,余下的装机件可靠度提高。 图1.2-2(c)所示为强度分布标准差较小,但应力分布标准差较大的情况,解决的办法最好是减小应力分布的标准差,限制使用条件和环境影响或修改设计。

飞机燃油系统的故障分析

飞机燃油系统的故障分析 【摘要】: 飞机燃油系统工作好坏的主要标志是看它能否保证正常输油。而燃油系统能否正常输油的关键在于燃油系统附件的工作和燃油增压系统的压力是否正常。因此,在机务维修工作中,非常有必要深入研究飞机燃油系统输油部分的组成及工作原理,确定燃油系统常见的故障性质以及可能存在故障的部件,并根据常见故障现象深入分析它的机理和原因,从中得出正确、高效的维修方案。 1 关键词:故障分析输油增压 Abstract:Aircraft fuel system work the main indicator of good or bad is to see whether it can ensure the normal oil.The fuel system is the key to whether the normal oil fuel system accessories work and the pressure of the fuel pressurization system are normal. Therefore, in maintenance repair work , is to examine carefully the part of the fuel system oil composition and working principle, determine the fuel system common faults quality and possible failure of components, and failure behavior under the common-depth analysis of its mechanism and reasons, drawn from the correct and efficient maintenan ce program. Keyword: Failure Analysis Oil Boost 1

飞机故障诊断

1、民航客机事故? ①设计和维修方案不合理; ②人为差错导致飞行事故; ③环境因素造成飞机故障。 2、维修性:产品维修的难易程度。 3、故障:指产品丧失了规定的功能,或产品的一个或几个性能指标超过了规定的范围 4、规定的功能:指国家有关法规、质量标准,以及合同规定的对产品适用、安全和其他特性的要求。 5、故障类型的划分:①按功能的影响划分为功能故障和潜在故障;②按故障的后果划分为安全性后果故障、使用性后果故障、非使用 性后果故障和隐患性后果故障;③按故障产生的原因及故障特征分为早期故障、偶然故障和耗损故障。 6、故障模式:是故障发生时的具体表现形式。 7、故障机理:在应力和时间的条件下,导致故障发生的物理、化学、生物或机械等过程。 8、故障机理是故障的内因,故障特征是故障的现象,环境应力条件是故障的外因。 9、有关机械、电气机械等零部件故障的机理通常归为以下六大类:蠕变或应力断裂、腐蚀、磨损、冲击断裂、疲劳和热,这种分类方 法简称“SCWIFT”分类。 10、应力-强度模型是指当施加在元件、材料上的应力超过其耐受能力时,故障便发生。 11、常用的故障模型有应力-强度模型,反应论模型、最弱环模型和累积损伤模型。 12、故障物理这门学科的目的是在于研究产品在正常或特殊应力下,故障发生和发展过程以及故障的原因,提出减少故障措施,从

而改进产品的可靠性。 13、采用故障物理分析方法的步骤:①详细记录在研制、试验和使用中所出现的故障、缺陷和不良现象;②对故障过程进行调查、 分析,详细观测故障现象;③做出故障外因和故障机理假设,建立故障过程模型;④通过对故障过程分析,验证假设;⑤提出改进措施。 14、故障树分析法:检查FTA法,是一种将系统故障形成的原因由总体至部分按树枝状逐级细化的分析方法,目的是判明基本故障, 确定故障的原因,影响和发生概率。 15、故障树:一张由事件符号和逻辑门符号组成的逻辑图。 16、故障树分析法的优点:①直观、形象;②灵活性强;③具有通用性。 17、故障树分析法的缺点:①理论性强,逻辑性严密,因此要求分析人员对所研究的对象必须有彻底的了解,并有比较丰富的设计 和运行经验;②建树工作量大,易导致错漏,若故障树中遗漏了一些重要事件,则可能导致完全错误的结果。 18、故障树中使用的符号可分为事件符号和逻辑门符号,常见的故障事件符号有顶事件、中间事件、底事件、省略事件和转移事件。 逻辑门符号分为常用逻辑门符号和特殊逻辑门符号,常用逻辑门符号有逻辑与门、逻辑或门和逻辑非门;特殊逻辑门符号有逻辑禁门、异或门、表决门和顺序与门。 19、建造故障时的方法有两种,人工演绎法和计算机辅助法。 20、建造故障树的步骤:①建树准备(收集相关资料);②选择顶事件;③建造故障树;④审查与简化故障树。 21、顶事件选取应当遵循的原则:①顶事件必须有确切的定义,不能含混不清,模棱两可;②顶事件必须是能分解的,以便分析顶 事件和底事件之间的关系;③顶事件能被监测和控制,以便对其进行测量、定量分析,并采取措施防止其发生;④顶事件最好有代

737NG飞机驾驶舱面板介绍

驾驶舱培训资料驾驶舱主要面板介绍 Cockpit Panel Arrangement Forward Overhead Panel

Flight Control Panel

1.飞控主电门A、B:位臵ON、OFF、STBYRUD ON:由系统液压给副翼、方向舵、升降舵、升降舵感觉计算机供压 OFF:断开液压,关闭飞控关断活门 STBYRUD:断开液压,备用泵工作,备用方向舵关断活门打开,给备用方向舵PCU增压 飞控低压灯: 当飞控主电门A、B位臵在ON:灯灭,监视系统液压;当压力小于1300PSI时灯亮,大于1600PSI时灯灭 当飞控主电门A、B位臵在STBYRUD:低压灯成为备用方向舵关断活门的位臵灯,当备用方向舵关断活门完全打开时,低压灯灭STANDBYHYD低液压油量灯:油量小于50% STANDBYHYD低压灯:当压力小于1300PSI时灯亮,大于1600PSI时灯灭 2.飞行扰流板电门A、B:位臵ON、OFF ON:由系统液压供压至飞行扰流板PCU OFF:关闭飞行扰流板关断活门 3.YAWDAMPER电门:位臵ON、OFF ON:偏航阻尼器接通方向舵PCU 4.YAWDAMPER灯:偏航阻尼器系统脱开,灯亮 5.备用襟翼预位电门:位臵OFF、ARM 6.备用襟翼控制电门:位臵DOWN、OFF、UP

DOWN:LEFLAPSOV打开,备用泵将前缘装臵全伸出,电马达将TEFLAP放出 UP:电马达将TEFLAP收上 OFF:可随时停止电马达的操作 备用EMDP自动打开方式: 1)飞控电门A、B都在ON位 2)系统压力小于1300PSI 3)在空中或轮速大于60节 4)FLAP NOT UP 此时主警戒灯和FLTCONT灯亮 备用人工打开方式 1)任一个飞控主电门A、B在STBYRUD 2)备用襟翼在ARM位 7.FEELDIFFDRESS灯: 在升降舵感觉计算机内,A和B系统的计量压力存在的压差大于25%且后缘襟翼收上时灯亮; 8.SPEEDTRIMFAIL灯:FCCs的速度配平功能不可用,该灯常亮 9. MACHTRIMFAIL灯:FCCs的马赫配平功能不可用 10. AUTOSLATFAIL灯:AUTOSLAT功能失效 (P2)偏航阻尼器指示器:用来指示方向舵偏航阻尼器的运动,不表示飞行员方向舵脚蹬的输入信号 Fueling / Defueling / Measurement

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

歼七起落架故障分析

长沙航空职业技术学院毕业设计(论文) 歼七飞机起落架收放系统故障分析 系别航空装备维修工程系 专业飞机附件维修 姓名 班级 指导老师 及职称李向新 二〇一一年××月×××日 长沙航空职业技术学院

毕业设计(论文)任务书

毕业设计(论文)任务书 (2) 摘要................................. 错误!未定义书签。第1章歼七飞机前起落架自动收起的故障研究错误!未定义书签。 1.1起落架收放控制原理分析 ....................... 错误!未定义书签。 1.2起落架自动收起原因分析 ......................... 错误!未定义书签。 1.2.1电液换向阀性能不良 .............................. 错误!未定义书签。 1.2.2系统不完整,回油路堵死 ...................... 错误!未定义书签。 1.3 故障验证 .................................................... 错误!未定义书签。 1.4 维修对策 .................................................... 错误!未定义书签。第2章数据符合规定前起落架为何放不下错误!未定义书签。 2.1地面检查和模拟试验情况 ......................... 错误!未定义书签。 2.2原因分析 ..................................................... 错误!未定义书签。 2.3 结论............................................................. 错误!未定义书签。 第3章总结 (3) 参考文献............................... 错误!未定义书签。致谢错误!未定义书签。

飞机故障诊断#教学文案

民航飞机故障诊断概述 民航飞机故障诊断的特点 1、故障诊断必须满足适航性的要求 民用航空,包括民用航空器的设计、制造、使用和维修均处十有关国际组织和I各国法规的严格控制之下。对飞机进行故障诊断的适航性要求主要体现在飞机。 2、故障征兆和I故障原因间不一定有明确的对应关系 飞机系统由30多个子系统组成,子系统之间相互关联。并目‘子系统又包含了多个分系统。在子系统内,层次之间的信息联系又是不确定的。例如A32。系列飞机的无线电导航系统、大气数据惯性基准系统(ADIRS、飞行管理、制导计算机系统(FMGCS、电子飞行仪表系统(EFIS)等都与飞行控制系统存在着数据通信。Ifn飞行控制系统内部的分系统之间又存在相互交联信号。由此可见,故障具有纵向传播和横向传播特性。较高层次系统的故障来源十底层次系统故障,同一层次上的不同系统之间在结构和功能上存在许多联系和祸合。 3、故障诊断涉及的结构层次有所提高 随着飞机模块化、集成化程度的提高,故障诊断的结构层次也相应提高。尤其是航线维护,当故障源查到某一部件层,就要求整体更换此部件来排除故障。即航线维护就是诊断到部件级,非兀件级。 4、诊断时间要求紧 航线维护是在航前、航后、短停期间进行。为了减少因航班延误带来的损失,要求航线维护在规定时间内完成。尤其是短停,时间要求紧。 5、航线可更换件维修的难点集中在诊断逻辑部分 飞机系统故障诊断的步骤主要为:首先要检测到故障特征信号并完成故障征兆的提取:这一步可由飞机的自检设备完成并显示征兆信息。在大多数情况下无须维修人员参与。其次根据故障征兆确定故障原因,此处是故障诊断的难点,尤其是对十疑难故障,BITE难以做到对故障的准确定位。 民航飞机故障诊断的知识来源 维修手册、维修大纲、可靠性分析报告}so]和专家经验是民航飞机故障诊断的主要知识来源。 1、维修手册 维修手册中包含了民航飞机的系统结构图、系统原理图、故障诊断步骤等信息,维修人员在使用时按自己的理解形成推理规则。维修手册内容主要包括传统的故障隔离和排除的全过程。由十维修手册是标准文件,未体现出飞机使用后的个体特征和环境差异,同时从维修手册中获取的规则往往比实际情况复杂。 2、维修大纲 维修大纲是民航飞机故障诊断依据的计划性文件,主要包含了部件的计划维修信息,包括故障发生的维修间隔、维修等级、计划维修项目、零部件的重要度等信息。通过维修大纲可以估计故障出现的时间,用这一时间与实际的工作时间比较,可以指导故障诊断。维修手册与维修大纲都是设计人员制订的。 3、可靠性报告 可靠性报告是由飞机制造商和航空公司定时发布的,是故障统计历史信息的

A320系列飞机大气数据系统常见故障分析与处理-深圳(2)

A320系列飞机大气数据系统常见故障分析与处理 Fault Analysis about A320 Series Aircrafts Air Data System 南航深圳分公司飞机维修厂万晓云 【摘要】 针对A320系列飞机大气数据系统常见的故障情况,本文结合系统工作原理、工程技术资料、机组操作要求和自身维护经验,对故障原因、故障可能造成的后果和维修措施进行深入、细致地分析。 【正文】 A320系列飞机的大气数据系统主要由三个ADIRU(大气数据惯性基准组件)、八个ADM(大气数据组件)、安装在飞机外部的传感器以及连接这些部件的气管路组成,飞机外部的传感器包括三个皮托管、六个静压孔、三个AOA(迎角)传感器和两个TAT(总温)探头,这些传感器感受并探测飞机外部的大气情况,最终由ADIRU计算并获得飞机的大气数据,供机组和飞机其它系统使用。 常见故障情况及分析 1、气压高度误差大 气压高度数据的准确性取决于测量静压、ADM、ADR、飞机的迎角值、马赫数和襟缝翼位置数据。当某一侧气压高度误差太大时,机组通常会有左右高度不一致的故障反映,如果此时没有明确的故障信息,维护人员可以首先查阅FCOM(机组操作手册)中高度容差的允许范围,如果容差在允许范围之内,则可以不用排故。在需要排故时,通常以ADR3的气压高度为参考来判断哪一侧的数据误差大,但当ADR3的气压高度介于ADR1、2中间时,有时难以判断,这时可以通过机组与地面管制员联系由地面测高雷达来确认飞机此时的精确高度。 在排故时,对相关部位进行详细目视检查必不可少,如检查静压孔周围飞机蒙皮的气动光洁度、AOA 传感器有无外部损伤、静压孔有无堵塞、连接静压孔或ADM的气管快卸接头有无松动和漏气等。静压管路漏气会使机内增压空气进入管路,导致测量静压增大,气压高度变小,这在地面上通过渗漏测试可以检测出来。如果以上检查均正常,可以考虑与其它飞机对串怀疑的ADM并飞行观察,以及在空中对迎角传感器的数值进行采样检查来确认是否是ADM或AOA的问题。 需要指出的是,当飞机进入气动不对称飞行如侧滑时,会有左右高度指示不一致的现象,这是正常的。另外,ADR3计算的气压高度误差通常要比ADR1、2的要大,一方面这与备用静压孔的安装位置有关,另一方面是AOA3传感器容易受到外界气流干扰。如早期的A320飞机由于机长位皮托管的安装位置偏高,当飞机以某个迎角姿态飞行时,流经机长位皮托管的尾流会对AOA3传感器的风刀造成扰动,从而降低AOA3传感器的测量精度,影响静压源误差修正(SSEC)的效果,造成ADR3计算的气压高度误差增大,为此空客公司针对这些飞机ADR3要满足RVSM(减小垂直高度间隔)运行要求提出了具体的改装方案,其中有一项内容就是将机长位皮托管的安装位置往下进行调整,以消除尾流对AOA3传感器的影响。 2、空速误差大或空速波动

飞机起落架故障分析毕业设计论文

西安航空职业技术学院 毕业设计(论文) 所属系部: 指导老师:职称: 学生姓名:班级、学号: 专业: 西安航空职业技术学院制 2012年12 月26日

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分

或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

飞机起落架收放系统

歼七飞机起落架收放系统典型故障分析 【摘要】:飞机起落架液压收放系统的传动性能与系统或元件的结构参数、工作条件参数以及负载参数等有关.文中在对收放系统传动时间、传动速度等传动性能计算的基础上分析影响其性能的主要因素。比较其影响程度,并进一步探讨了判断故障原因的方法. 【关键词】:起落架自动收起传动性能压力流量特性液阻负载配合间隙摩擦力 【正文】: 一.歼七飞机前起落架自动收起的故障研究 起落架收放系统是飞机的重要组成部分,此系统的工作性能直接影响到飞机的安全性和机动性. 改进设计飞机起落架收放系统主要用于控制起落架的收上与放下,控制主起落架舱门和前起落架舱门的打开与关闭,是飞机一个重要的系统,其能否正常工作将直接影响飞行安全。因此对该系统的维护和对所出现的故障进行分析研究,并进行有效的预防就显得十分重要。某单位在对某新型飞机做出厂试飞准备时,当机组人员接上地面压力源和电源进行该机的停机刹车压力调整时,在供压13min后,前起落架开始缓慢收起,飞机机头失去支撑最终导致机头接地,造成雷达罩和前机身02段蒙皮撕裂、结构损坏和前起落架变形等严重后果。本文将对前起落架自动收起的故障进行分析研究,并在此基础上针对性地提出预防措施。 1起落架收放控制原理分析

图1 前起落架收放系统原理图 前起落架收放系统原理如图1所示。正常收起落间隙时,起落架收放手柄(下简称手柄)处于收上位时,电液换向阀l使高压油进入收上管路,放下管路b回油管路相通。在高压油的作用下,下位锁作动筒的活塞杆缩进,下位锁打开。另一路高压油一方面液控单向阀13打开,使舱门作动筒10、12的回油略沟通;另一方面油通过限流活门9进入收放作动筒,使活塞杆伸出,起落架收起,作动筒8的回油经脚向活门7、应急转换活门4、电液换向阀1和应急排油活门2流入油箱。当起落架收好后,协调活门11压通,高压油进入舱门作动筒lO、12的收上腔使舱门收起。当手柄处于放下位置时,来油与放下管路接通,收上管路与回油路相通,起落架放下。在系统中还设有地面联锁开关,当飞机停放时,联锁开关自动断开电液换向阀的电路,此时即使将手柄置于收起位置,电液换向阀也不会工作,从而防止了地面误收起落架。 2起落架自动收起原因分析 由起落架收放控制原理知道,前起落架放下位置是由带下位锁的

飞机系统原理

2009金城学院飞机系统原理复习题 一、简答题(以下只是答题要点,并非全部答案) 1.简述油箱通气系统的作用和要求? 答:1、通过油箱通气系统的作用: 1) 平衡油箱内外气体压力,确保加油、抽油和供油的正常进行; 2) 避免油箱内外产生过大的压差造成油箱结构损坏; 3) 通过增压作用确保供油泵在高空的吸油能力,提高供油可靠性。 2、燃油通气系统的要求: 1) 要防止燃油蒸汽从通气口溢出而引起火灾 2) 同时防止飞机姿态改变时燃油从通气口洒出。 2.飞机结冰的危害有哪些? 3.对起落架系统收放有哪些的要求? 答:为了保证安全,对起落架收放系统有如下要求: 1. 收放机构应按一定顺序工作,防止发生纷争; 2. 起落架在收上和放下位都应可靠锁定,并给机组明确指示; 3. 系统应在不安全着陆时向机组发出警告; 4. 在正常收放系统发生故障时,应有应急放下系统; 5. 为了防止意外,系统应设置地面防收安全措施。 4.看图说明飞机尾翼的结构。 答: 结冰部位 危害 机翼前缘 尾翼前缘 翼型阻力增加,导致升力下降,临界攻角下降;飞机操纵性降低。 发动机进气道 进气效率下降;发动机功率降低;发动机结构损坏。 风档玻璃 防碍机组人员视线 仪表探头 导致仪表系统失灵 飞机天线 天线折断;系统失效 给排水口 系统功能丧失

5、电传操纵的主要优缺点是什么? 答:电传操纵的主要优点是: 1)减轻了操纵系统的重量、体积,节省操纵系统设计和安装时间; 2)消除了机械操纵系统中的摩擦、间隙、非线性因素以及飞机结构变形的影响; 3)简化了主操纵系统与自动驾驶仪的组合; 4)可采用小侧杆操纵机构; 5)飞机操稳特性不仅得到根本改善,且可以发生质的变化; 电传操纵最主要的缺点是: 1)电传操纵系统成本较高; 2)系统易受雷击和电磁脉冲波干扰影响; 3)单通道电传操纵系统的可靠性不够高,可通过余度技术解决。 6.民用飞机发展需要哪些相关的技术? 答:(1)空气动力学 (2)推进技术 (3)材料和结构 (4)航空电子和控制 (5)认知工程 7.飞机空调系统的主要功用是什么?有哪几个部分组成及各自的作用是什么? 答:飞机座舱空调系统在各种不同的飞行状态和外界条件下,使飞机的驾驶舱、旅客舱、设备舱及货舱具有良好的环境参数,以保证飞行人员和乘客的正常工作条件和生活环境、设备的正常工作及货物的安全。主要由气源系统、温度控制系统、压力控制系统等部分构成。 8.什么是驾驶舱效应? 答:所谓的驾驶舱效应是指:如果飞机系统监控到相关的一个系统或一个功能丢失,需要进行修理,系统将自动送故障数据到综合显示系统,产生相应的信息或符号等显示,这些

浅析737NG型飞机后缘襟翼倾斜系统——机务经验交流

浅析737NG型飞机后缘襟翼倾斜系统 浅析737NG型飞机后缘襟翼倾斜系统 南航广西维修厂邵帅 737NG系列飞机在后缘襟翼系统共安装了8个倾斜传感器,同后缘襟翼位置传感器一起向FSEU提供后缘襟翼位置信号,每边机翼分布4个倾斜传感器,每边的激励电源是各自独立的,通过倾斜传感器和后缘襟翼位置传感器的共同配合,FSEU就可以自动的调整后缘襟翼的位置,并时时监控后缘襟翼的不同步和倾斜状况。 襟翼倾斜的定义是任何一边的襟翼内侧末端和外侧末端不一致的时候就发生了襟翼倾斜,在后缘襟翼倾斜情况发生时,襟翼位置指示器会发生15度的分离,接着FSEU就会自动做出判断是发生在哪边的机翼上,是在收回的过程还是放出的过程。原理是FSEU先比较左边的倾斜传感器和左边的襟翼位置传感器,如果它们不同步,FSEU就会认为左边机翼发生了倾斜,如果左边同步,就认为是右边机翼发生了倾斜,同时襟翼倾斜系统通过FSEU发出数据信息给失速管理偏航阻尼器(SMYDS)用于失速警告,发出数据信息给临近店门电子组件(PSEU)用于起飞警告。 判断好了这些情况,然后FSEU对发生倾斜那边的机翼,作倾斜传感器和襟翼位置传感器的襟翼位置度数比较,如果倾斜传感器的位置大于襟翼位置传感器的位置,FSEU就会发出指令给襟翼位置指示器,使指示器的指针向襟翼伸出方向移动15个单位,,如果倾斜传感器的位置小于襟翼位置传感器的位置,FSEU就会发出指令给襟翼位置指示器,使指示器的指针向襟翼收回方向移动15个单位。 1

下图是后缘襟翼倾斜时的原理示意图: FSEU比较互相对应的两个倾斜传感器,倾斜传感器分别为1-8号,如果对应的传感器角度差超出它默认的范围,就会发生倾斜现象,导致后缘襟翼旁通活门旁通,阻止了液压操作后缘襟翼,也就是发生了卡阻现象。 互相比较的两个传感器差值超出的范围 1号和8号相比较差值大于28度就会发生襟翼卡阻 2号和7号相比较差值大于28度就会发生襟翼卡阻 3号和6号相比较差值大于26度就会发生襟翼卡阻 4号和5号相比较差值大于34度就会发生襟翼卡阻 如果互相比较的两个传感器角度差值小于13度,就会自动复位 倾斜传感器就是一种旋转变压器,随着输入驱动杆的变化,由内部的解相器将变化的电压信号解算出来,所以传输到FSEU内的信号值就发生了变化,当FSEU将接收到的两个互相比 2

现代飞机故障分析与诊断技术基础

目录文摘0. 引言 (1) 一.现代飞机故障分析与诊断技术基础 1.故障物理的基本概念 (2) 2. 1.1. 故障物理的任务 (2) 3.1.2. 故障及分类 (2) 4. 1.3. 故障模式 (3) 5.2. 故障机理的基本概念 (3) 6. 2.1. 故障机理与故障模式的关系 (3) 7.2.2. 常见故障机理的分类 (4) 8. 2.3. 故障机理的演变过程 (4) 9. 3. 故障模型 (4) 10.4. 故障的查找和排除 (5) 11. 4.1. 故障的查找 (5) 12.4.2. 故障的排除 (6) 13.4.3. 运用故障物理进行故障机理分析的方法 (7) 14. 4.4. 排除故障是应该注意的问题 (7) 15.二.现代飞机故障分析、诊断及维修技术的应用设计 16.5. 起落架收放机构介绍 (8) 17.5.1. 起落架收上锁及其上锁原理 (8) 18. 5.2. 轮舱盖收上锁及其上锁原理 (8) 19. 6. 故障分析及诊断程序 (9) 20. 6.1. 故障现象(模式)描述 (9) 21.6.2. 故障原因(机理)分析 (9) 22.6.3. 故障的查找和排除程序 (10) 23.7. 起落架收放工作的调试 (11) 24.7.1. 调试原理 (11) 25.7.2. 调试程序 (13) 26.8. 起落架收放工作的检测 (13) 27.8.1检测内容和要求 (13) 28.8.2检测程序 (13)

29.9.维(修)护质量检验报告 (15) 30.10.总结 (15) 摘要: 介绍了飞机故障分析与诊断理论,飞机起落架收上锁、轮舱盖收上锁机构及其工作原理,并结合生产工作实际,以石家庄机场某航班“起落架和轮舱盖收上后又自动掉下”的故障为例,介绍了现代飞机故障分析与诊断理论在实际维(修)护工作中的应用,文章最后还介绍了飞机起落架系统的调试和检测技术,为全面、系统和可靠得解决“起落架和轮舱盖收上后又自动掉下的故障”提供了切实可行的维(修)护方案。Abstract: Introduction airplane break down analysis and diagnosis theories, the airplane rise and fall to accept to lock, round cabin cover accept to lock organization and it work principle, and combine production work actual, with some service"rise and fall and round cabin cover to accept top behind again auto drop down" of Chuang airport in the stone house of break down is example, introduction modern irplane break down analysis and diagnosis the theories is in actually the Wei(fix) protect the work of application, article end still introduction the airplane rise and fall adjust of a system to try with examination technique, is overall, system and credibility get solved "rise and fall and round cabin cover to accept top behind again auto drop down of break down" to provide practical viable Wei(fix) to protect a project. 关键词:故障机理;故障物理;起落架收放机构;收上锁;检测;调试Keywords: Break down mechanism;Break down physics;Rise and fall to accept to put organization; Accept to lock;Examination;Adjust to try

飞机起落架收放作动筒的常见故障及其排除

飞机起落架收放作动筒的常见故障及其排除 【摘要】 起落架是飞机的重要部件,在起落架的结构中作动筒起到至关重要的作用。在现代飞机起落架系统的各个工作部件中,收放机构在使用中发生失效的概率较高,为此,本文通过某飞机起落架收放作动筒的实际故障分析,来对收放作动筒的常见故障及其排除进行分析说明。 关键词:飞机起落架收放作动筒故障收放作动筒故障排除

目录 1作动筒的功用及特点 (2) 1.1作动筒的功用 (2) 1.2作动筒的特点 (2) 2收放作动筒的几个典型故障分析 (3) 2.1收放作动筒耳环螺栓断裂故障分析 (3) 2.1.1 断口理化分析及故障件检查 (3) 2.1.2 耳环螺栓强度校核 (4) 2.1.3 特殊情况受力分析 (5) 2.1.4 结论 (6) 2.2飞机起落架收放作动筒断裂分析 (6) 2.2.1试验过程与分析 (6) 2.2.2分析 (9) 2.2.3结论 (9) 2.3飞机起落架作动筒密封圈失效分析 (10) 2.3.1试验过程与结果 (10) 2.3.2分析与讨论 (11) 2.3.3结论 (13) 3 作动筒的修理(以带锁作动筒为例) (14) 3.1作动筒常遇故障及原因分析 (14) 3.2作动筒的分解 (14) 3.3作动筒检查和修理 (15) 3.4作动筒装配 (16) 3.5作动筒试验 (16) 4作动筒其它常见故障排除方法 (19) 结束语 (21) 谢辞 (22) 文献 (23)

1作动筒的功用及特点 1.1 作动筒的功用 作动筒是将输入的液压能转变为机械能的能量转换装置,是液压系统的执行元件,对外作功和转换能量。在起落架收放中,它通过液压油的液压能转化为机械能使起落架灵活收放。图1为某飞机的作动筒示意图。 图1 某飞机作动筒连接示意图 1.2 作动筒的特点 (1)作动筒可以很方便地获得直线往复运动,或具有某种规律地往复摆动。 (2)可以很方便地获得很大的推力,克服外部负载。 (3)结构简单,工作可靠。与其他元件配合可以方便地获得各种速度。 (4)由于橡胶密封元件的出现,改善了作动筒的加工工艺,使其易制造,提高了劳动生产效率。

飞机航线常见故障解析

云南空港飞机维修服务有限公司 YUNNAN AIRPORT AIRCRAFT MAINTENANCE & SERVICES Co.,Ltd 飞机航线常见故障解析 一、介绍A320系列飞机门、面板 1.区域 A320系列飞机有八个主要区域,以三位数来表示,个位奇数为左,偶数为右。具体如下: 100~199区域: 机身到后增压框之间的下半部分(客舱地板区域以下)。 200~299区域:机身到后增压框之间的上半部分(客舱地板区域以上)。 300~399区域:飞机尾部包括各安定面。 400~499区域:发动机(整流罩)及短舱区域。 500~599区域:左大翼。 600~699区域:右大翼。 700~799区域:起落架区域。 800~899区域:舱门区域。 2. 面板: 空客的功能代码采用FIN号,每一个部件都有一个唯一的FIN号。VU特指面板,在面板的右上角用灰色进行标注。 2.1驾驶舱面板: 23、24VU:飞行控制面板25VU:顶部控制和指示面板 30VU:空调控制面板 35VU:电源控制面板 40VU:液压/燃油面板 49VU\120VU\121VU\122VU\123VU:电路跳开关面板 2.2电子舱面板: 811门:90VU 装有WXR、PHC、WHC、FQIC、FLSCU等 812门:106VU 机组氧气瓶、皮托管 822门:103VU\105VU\107VU 电瓶、副驾皮托管 824门:80VU 各种电子设备

3.门: 3.1 A319飞机在增压区包含以下的接近门: --2 个货舱门(825,826)。 --2 个翼上应急出口(834,844)。 --4 个旅客登机门(831, 841, 832, 842)。 --4 个电子舱门(811, 812, 822,824)。 A319飞机在增压区域的接近门示意图3.2 A320飞机在增压区包含以下的接近门: --2 个货舱门(825,826)。 --4 个翼上应急出口(833,834,843,844)。 --4 个旅客登机门(831, 841, 832, 842)。 --4 个电子舱门(811, 812, 822,824)。

飞机基础知识

飞机基础知识 1、基础: 三轴六余度的通用标准: 首先大家要记住这个图,这将是贯穿始终最重要的一个图,后边简单讲到气动导数的时候会再用到。这图代表了三轴6个余度(或DOF,自由度),前后,左右,上下 (x,y,z)三条轴向以及绕轴旋转的余度。记住图中箭头的方向代表了正值的方向(可能跟你学过的直角坐标系正好相反!) 三轴六余度通用标准表

静稳定性的概念: 理解这个,有一颗吃货的心就好懂了:首先你有一个碗,碗里有一颗鸡蛋,你左摇右晃这个碗,放下碗后鸡蛋还是要回到碗底,或者说,鸡蛋在受到扰动后会有自然想回到碗底的趋势,这就是静态稳定性,简称静稳。 反之,鸡蛋立在西瓜上,静态是不稳定的,这就是静不稳,虽然也能配平!飞机也是这样,但是稍微一扰动,他就离稳定状态越来越远了。 鸡蛋放在菜板上,这叫中立稳定:我推它一下,它就停在新的地方,没有想回或者想离开的趋势,换句话说任何地方都能配平! 动态稳定性: 鸡蛋每次都会想往碗询问滚动这叫做静稳,因为摩擦力,每次左摇右晃的幅度越来越小,越来越趋近于在碗底部静止这叫做动态稳定性,简称动稳。 假设理想状态下碗和鸡蛋没有摩擦力,没有空气阻力,你会看到鸡蛋会一直保持左摇右晃下去不衰减,这叫静态稳定+动态中立。 假设碗底有个吹风的喷口,每次越过碗底都会增加向另一边的运动幅度,摆动越来越大,但是每次都还想回到碗底,这叫做静态稳定+动态不稳定。

阻尼系统: 跟弹簧不一样,阻尼系统的阻力是与速度相关的。弹簧的压力是跟位移有关,压缩距离越大,弹力越大,但本身(理想弹簧)不消耗能量。但阻尼系统是运动速度越大,阻力越大,系统会消耗能量。 俯仰/偏航阻尼: 回想鸡蛋的问题,不管是在碗里、板上还是西瓜上,我们用一层厚厚的粘稠的糖浆包裹起来,虽然鸡蛋还是要回到原来中立位置、停在新的位置、离中立越来越远。 最明显的是速度会变慢,这有啥用呢? 比如碗里的状态,原来的鸡蛋就算想回到碗底,也很可能会越过,并来回滚好几次,但有糖浆后很可能只越过一次,甚至不越过,就可以回到原位了。 (静态稳定+动态十分稳定) 当然糖浆太浓(阻尼太大)会严重减慢鸡蛋回去的速度。从系统控制理论来说,鸡蛋稍稍越过原位(峰值位移的2-5%左右),得到的是一个比较迅速和稳定的状态。 另外,即使是西瓜上立鸡蛋的状态,因为糖浆(阻尼)会大大减缓鸡蛋离开平衡点的速度,我们的反应时间就足够滚动或者移动西瓜来重新控制鸡蛋了。 也就是说,适当的俯仰阻尼设置可以让我们手动控制静不稳的飞机。当然这只是静不稳的一半问题,静不稳还有更严重的问题没解决。 平飞的概念: 简单来说,平飞就是飞机六个余度的所有力和力矩相等,飞机对称的话我们省略掉对称轴的东西,比如滚转和侧滑,那么基本上来说就是: 升力=重力 L=W; 推力=阻力 T=D; 最重要的: 抬头力矩=低头力矩 M=0。 听起来太简单了,但这三个等式将是我们设计飞机时最重要的参照。

相关主题
文本预览
相关文档 最新文档